Periodične funkcije. Branimir Dakić, Zagreb

Σχετικά έγγραφα
TRIGONOMETRIJSKE FUNKCIJE I I.1.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

Matematička analiza 1 dodatni zadaci

ELEKTROTEHNIČKI ODJEL

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

7 Algebarske jednadžbe

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

1.4 Tangenta i normala

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

radni nerecenzirani materijal za predavanja

Riješeni zadaci: Limes funkcije. Neprekidnost

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

Linearna algebra 2 prvi kolokvij,

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

4.1 Elementarne funkcije

3.1 Granična vrednost funkcije u tački

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

1 Promjena baze vektora

RIJEŠENI ZADACI I TEORIJA IZ

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

Uvod u teoriju brojeva

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

18. listopada listopada / 13

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

Linearna algebra 2 prvi kolokvij,

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Riješeni zadaci: Nizovi realnih brojeva

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

Operacije s matricama

Funkcije dviju varjabli (zadaci za vježbu)

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

Teorijske osnove informatike 1

1. Trigonometrijske funkcije

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =

Elementi spektralne teorije matrica

41. Jednačine koje se svode na kvadratne

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Četrnaesto predavanje iz Teorije skupova

Signali i sustavi - Zadaci za vježbu II. tjedan

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

Osnovne teoreme diferencijalnog računa

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

Teorem 1.8 Svaki prirodan broj n > 1 moºe se prikazati kao umnoºak prostih brojeva (s jednim ili vi²e faktora).

IZVODI ZADACI (I deo)

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Zadaci iz trigonometrije za seminar

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

6 Polinomi Funkcija p : R R zadana formulom

Riješeni zadaci: Realni brojevi i realne funkcije jedne realne varijable

( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

MJERA I INTEGRAL 2. kolokvij 30. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!)

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum

4. poglavlje (korigirano) LIMESI FUNKCIJA

Numerička matematika 2. kolokvij (1. srpnja 2009.)

SISTEMI NELINEARNIH JEDNAČINA

Linearna algebra I, zimski semestar 2007/2008

Zadaci iz Osnova matematike

6 Primjena trigonometrije u planimetriji

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x

1 Pojam funkcije. f(x)

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

Dvanaesti praktikum iz Analize 1

TRIGONOMETRIJA TROKUTA

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.

3. poglavlje (korigirano) F U N K C I J E

f(x) = a x, 0<a<1 (funkcija strogo pada)

1. Skup kompleksnih brojeva

Signali i sustavi Zadaci za vježbu. III. tjedan

3.1 Elementarne funkcije

4 Elementarne funkcije

ELEMENTARNA MATEMATIKA 1

Matematika 1 - vježbe. 11. prosinca 2015.

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

4 Funkcije. 4.1 Pojam funkcije

Ispitivanje toka i skiciranje grafika funkcija

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

1. Osnovne operacije s kompleksnim brojevima

KONAČNA MATEMATIKA Egzistencija kombinatornih konfiguracija Dirichlet-ov i Ramseyev teorem

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

REKURZIVNE FUNKCIJE PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK. Diplomski rad. Voditelj rada: Doc.dr.sc.

Uvod u teoriju brojeva. Andrej Dujella

Transcript:

Periodične funkcije Branimir Dakić, Zagreb Periodičnost 1 je pojava koju susrećemo na svakom koraku. Periodične su mnoge prirodne pojave, primjerice izmjena dana i noći ili izmjena godišnjih doba, pojava plime i oseke itd. Elektrokardiogram (EKG) ili encefalograf (EKG) su grafički zapisi funkcija srca, odnosno mozga, i već sam pogled na njih stvara intuitivan dojam o pojmu periodičnost. U ovom članku bavit ćemo se periodičnošću nekih elementarnih realnih funkcija. Povremeno ćemo pritom rabiti grafičko džepno računalo koje će nam poslužiti za postavljanje određenih pretpostavki, zapotvrdu nekih rezultata ili pak kao ilustracija pojedinih primjera. Za preciznije crtanje grafova realnih funkcija ovakvo džepno računalo zbog niske rezolucije, baš i nije podobno pa se u tu svrhu možemo koristiti jednim od jednostavnih računalnih programa, ovdje će to biti GeoGebra. 1 Prije same definicije periodičnosti funkcije, a nakon uvoda u kojem se mogu navesti primjeri s početka članka, dobro je obraditi primjer neke jednostavne periodične funkcije. Tu baš i nemamo nekakav izbor jer se u prvim dvjema godinama srednje škole obrađuju funkcije koje nemaju svojstvo periodičnosti: linearni i kvadratni polinom te eksponencijalna i logaritamska funkcija. Jedini, ali zato vrlo upečatljiv primjer jest jednostavna funkcija f (x) = {x}, poznata pod nazivom decimalni 1 grč. periodos obilaženje 203

