Totalni napon u tački preseka. Normalni i tangencijalni napon.

Σχετικά έγγραφα
Dimenzionisanje štapova izloženih uvijanju na osnovu dozvoljenog tangencijalnog napona.

OTPORNOST MATERIJALA

Značenje indeksa. Konvencija o predznaku napona

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

ISPIT GRUPA A - RJEŠENJA

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

3.1 Granična vrednost funkcije u tački

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

IZVODI ZADACI (I deo)

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

Osnovne teoreme diferencijalnog računa

Elementi spektralne teorije matrica

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120

4. PREDAVANJE ČISTO PRAVO SAVIJANJE OTPORNOST MATERIJALA I

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

Ispitivanje toka i skiciranje grafika funkcija

Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika

5. PREDAVANJE ČISTO KOSO SAVIJANJE EKCENTRIČNO NAPREZANJE OTPORNOST MATERIJALA I

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

Konvencija o znacima za opterećenja grede

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti

ODREĐIVANJE TEŽIŠTA KRUTOG TELA Korišćenjem Varinjonove teoreme, dobija se: = Gi. = G z

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

OTPORNOST MATERIJALA industrijsko inženjerstvo. Dimenzionisanje lakih vratila opterećenih na uvijanje. Sizing light shafts loaded in twist

5 Ispitivanje funkcija

Osnovne vrste naprezanja: Aksijalno naprezanje Smicanje Uvijanje. Savijanje. Izvijanje

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

Analitička geometrija

SISTEMI NELINEARNIH JEDNAČINA

Osnovni pojmovi, spoljašnje i unutrašnje sile, definicije napona i deformacije, vrste naprezanja. Osnovni pojmovi

Zavrxni ispit iz Matematiqke analize 1

Funkcije dviju varjabli (zadaci za vježbu)

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Izvođenje diferencijalne jednačine elastične linije elastična linija kod proste grede elastična linija kod konzole

SILE U PRESEKU GREDNOG NOSAČA

numeričkih deskriptivnih mera.

Računarska grafika. Rasterizacija linije

12/1/2015 ELEMENTI TEORIJE NAPONA RAVNO STANJE NAPONA SAVIJANJE SILAMA NAPON U PRESEČNOJ RAVNI. ρ = σ + τ + τ ρ = σ 2 + τ

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

Proračunski model - pravougaoni presek

Otpornost R u kolu naizmjenične struje

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

, 81, 5?J,. 1o~",mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pt"en:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M.

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA

10. STABILNOST KOSINA

Dinamičke jednačine ravnog kretanja krutog tela.

Riješeni zadaci: Limes funkcije. Neprekidnost

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE

30 kn/m. - zamenimo oslonce sa reakcijama oslonaca. - postavimo uslove ravnoteže. - iz uslova ravnoteže odredimo nepoznate reakcije oslonaca

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

TRIGONOMETRIJSKE FUNKCIJE I I.1.

41. Jednačine koje se svode na kvadratne

IZVODI ZADACI (I deo)

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

8 Funkcije više promenljivih

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo

Aksijalno napregnuti elementi su elementi izloženi samo na zatezanje ili pritisak.

TEORIJA BETONSKIH KONSTRUKCIJA 79

Teorijske osnove informatike 1

PRIMJERI TEST PITANJA iz OTPORNOSTI MATERIJALA I 1

CENTRIČNO PRITISNUTI ELEMENTI

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

LOGO ISPITIVANJE MATERIJALA ZATEZANJEM

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

ELEKTROTEHNIČKI ODJEL

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

( , 2. kolokvij)

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Dvanaesti praktikum iz Analize 1

l r redukovana dužina (zavisno od dužine i načina vezivanja)

PRETHODNI PRORACUN VRATILA (dimenzionisanje vratila)

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

TRIGONOMETRIJA TROKUTA

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Računarska grafika. Rasterizacija linije

Zadatak 4b- Dimenzionisanje rožnjače

20 mm. 70 mm i 1 C=C 1. i mm

Transcript:

Totalni napon u tački preseka. Normalni i tangencijalni napon. Zamislimo da je opterećeno elastično telo nekom proizvoljnom ravni presečeno na dva dela. Odbačeni desni deo tela, na posmatrani levi, na svakoj elementarnoj površini preseka A, dejstvuje elementarnom unutrašnjom silom F r. u Srednji napon na toj elementarnoj površini je količnik F r r r Fu i A: p. u sr A Kada elementarna površina teži nuli srednji napon teži totalnom naponu p r r r u tački M preseka: r r Fu dfu p lim p lim. Komponenta totalnog napona sr A A A u pravcu normale da na presek n r predstavlja normalni napon r, dok komponenta koja leži u ravni preseka predstavlja r tangencijalni napon. Kroz svaku tačku može se povući beskonačno mnogo ravni. Za svaku ravan totalni napon, a time i normalni i tangencijalni, imaće drugačije vrednosti. Skup napona za sve preseke koji prolaze kroz tačku karakteriše stanje napona u tački.

