sklr VEKTORI (m h) velčn ko e potpuno određen relnm roem (sklrom) Prmer ms, energ, tempertur, rd, sng, oum tel vektor dužn kod koe e određeno ko e nen run točk početn, ko vršn nv se usmeren dužn l vektor vektor vektor se u geometr nv orentrn dužn, u onc = = točk ove se početn točk (hvtšte), točk vršn točk (kr, vrh, perk) vektor element vektor Prmer rn, kcelerc, sl, kutn rn, elektrčno pole, mgnetsko pole modul (psolutn vrednost l nos vektor l duln vektor), =, e duln dužne orentc l usmerene orentc l usmerene od prem od prem smer vektor, prvc n koem lež vektor kolnern vektor nvmo prvcem nostelem vektor prvc nostel ko su prvc nostel vektor usporedn (prleln) kžemo d su vektor stog smer l d su kolnern vektor prvc nostel prvc nostel nul-vektor ednčn vektor vektor č e modul ednk nul nv se nul-vektor ončv vektor č e modul ednk ednc nv se ednčn vektor l ort, ednčn vektor vektor ončv se sloodn, ven kln vektor sloodn vektor su on kom se ne men modul n smer kd trnsltrmo nhove početne krne točke ven vektor su sv vektor ko moru mt stu početnu točku kln vektor e on ko se ne men ko g trnsltrmo duž prvc n koem lež ednkost vektor dv su vektor ednk ko su stog smer, orentce ednke dulne vektor su ednk ko mu ednke module, t. = ko mu st smer, nč d su prleln ednko orentrn
relc ekvvlence ednkost vektor e relc ekvvlence u skupu vektor: = ( refleksvnost), = = ( smetrčnost), = = c = c ( trntvnost) suprotn vektor dv kolnern vektor ednke dulne, l suprotne orentce nvmo suprotn vektor ko e vektor, negov suprotn vektor ončvmo - rne vektor (prvlo trokut) C ro vektor C e vektor C, t. vektor koem e početn točk početn točk prvog prronk, krn točk krn točk drugog prronk + C = C rne vektor (prvlo prlelogrm) oderemo vektore D C D ko mu st početk, t vektor određuu prlelogrm CD, ro + D e dgonl C ko m početk u točk rne vektor (ro vše vektor) 5 4 3 + D = C ro n ndovenh vektor 2, 2 3, 3 4,..., n n ednk e vektoru n, t. vektoru koem e početn točk ednk početno točk prvog prronk, vršn točk e vršn točk posledneg prronk 2 - odumne vektor + + + = 2 2 3 3 4 4 5 5 rlk dvu vektor defnr se ko ro vektor p e = + rlku vektor možemo geometrsk predočt tko d se vektor dovedu n ednčk početk p će vektor t on vektor ko se doe spnem krne točke umnenk s krnom točkom umntel, vektor m početk u kru, kr u kru svostv rn vektor + = + komuttvnost, + + c = + + c soctvnost + = + = e neutrln element rn, + + + = + = e suprotn vektor vektor 2
rdvektor rdvektorom r neke točke T ovemo vektor OT koem e shodšte O početn točk, krn mu e točk u T, točku O ovemo polom, točk T e potpuno određen svom rdvektorom r T(, ) r T(,, ) O O množene vektor relnm roem (sklrom) umnožk (produkt) relnog ro k vektor e vektor ko ončvmo k tkv d vred: vektor k su kolnern k su ednke orentce ko e k > k su suprotne orentce ko e k < duln vektor k ednk e k = umnožk nule vektor e nul-vektor ko e k = l = ond e k = pr množenu vektor roem k > vektor se ''rsteže'' k put m stu orentcu pr množenu vektor roem k < vektor se ''rsteže'' k put m suprotnu orentcu pr množenu vektor roem < k < vektor se ''steže'' k put m stu orentcu pr množenu vektor roem < k < vektor se ''steže'' k put m suprotnu orentcu = rstene vektor ove se dltc, stene kontrkc vektor svostv množen relnog ro vektor svk dv reln ro α β, te svk dv vektor vred: = = α β = ( α β ) α β α β ( + ) = + α + = α + α Prmer 7 + 2 2 3 = 7 + 7 4 + 6 = 3 + 3 lnern komnc ko su vektor α, β reln roev td se vektor α + β nv lnern komnc vektor s koefcentm α β ro umnožk vektor sklr α ( =, 2, 3,..., n) nv se lnern komnc vektor 3