metodika dio realnog broja x. Opišimo je: Svaki se realan broj x može prikazati u obliku x = x +{x}, pri čemu je x Z prvi od x manji (prvi lijevi) cijeli broj, a {x} [0,1 je decimalni dio broja x. Za svaki cijeli broj n je {n}= 0. Za svaki x [n, n + 1, gdje je n cijeli broj vrijedi: {x}= x x. Što opažamo? Translacijom grafa duž osi x za bilo koji paran cijeli broj, dobit će se isti graf. Zadatak 1. Prikaži grafički funkciju: f(x) = { x 2n, 2n x < 2n+1 x + n + 2, 2n 1 x < 2n Periodične funkcije Definicija Realna funkcija f definirana na skupu D f je periodična ako postoji realan broj P > 0 takav da za svaki x D f vrijedi: f (x + P) = f (x). (*) Broj P zove se period funkcije f. Najmanji pozitivan broj P 0 za koji je ispunjen uvjet (*) jest osnovni ili temeljni period funkcije f. Primijetimo da vrijedi sljedeći poučak: Na slici je prikazan graf ove funkcije. Ukažimo na jednostavnu i zornu činjenicu da translacijom ovog grafa duž osi x za bilo koji cijeli broj dobivamo isti graf. Na istoj zamisli mogli bismo i sami konstruirati slične funkcije. U sljedećem primjeru to je i učinjeno. Primjer 1. Za paran cijeli broj n i za n = 0 definirajmo realnu funkciju f na sljedeći način: f (x) = { x n, n x < n + 1 x + n + 2, n + 1 x < n + 2 Na slici prikazan je graf ove funkcije. Ako je P period funkcije f, onda je i np period iste funkcije, pri čemu je n bilo koji prirodan broj. Ovu očiglednu tvrdnju dokazujemo matematičkom indukcijom. Pravi primjeri periodičnih funkcija u srednjoj školi jesu trigonometrijske funkcije. Te su funkcije vrlo važne u raznim primjenama matematike pa izučavanje njihovih svojstava treba biti glavni sadržaj njihove obrade. Nažalost, to najčešće nije tako, već se obrada trigonometrijskih funkcija svede na puko računanje. U nastavku ćemo se baviti periodičnošću trigonometrijskih funkcija. Pritom ćemo obradu nekih problema, čije se rješenje može naći u svakom udžbeniku trigonometrije, prepustiti čitatelju. Primjer 2. Trigonometrijske funkcije f (x)=sin x i f (x)=cos x su periodične s temeljnim periodom P 0 = 2π. Da su ove dvije funkcije periodične, proizlazi iz same njihove definicije, odnosno iz svojstva smještanja realnih brojeva na jediničnu kružnicu. Tu činjenicu je svakako dobro istaknuti. No formalno je možemo provjeriti na sljedeći način. 204 broj 45 / godina 9. / 2008.