Naponi u kosom preseku aksijalno opterećenog štapa. Morov krug napona za ovaj slučaj. Presecanjem zategnutog štapa ravni koja je upravna na osu štapa, površina poprečnog preseka je A a napon je Presecanjem istog štapa kosom ravni, određenoj uglom, površina poprečnog preseka je A, A a totalni napon (dobijen iz uslova ravnote): cos F F cos Z i F p A p cos. A A Projekcije totalnog napona daju normalni i tangencijalni napon u kosom preseku u zavisnosti od ugla : p cos cos ( cos) cos, psin cossin sin. Dobijeni izrazi lako daju:,.,. za za ma za sin. F. A

Eliminacijom ugla iz dobijenih izraza () i (), dobiće se Morov krug napona u koordinatnom sistemu : cos, sin ( ) ( cos sin ) ( ). Odredimo sada vrednost tangencijalnog napona za ugao / na osnovu dobijenog izraza za (): sin Kao što normalni naponi mogu biti, kako pozitivni (Sl.), tako i negatvni (Sl.), konvencija o predznaku tangencijalnih napona prikazana je na Sl.3 i Sl.. sin ( ) sin.

Pojam o glavnim naponima Površine u kojima tangencijalnih napona nema su glavne površine a normalni naponi koji dejstvuju u tim površinama su glavni naponi. U teoriji elastičnosti se dokazuje da kroz svaku tačku napregnutog tela mogu da se postave tri međusobno upravne glavne površine. U jednoj od njih dejstvovaće maksimalni glavni napon, u drugoj, a u trećoj minimalni glavni napon 3. U zavisnosti od toga da li se u tački napregnutog tela pojavljuje jedan, dva ili sva tri glavna napona razlikujemo tri vrste naponskog stanja tela: -prostorno stanje napona (Sl.), gde je i, i,, 3. -ravno stanje napona (Sl.), gde je,, 3. -linearno stanje napona (Sl.3), gde je,, 3.

Ravno stanje napona. U ravnom stanju napona se nalazi tanka ravna ploča opterećena po konturi opterećenjem koje koje leži u istoj ravni. Teorema o uzajamnosti tangencijalnih napona. Prikazani pravougaoni elementarni deo je debljine b i sile koje na njega dejstvuju dobijaju se množenjem napona i odgovarajućih površina. Momentni uslov ravnože za prikazan elementarni deo daje: M Di d b d d b d Tangencijalni naponi u dvema, međusobno upravnim ravnima, imaju iste vrednosti ali suprotne smerove. Naponi u proizvoljnoj tački za ravan određenu proizvoljnim uglom (, ).. Uslovi ravnože za prikazan elementarni deo daju: X i da da cos da sin da cos sin da sin cos cos sin sin,

Y i da da cos sin da sin cos da cos da sin sin cos Glavni naponi pri ravnom stanju napona. Određivanje ravni u kojima se oni javljaju. Glavne napone ćemo dobiti traženjem minimuma i maksimuma funkcije ( ) cos sin sin. Za tražena rešenja prvi izvod mora biti jednk nuli: d ( ), d d d d d d d / ( ) / cos sin ( ) ( ) sin cos / ( ) sin cos cos sin / cos / tan /

arctan, tan / tan tan, Dobijeni izrazi definišu ravni u kojima se javljaju glavni naponi. Za oadređivanje sinusa i kosinusa od / iskoristimo i zamišljeni pravougli trougao sa slike: cos, sin cos ( ) ( ), sin ( ) ( ) Za određivanje kvadrata sinusa i kosinusa preko kosinusa dvostrukog ugla iskoristimo matematičke formule: sin ( cos ), ( ) sin ( cos ), ( ),.