n t. α + α2 2 + α3 3 +... + αn n = α = lnern vsnost nevsnost vektor koefcent vektor, sklr su lnerno nevsn ko e nhov lnern komnc α ( =, 2, 3,..., n) ednk nul su lnerno vsn ko e nhov lnern komnc koefcent α ( =, 2, 3,..., n) ednk nul α nvu se koefcent lnerne komnce n α = = kd su sv n α = = kd nsu sv u rvnn su svk dv kolnern vektor uedno lnerno vsn, t. posto reln ro k tko d vred = k svk tr vektor rvnne su lnerno vsn ko su nekolnern vektor rvnne td su lnerno nevsn vektor O vektor su ednčn vektor, međusono okomt, nekolnern, t. lnerno nevsn vektor = =, vektor, k k vektor, k su ednčn vektor, međusono okomt, nekolnern, t. lnerno nevsn vektor O = = k =,, k, k rdvektor točku T(, ) rdvektor OT m prk r = OT = + = (, ) točku T(,, ) rdvektor OT m prk r = OT = + + k = (,, ) nul-vektor = + l = + + k prk vektor pomoću (, ) (, ) 2 2 = ( 2 ) + ( 2 ) ko vektor korstmo onku td koordnte rmo onke l 2, t. 4
(, ) (, ) = + = + = = 2 2 prk vektor pomoću, k (,, ) (,, ) 2 2 2 = ( 2 ) + ( 2 ) + ( 2 ) k ko vektor korstmo onku td koordnte rmo onke, l, 2 3, t. (,, ) (,, ) = + + k = + + k = = 2 3 2 3 ednkost vektor = +, = = = = + = + + k,, = = = = = + + k duln vektor 2 2 = + = +, 2 2 2 = + + k = + + rne odumne vektor = + + = ( + ) + ( + ) = + = ( ) + ( ) = + + k = ( ) + ( ) + ( ) k = + + k + = ( + ) + ( + ) + ( + ) k množene sklr vektor α = α + = ( α ) + ( α ) α = α + + k = ( α ) + ( α ) + ( α ) k ednčn vektor (ort) + = = = + 2 2 2 2 2 2 + + + + + k = = = + + k 2 2 2 2 2 2 2 2 2 2 2 2 + + + + + + + + sklrn produkt vektor sklrn produkt vektor, u onc e ro (sklr) ko ovko defnrmo: = cosϕ, gde e φ kut među vektor, ϕ =, 5
svostv sklrnog produkt =, + c = + c, α = α, α R, = = 2 = >,,, = < > < < ϕ 9 9 ϕ 8 sklrn produkt ržen pomoću koordnt vektor = + = + = + = + + k + + = + + k uvet okomtost = + + = = + = + + k + + = = + + k tlc sklrnog množen ednčnh vektor k k kut među vektor cos ϕ, cos ϕ +, cos ϕ + + = = = + + + + + + 2 2 2 2 2 2 2 2 2 2 uvet prlelnost (usporednost) = + α, α R = = = + 6
= + + k α, α R = = = = + + k vektorsk produkt vektor c ϕ vektorsk produkt vektor, u onc, e vektor c okomt n, orentc od c e dn prvlom desnog vk, t. dn e smslom npredovn vk pr negovu kretnu od prvog vektor prem drugom nkrćm putem u smeru gn klke st modul vektor c ednk e površn prlelogrm rpetog vektorm : ϕ c = = sn, c, c svostv vektorskog produkt =, α = α = α, α R c c, + c = + c, = =, = površn prlelogrm određenog vektorm P = tlc vektorskog množen ednčnh vektor k k k k vektorsk produkt ržen pomoću koordnt vektor k = + + k = + + k = = + + k ( ) ( ) ( ) k = + + = + + k mešovt produkt mešovt produkt vektor, c e sklr (ro) c ko e ročno ednk oumu prlelepped rpetog vektorm, c 7
mešovt produkt e potvn ko, c tvore desn sustv vektor, negtvn u protvnom sluču V = c mešovt produkt e ednk nul ko: e edn od vektor nul-vektor su dv lo ko vektor kolnern su vektor komplnrn (leže u edno rvnn l su prleln s stom rvnnom) svostv mešovtog produkt c = c = c, c = c c = c, c = c α c = α c = α, α R + c d = c d + c d mešovt produkt u koordntnom olku = + + k = + + k c = c c c c = c + c + c k 8 uvet komplnrnost tr vektor u koordntnom olku = + + k = + + k = c c c c = c + c + c k oum tetredr konstrurnog nd vektorm, c V = c = 6 6 c c c dvostruk vektorsk produkt dvostruk vektorsk produkt c e vektor komplnrn s vektorm c c = c c : dvostruk vektorsk produkt c e vektor komplnrn s vektorm c = c c svostv dvostrukog vektorskog produkt c + c + c = (Jcoev denttet) :