Prema definiciji periodičnosti, mora biti ispunjen uvjet sin (x + P) = sin x. Ta jednakost mora vrijediti za svaki realan broj x, pa i za x = 0. Tako dobivamo jednostavnu jednadžbu sin P = 0 čije je rješenje x = k π, k Z, k 0. Funkcija f je periodična i njezin temeljni period valja potražiti u skupu brojeva k π. Lako se ustvrdi da je P 0 = 2π. Period funkcije sinus je svaki broj oblika k 2π, k Z, k 0. Na potpuno analogan način pokazuje se da je i funkcija cos x periodična s temeljnim periodom 2π. Ovaj primjer ujedno ilustrira kako se načelno, na temelju definicije, provjerava periodičnost i određuje temeljni period neke trigonometrijske funkcije. Zadatak 2. Dokažite da su funkcije f (x) = tg x i f (x) = ctg x periodične i da je njihov temeljni period P 0 = π. Zadatak 3. Dokažite da su funkcije f (x) = sin nx i g(x) = cos nx, gdje je n racionalan broj i n 0 periodične i da je njihov temeljni period P 0 = 2π n. *** Primijetimo ovdje kako vrijedi općenito: Ako je P period funkcije f, tada je period funkcije f (ax), gdje je a od nule različit racionalni broj, jednak P a. Provjerimo ovu tvrdnju: f ( a ( x + P a ) ) = f (ax+p) = f (ax). A što ako su f i g periodične funkcije s različitim osnovnim periodom? Pogledajmo primjere: Primjer 3. Je li funkcija f (x) = sin 3x + tg 2x periodična? Funkcija sin 3x je periodična s temeljnim periodom 2π. Skup perioda te funkcije jest skup 3..., 2π, 4π 3, 2π 3, 2π 3, 4π 8π 3, 2π, 3, _ 10π 3, 4π,... Periodi funkcije tg 2x su svi brojevi oblika k π 2, odnosno, to je skup brojeva:..., 2π, 3π π 2, π, 2, π 2, π, 3π 5π 2, 2π, 2, 6π... Jasno se može uočiti kako su brojevi oblika k 2π, k Z, k 0 u presjeku ova dva skupa pa su onda i periodi funkcije f. Zaista, to se pokazuje točnim: f (x + k 2π) = sin 3 (x + k 2π) + tg 2 (x + k 2π) = sin 3x + tg 2x = f (x). Najmanji pozitivan među brojevima k 2π jest broj 2π i on je temeljni period funkcije f. Zgodno je pogledati na kraju i graf funkcije f. To ćemo, uz pomoć GeoGebre, odmah učiniti i samo potkrijepiti prethodni rezultat. Jedno od pitanja koje se prirodno nameće jest: Ako su f i g periodične funkcije, jesu li periodične funkcije f ± g, f g i f / g? Ako su funkcije f i g periodične s istim temeljnim periodom P, tada je lako vidjeti da su njihov zbroj, razlika, umnožak i količnik periodične funkcije s istim temeljnim periodom. Periodične su stoga funkcije sin x + cos x, sin x cos x, sin 2 x, cos sin x x, sin 2 x cos x itd. 205

metodika Primjer 4. Dokažimo da je funkcija f (x) = sin 3 4 x 2 cos 2 3 x periodična. Odredimo i njezin temeljni period. Valja provjeriti postoji li realan broj P 0 takav da za svaki realan broj x vrijedi: f (x) = sin 3 4 (x + P) 2 cos 2 3 (x + P) = sin 3 4 x 2 cos 2 3 x. Kako ova jednakost mora vrijediti za svaki realan broj x, onda ona mora vrijediti i za x = 0 i za x = P. Uvrštavanjem tih dviju vrijednosti dobivamo dvije jednadžbe koje čine sustav: sin 3 4 P 2 cos 2 3 P = 2 sin 3 4 P 2 cos 2 3 P = 2. Jedno rješenje tog sustava je cos 2 3 P = 1, odnosno P = k 3π. Očito f je periodična, a njezin temeljni period valja tražiti među brojevima k 3π, k Z, k 0. Postupnom provjerom nalazimo da je P 0 = 24π. Graf funkcije f nacrtan pomoću GeoGebre zorno prikazuje ovu funkciju. *** Nakon što smo riješili dva prethodna problema, intuitivno nam se nameće sljedeća pretpostavka: Neka funkcije f 1 i f 2 imaju isto područje definicije i neka su P 1, odnosno P 2 periodi jedne, odnosno druge funkcije. Nadalje, neka su brojevi P 1 i P 2 sumjerljivi, tj. vrijedi P 2 P = m 1 n, m, n N i D (m,n) = 1. Tada je funkcija f (x) = f 1 (x) + f 2 (x) periodična s periodom P = n P 2 = m P 1. Tvrdnju je lako dokazati: U primjeru 3. je P 1 = 2π 3, P 2 = 2π 3. Dalje je P 2 = 3 P1 4 te je P = 4 P 2 = 3 P 1 = 2π. U primjeru 4. imamo: P 1 = 8π 3, P 2 = 3π te je P 2 P 1 = 9 8. I konačno, P = 8 P 2 = 9 P 1 = 24π. Pri rješavanju problema vezanih uz periodične funkcije možemo se koristiti nekim njihovim jednostavnim svojstvima. To podiže učinkovitost i racionalnost postupaka. Primjerice, svojstvo f (x + np) = f (x), n Z, n 0 poručuje da periodična funkcija svaku svoju vrijednost postiže u beskonačno mnogo točaka. Zaključujemo onda da monotono rastuća ili monotono padajuća funkcija ne može biti periodična. Primjerice, eksponencijalna funkcija f (x) = a x, jer je monotona na cijelom svojem području definicije, nije periodična funkcija. Nadalje, područje definicije periodične funkcije mora biti simetrično s obzirom na nulu. Drugim riječima, ako je P D f, gdje je P period, onda mora bitii P D f. Ovo je obrazloženje zašto ne može biti periodična logaritamska funkcija ili funkcija x. U nekoliko narednih primjera primijenit ćemo određene postupke koji u sebi implicitno sadrže definiciju periodične funkcije. Primjer 5. Je li funkcija f (x) = x 2 + sin x periodična? Kad na zaslonu grafičkog džepnog računala pogledamo graf funkcije f, čini nam se kako ta funkcija nije periodična. No, je li to točno? Na zaslonu je samo manji dio grafa te funkcije pa valja provesti strožu provjeru. f (x) = f 1 (x) + f 2 (x) = f 1 (x + m P 1 ) + f 2 (x + n P 2 ) = f 1 (x + P) + f 2 (x + P) = f (x + P). 206 broj 45 / godina 9. / 2008.