( ) ( ), cos cos ( ) ( ) ( ) ( ) ( ) ( ). ( ) ( ) ( ). ( ) ( ). cos cos Prvi glavni napon će se dobiti uvrštavanjem u izraz za Istom procedurom, drugi glavni napon se dobija uveštavanjem, u izraz ( ): ( ): Dakle, glavne napone određuju formule: ( ). / ±

Za ravnu ploču izloženu, po stranama, dejstvu glavnih napona, odrediti normalni i tangencijalni napon za ma koju ravan i nacrtati Morov krug napona. Dobijene formule: cos sin sin, sin cos, izvedene u opštem slučaju, za, i, daju: cos sin, sin...( ) ( cos ) ( cos ) cos...() Kvadriranjem pa sabiranjem izraza () i (), dobija se Morov krug napona: ma

Zapreminska dilatacija. Zapremina elementarnog dela pre dejstva napona, i z je dv d d dz, a nakon njihovog dejstva je dv ( d d) ( d d) ( dz dz). dv dv Zapreminska dilatacija: εv. dv dv dv εv dv dv d d d d dz dz εv d d dz ( ε ) ( ε ) ( ε ) ε ε v v ε z ε ε z ε ε ε ε z ε ε z ε Zanemarujući male veličine drugog i viših redova dobijamo εv ε ε ε z. Veza između normalnih napona i dilatacija pri ravnom stanju napona ( z ). Odredimo prvo dilatacije u sva tri pravca preko napona: ε µ ε ( µ ), E E E ε E µ E ε ( µ ), E ε ε z.

µ ε z µ µ ε z ( ). E E E Rešavanjem prve dve jednačine po i dobiće se ti naponi preko dilatacija. Prvo ih svedemo na oblik: µ Eε...() µ Eε...() Zatim na način, niže naznačen, dobijamo tražene zavisnosti: E E ( ) µ () ( ε ), µε µ ( ) () ( ε ). µε µ µ Deformacija i naponi pričistom smicanju. Deformacije pri smicanju: CC ' m je apsolutno klizanje. Relativno klizanje je m tan γ γ. h γ - ugao klizanja. Znak približno ( ) stoji zbog toga što ugao γ [rad] obično ima malu vrednost.

Naponi pri smicanju (tangencijalni, pošto leže u smicajnoj površini) u svakoj tački smicajne površine imaju konstantnu vrednost. Jednačina ravnoteže, unutrašnjih sila usled tangencijalnih napona i prikazane sile F r koja izaziva smicanje, daje: ( da F A s ) ( A s ) da F A gde koeficijent proporcionalnosti G nosi naziv modul klizanja koji, kao i modul elastičnosti E, ima dimenziju napona [N/m ] [Pa]. Kada pri ravnom stanju napona postoje ravni u kojima se javljačisto smicanje. Ravni preseka u kojima se javlja čisto smicanje su takve da u njima ima samo tangencijalnih napona, bez normalnih. s Intenzitet sile koja izaziva smicanje označavaćemo i sa F s i nazivati smicajnom silom a smicajnu površinu ćemo označavati A s. Hukov zakon (što je osnovni zakon Otpornosti materijala), koji govori o proporcionalnosti između napona i deformacija, kod tangencijalnih napona ima oblik G γ, F F A s

Takve ravni će postojati samo u slučaju prikazanom na slici, kada su glavni naponi pozitivni a glavni naponi negativni. To znači zatezanje u pravcu napona a pritisak u pravcu napona. Iz Morovog kruga napona za takav slučaj jasno se vidi da tačka D Morovog kruga definiše takvu ravan (određuje odgovarajući ugao ). Odgovarajući ugao bi se mogao dobiti rešavanjem po jednačine cos sin (odnosno, ( ) ( ) cos ), gde je. Veza između modula elastičnosti i modula klizanja. Za dobijanje ove veze iskoristimo činjenicu što se za a - dobija da je ravan u kojoj se ljavlja čisto smicanje određena uglom 5 i što vrednost tangencijalnog napona u toj ravni takođe iznosi. Ove činjenice lako proizlaze iz poznatih formula: cos sin, sin.

Morov krug napona, glavni naponi i kvadratni element, u čijim ravnima imamo čisto smicanje, u opisanom slučaju, prikazani su na slikama ), ) i 3). U ovakvom slučaju, dilatacije u horizontalnom i vertikalnom pravcu imaju istu brojnu vrednost ε ali suprotne predznake: ε µ ( µ ) ε, ε µ ( µ ) ε. E E E E E E Ovo znači da će se horizontalna dijagonala dužine D kvadratnog elementa (Sl.3) izdužiti za istu vrednost D za koju će se vertikalna skratiti. Ugao kod levog temena tog kvadrata će se smanjiti u odnosu na 9 za ugao klizanja γ i iznosiće 9 - γ, a njegova polovina će biti 5 - γ/.

( γ ) ε ( γ ) ε jer je: sin 5 Za prikazani pravougli trougao važi: γ ( D D) tan 5 ( D D) γ sin 5 D D D γ D D cos 5 D γ γ D sin 5 cos cos 5 sin D γ γ D cos 5 cos sin 5 sin D γ γ γ D cos 5, sin, cos, ε. D Iz prethodne jednačine se lako može dobiti da je γ ε. Uvrštavanjem u dobijenu jednakost γ i ε ( µ ) dobija se: G G E E ( µ ) G. G E ( µ )

Proračuni pri smicanju Osnovna formula za dimenzionisanje (ali i proračun nosivosti) pri smicanju je d, gde d dozvoljeni tangencijalni napon. Podsetimo se da je F A s. Kod smicanja je veoma čest i proračun gde se traži minimalna potrebna sila F koja obezbeđuje sečenje lima. Ako je debljina lima δ a ukupna dužina reza l onda je smicajna površina A s δ l. Da bi došlo do sečenja mora biti F > M F > M δ l, gde je M čvrstoća materijala lima na smicanje. As Primer. Dva elementa opterećena silom intenziteta F, kao što je na slici prikazano povezana su sa tri istovetna zakivka. Odrediti prečnik zakivka d? Poznate veličine su F i d. F d F, As A n s 3, As 3d gde je n3 broj zakivaka a s sečnost zakivka, F F d d d. 3d 3 d

Primer. Dva elementa opterećena silom intenziteta F, kao što je na slici prikazano povezana su sa dva istovetna zakivka. Odrediti prečnik zakivka d? Poznate veličine su F i d.,, d F d d A s n A A A F s s s gde je n i s,. d d d F d d F Primer.3 Uz pomoć prese iz lima debljine δ mm iseca se krug prečnika D mm. Odrediti potrebni silu na presi F ako je čvrstoća materijala lima na smicanje? 3 M mm N δ > > δ δ 3, M M D F A F D l A s s F > 75398 N.

Uvijanje: definicija, dijagram momenata uvijanja. Štap, kružnog ili kružno prstenastog poprečnog preseka, izložen je uvijanju, ako na njega dejstvuju samo spregovi koji leže u ravnima, upravnim na osu štapa (Sl.). Radi lakšeg crtanja opterećeni štap na uvijanje sa slike predstavljaćemo kao na slici. Za uravnotežen sistem spregova koji dejstvuje na štap imamo jednu statičku jednačinu koja se dobija iz uslova ravnoteže M i. U konkretnom slučaju jednačina ravnoteže je: M M M M. 3

Dijagram momenata uvijanja Vrednost momenta uvijanja u nekom preseku može se dobiti sumiranjem svih spregova koji se nalaze levo ili desno od tog preseka. Mi ćemo ovde u mnogim primerima momente uvijanja određivati na osnovu dijagrama momenta uvijanja. Dijagram crtamo tako što nanosimo spregove kao u ovom primeru, s leva prema desno, nadovezujući svaki naredni spreg. Prvi mora da krene sa nulte linije, a poslednji, zbog uslova ravnoteže, mora da se vrati na nultu liniju. Spreg, koji ima smer kao M i M 3, u dijagramu momenata uvijanja crtamo naniže, a spreg, koji ima smer kao M i M, u dijagramu momenata uvijanja crtamo naviše. Po anaogiji sa dijagramom aksijalnih sila možemo moment uvijanja koji je iznad nulte linije da usvojimo da je predznaka dok bi moment uvijanja koji je ispod nulte linije imao predznak -.

Kod uvijanja imamo tangencijalne napone. Dokaz za to može da bude oblik deformisanog kvadratnog elementa sa slike. Pošto je došlo do klizanja, jer se kvadratni element ugaono deformisao, moraju postojati tangencijalni naponi (Sl. i Sl.3). Deformacija kod uvijanja je ugao θ (ugao uvijanja) i on govori o tome koliko je zakretanje desnog dela štapa B, u odnosu na levi A θ θ A B. Taj ugao je pozitivan ako je deformacija dela od A do B kao na slici, a negativan, ako je deformacija tog dela kao na slici 3.