Primijetimo da je f (0) = 0. Moralo bi biti i f (0 + np) = f (np) = 0, za n Z, n 0, a to lako vidimo da nije moguće. Naime, funkcija sinus je omeđena, prima vrijednosti između 1 i 1, a vrijednosti kvadratne funkcije x 2 su veće od 1 za sve x > 1. Zbroj dvije funkcije od kojih jedna jest, a druga nije periodična funkcija općenito nije periodična funkcija. Ali niti zbroj dviju periodičnih funkcija nije općenito periodična funkcija. Primjer 7. _ Je li funkcija f (x) = sin x periodična? Područje definicije ove funkcije je skup realnih brojeva. Pogledajmo za trenutak na zaslonu grafičkog džepnog računala graf dane funkcije. Pogledajmo primjer: Primjer 6. Funkcija f 1 (x) = {x} periodična je funkcija s temeljnim periodom 1. Funkcija f 2 (x) = sin x periodična je funkcija s temeljnim periodom 2π. Je li funkcija f(x) = {x} + sin x periodična? Poslužimo li se GeoGebrom, dobit ćemo graf funkcije f i uočiti da ona nije periodična. Ipak, provjerimo to: Pretpostavimo da f jest periodična i da je P njezin period. Tada za svaki realni broj x vrijedi jednakost: {x + P} + sin (x + P) = {x} + sin x. Za x = 0 je {P} + sin P=0, za x = P je { P} sin P = 0. Zbrojimo dvije jednakosti i dobijemo {P} + { P} = 0. No {x} 0, za svaki realni broj x pa slijedi da je {P} = { P} = 0. Ovo je pak ispunjeno za svaki cijeli broj P. S druge strane, ako je {P}=0 onda iz {P}+sin P = 0 slijedi sin P = 0, a odatle P = k π. No taj je broj cijeli samo ako je k = 0. Tada je i P = 0. Zaključujemo da f nije periodična funkcija. Čini se kako ona nije periodična. Kako to provje-riti? Promotrimo skup svih nultočaka funkcije f, odnosno, skup svih rješenja jednadžbe _ f (x) = sin x = 0. Slijedi _ x = n π, n Z, a zatim i x = n 2 π 2 te konačno x = ± n 2 π 2, n= 0, 1, 2,... Razmak između dvije susjedne nultočke jednak je (n + 1) 2 π 2 n 2 π 2 = (2n + 1) π 2. Taj razmak raste od nultočke do nultočke što znači da funkcija nije periodična. Primjer 8. Je li periodična funkcija f (x) = sin x? Uzmimo da je f periodična i neka je P njezin period. 207