Određivanje tangencijalnih napona pri uvijanju štapa kružnog i kružnoprstenastog preseka. U svakom poprečnom preseku, upravnom na osu štapa od unutrašnjih sila i spregova imamo jedino jedan spreg koji leži u ravni poprečnog preseka i koji nazivamo Momentom uvijanja- M u ili Momentom torzije-m t. Moment uvijanja-m u je rezultujuće dejstvo beskonačnog r broja elementarnih sila da koje su r posledice tangencijalnih napona. r Tangencijalni napon u svakoj tački poprečnog preseka ima pravac koji je upravan na duž koja spaja tu tačku sa centom O a smer koji je u skladu sa smerom momenta uvijanja. Pomenuta ekvivalentnost daje jednakost: M u da ρ M u ρ da...( ) ( A) ( A)

Štap AB je izložen uvijanju. Posmatrajmo deformaciju njegovog elementarnog dela dužine dz. Desni kraj elementarnog dela u odnosu na levi se zakrenuo za mali ugao dθ. Nakon deformacije tačka C se pomerila po malom luku u C', i slično tome, tačka D u D'. Vlakna paralelna sa osom C"C i D"D, koja su na rastojanju ρ i r od ose, prešla su u položaj C "C' i D"D'. Ugao klizanja na rastojanju r od ose (na perifernim vlaknima ) je γ, a na rastojanju ρ je γ. Jednakosti iz geometrije su: CC ρ dθ γ dz...(), DD r dθ γ dz...(3). Neka su tangencijalni naponi u tačkama C i D (odnosno, na rastojanjimaρi r od centra preseka O) označeni sa i pa, prema Hukovom zakonu, imamo

γ γ, γ, što deljenjem ovih jednakosti daje...() G G γ Uzimanjem u obzir jednakosti (), deljenje jednačina () i (3), daje: ρ γ ρ ρ...(5) r γ r r U dobijenom izrazu uvedena je veličina polarni moment inercije površine poprečnog preseka čija je definicija I ρ da...(7) ( A) Jednakost (5) jasno govori da se tangencijalni naponi proporcionalno povećavaju sa rastojanjem ρ od centra poprečnog preseka O. Uvrštavanjem (5) u (), odnosno ρ u r M u ρ da, ρ I M u dobija se M u da...(6) r r r I ( A) ( A) Uvrštavanjem (6) u (5), izraz za tangencijalni napon postaje ρ...(8) I M u

Polarni moment inercije kružnog i kružno-prstenastog preseka. Polarni otporni moment Definicija polarnog momenta inercije: I ρ da. ( A) Elementarna površina se bira u obliku prstena poluprečnika ρ debljine dρ i praktično je jednaka površini izduženog pravougaonika dužine ρ a širine dρ, da ρ dρ. Uvrštavanjem da u definiciju, za kružni i kružno prstenasti presek, dobija se: kružni (Sl.) kružno prstenasti (Sl.) I I R R 3 ρ R D D ρ dρ, 3 R R 3 ρ ρ d ρ d 3 r ( R r ) ( D ). ) Polarni otporni moment W definiše formula: W I ρ I R I. ma D

Određivanje ugla uvijanja kod štapova kružnog i kružno-prstenastog preseka. Uvrstimo prvo Hukov zakon γ r dθ γ dz : u jednačinu (3), čiji je oblik γ G dθ dz dz. r r G M u M U dobijeni izraz uvrstimo jednakost (6), čiji je oblik : dθ u dz. r I GI Integracijom poslednjeg izraza u odgovarajućim granicama za promenljivu z dobija se ugao uvijanja, odnosno ugao zakretanja desnog kraja u odnosu na levi. Ako bi, na primer, u opštem slučaju, i M u i I bili funkcije z koordinate a štap bio dužine l, onda bi ugao uvijanja štapa određivala formula l M u ( z) θ ± G I ( z) Ako bi štapu AB, dužine l, veličine M u i I bile konstante onda bi ugao uvijanja l iznosio M u M u l M θ dz u l θ θ A B ±. G I G G I Ako bi postojao neki segment štapa, recimo CD, dužine b, za koji su veličine M u i I konstantne, onda bi ugao uvijanja tog segmenta iznosio M u b θ θc D ±. G I dz. I