metodika Zbog f ( π 2 ) = 1 vrijedi f ( π 2 + P ) = 1. Odatle slijedi P = k 2π, k Z. No trebalo bi biti i f ( π 2 + P ) = f ( π 2 ) = 1, ali nije. Vrijedi naime: f ( π 2 + k 2π ) = sin k 2π π 2 = sin ( k 2π π 2 ) = 1. Funkcija f (x) = sin x nije periodična. Primjer 9. Je li funkcija f (x) = sin x + cos 2x periodična? Odmah se uočava da je 2π period ove funkcije. Za x = 0 imamo sin P = 0 i odatle P = k 2π. _ Za x = P imamo sin 2P = 0 i odatle _ 2P = n 2π. Pritom su k i n prirodni brojevi. Podijelimo li te dvije jednakosti, dobit ćemo 2 = n k što je, kao što znamo, netočno. Time je pogrešna i polazna pretpostavka da je f periodična funkcija. Graf funkcije f vidimo na zaslonu grafičkog džepnog računala. Pokažimo da je to ujedno i najmanji pozitivan period. Kad bi postojao manji, recimo P, bilo bi: f ( P 2 ) = f ( π 2 + P ) = f ( P 2 ). Naime sin ( P 2 ) i sin ( P 2 ) suprotni su brojevi, a cos ( P 2 ) = cos ( P 2 ) pa je sin ( P 2 ) + cos ( 2 P 2 ) sin ( P 2 ) + cos ( 2 P 2 ). Zadatak 4. Je li periodična funkcija f (x) = sin 2 x + cos x? Zadatak 5. Provjerite periodičnost funkcije f (x) = sin 2x. Primjer 10. Je li periodična funkcija f (x) = sin x? Pretpostavimo da je f periodična i da je P njezin period. Tada za svaki broj x iz područja definicije funkcije f vrijedi: _ sin x + P = sin x. *** Sljedeća činjenica je također jednostavna ali vrlo vrijedna: Ako su f i g periodične funkcije s istim periodom P, tada su i zbroj, razlika, umnožak i količnik periodične funkcije s istim periodom. To bi značilo: Funkcije f (x) = sin x i f (x) = cos x su periodične pa su periodične i sljedeće funkcije sin x + cos x, sin x cos x, sin 2 x,... Pri rješavanju zadataka u kojima treba provesti provjere periodičnosti nekih trigonometrijskih funkcija možemo, primijenjujući trigonometrijske identitete, zadane funkcije transformirati na jednostavniji oblik iz kojega je lakše izvesti zaključak. Evo dva primjera: Primjer 11. Dokažimo da je funkcija f (x) = cos 2 x periodična. Jednostavno je pokazati da je π period funkcije f. Vrijedi: cos 2 (x + π) = ( cos x) 2 = cos 2 x. A kako je cos 2 0 = cos 2 π = 1 i cos 2 x < 1 za svaki x 0, π, slijedi da je π najmanji period funkcije f. 1 + cos 2x No mogli smo zapisati f (x) = cos 2x = 2 i odmah vidjeti da je f periodična s temeljnim periodom π. 208 broj 45 / godina 9. / 2008.

*** Slično imamo i u sljedećem primjeru: Primjer 12. džepnom računalu. Te će sličice možda pomoći pri iznalaženju rješenja. 1. f (x) = sin 2x + cos 3x. Provjeri da je funkcija f (x) = cos 4 x periodična. Odredi joj temeljni period. Primijenom osnovnih trigonometrijskih identiteta imamo: f (x) = cos 4 1 + cos 2x x = ( 2 ) 2 = 1 4 (1 + 2 cos 2x + cos 2 2x) = 1 1 + cos 4x 4 ( 1 + 2 cos 2x + 2 ) = 3 8 + 1 2 cos 2x + 1 8 cos 4x. Očito, f je periodična, a njezin je najmanji period P 0 = π 2. *** I na kraju recimo nešto općenito o periodičnosti složenih funkcija. Vrijedi naime sljedeći poučak: Ako je f perodična funkcija, a g bilo koja funkcija definirana na skupu vrijednosti funkcije f, tada je i funkcija g f periodična. Provjerimo: Neka je f periodična s periodom P, a g neka je funkcija definirana na skupu vrijednosti funkcije f. Tada vrijedi g f (x + P) = g (f (x + P)) = g ( f (x)), pa vidimo da je iskazana tvrdnja točna. Ovaj poučak daje odgovor na mnoga pitanja. Zadaci Za svaku od navedenih funkcija provjeri njezinu periodičnost. Uz pojedinu funkciju dan je i njezin graf, onako kako ga se može vidjeti na grafičkom 2. f (x) = cos ( x 2 ). 3 f (x) = sin ( x 2 ). 4. f (x) = sin 2x. 5. f (x) = sin 3 x. 6. f (x) = cos x 2 cos (x 2 ). 209