ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ



Σχετικά έγγραφα
Λύσεις του διαγωνίσματος στις παραγώγους

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

Γ Ε Ν Ι Κ Ο Δ Ι Α Γ Ω Ν Ι Σ Μ Α Ο Ι Κ Ο Ν Ο Μ Ι Α Σ - Θ Ε Τ Ι Κ Η Σ Γ Τ Α Ξ Η Β. Ρ.

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

ΜΑΘΗΜΑΤΙΚΑ - ΠΛΗΡΟΦΟΡΙΚΗ

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2019

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών

. Β2. Η συνάρτηση f είναι παραγωγίσιμη με: 1 1 1, και f ( x) ( ln(ln x) ).

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ. f (f )(x) x f (f )(x) x f (f )(x) (f ) (x)

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ

και γνησίως αύξουσα στο 0,

Πανελλαδικές εξετάσεις 2017

x x f x για κάθε f x x ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α Α1. α) Σχολικό σελίδα 15

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 Ενδεικτικές απαντήσεις

f ( x) f ( x ) για κάθε x A

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ., στο οποίο όμως η f είναι συνεχής. Αν η f x

ΘΕΜΑ Α A1. Έστω μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο του x 0, στο οποίο όμως η f είναι συνεχής.

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

Υψώνουμε την δοσμένη σχέση στο τετράγωνο οπότε

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Απαντήσεις στα Μαθηματικά Κατεύθυνσης 2016

f κυρτή στο [1,5] f x x f η Επαναληπτική f [ 2,10], επιπλέον για την f ισχύουν lim 2 x f 8 1,0 και

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

********* Β ομάδα Κυρτότητα Σημεία καμπής*********

Διαγώνισμα (Μονάδες 2) β. Μια συνάρτηση f μπορεί να μην είναι συνεχής στα άκρα ακαι β αλλά να είναι συνεχής στο [ α, β ].

5ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

Μαθηματικά Προσανατολισμού Γ Λυκείου Ημερομηνία: 03 Μαρτίου 2019 Απαντήσεις

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2016

ΔΙΑΓΩΝΙΣΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2019 ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (1 η σειρά)

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Κεφάλαιο 1, 2, 3)

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. 0, αν x

) της γραφικής παράστασης της f που άγονται από το Α, τις οποίες και να βρείτε. Μονάδες 8 Γ2. Αν ( 1) : y x, και ( 2

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Σελίδα 1 από 8. f στο, τότε

f(x) x 3x 2, όπου R, y 2x 2

3o Επαναληπτικό Διαγώνισμα 2016

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

για κάθε x 0. , τότε f x στο Απάντηση είναι εσωτερικό σημείο του Δ και η f παρουσιάζει σ αυτό τοπικό μέγιστο, υπάρχει 0 τέτοιο, ώστε (x , ισχύει

- + Απαντήσεις. Θέμα Β Β1. Από την Cf παρατηρούμε ότι 0. f x για κάθε (0,4) συνεπώς η f είναι γνήσια αύξουσα στο [4, 5] και γνήσια φθίνουσα στο [0,4].

ΜΑΘΗΜΑΤ ΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤ ΗΣΕΙΣ ΣΤ Α ΘΕΜΑΤ Α ΕΞΕΤ ΑΣΕΩΝ 2016.

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 11 Ιουνίου 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ- ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5)

f(x) γν. φθίνουσα ολ.ελ. γν. αύξουσα

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014

3ο Διαγώνισμα στις παραγώγους

x, οπότε για x 0 η g παρουσιάζει

Μαθηματικά προσανατολισμού

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 10 Ιουνίου 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις)

Πες το με μία γραφική παράσταση

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

2η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ

( ) ( ) ( ) ( ) ( ) ( )

ΑΠΑNTHΣΕΙΣ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΕΣ 2012

2018 Φάση 1 ιαγωνίσµατα Προετοιµασίας ΜΑΘΗΜΑΤΙΚΑ. Γ' Γενικού Λυκείου. Θετικών Σπουδών / Σπουδών Οικονοµίας & Πληροφορικής

ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΠΟΥ ΥΠΗΡΕΤΟΥΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 2018

Μαθηματικά κατεύθυνσης Γ Λυκείου Διαγώνισμα διάρκειας 2 ωρών στις Συναρτήσεις

x x = e, x > 0 έχει ακριβώς δυο Γ4. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη γραφική

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 18 ΔΕΚΕΜΒΡΙΟΥ 2016 ΑΠΑΝΤΗΣΕΙΣ. f x = x 6x + 3, x 1, 1. Η f είναι συ-

, να αποδείξετε ότι και η συνάρτηση f+g είναι παραγωγίσιμη στο x. και ισχύει. Μονάδες 9 Α2. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και [, ]

(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο

x, x (, x ], επειδή η f είναι γνησίως αύξουσα στο (, x0]

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

Κεφάλαιο 2ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ

Εξετάσεις 11 Ιουνίου Μαθηματικά Προσανατολισμού Γ Λυκείου ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

g x είναι συνάρτηση 1 1 στο Ag = R αλλά δεν είναι γνησίως

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ

( ) f( x ) ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Επώνυμο: Όνομα: Τμήμα: Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. (ενδεικτικές λύσεις)

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

x είναι f 1 f 0 f κ λ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÏÑÏÓÇÌÏ

ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ

2015zi 2015zi 2015zi 2015zi 4030zi 4030zi z z

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 3 Ιανουαρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

και δεν είναι παραγωγίσιμη σε αυτό, σχολικό βιβλίο σελ. 99 Α3. Ορισμός σελ. 73 Α4. α) Λ β) Σ γ) Λ δ) Σ ε) Σ , δηλαδή αρκεί x 1 x

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

Transcript:

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΖΗΤΗΜΑ ο Α. α Έστω μια συνάρτηση, η οποία είναι συνεχής σε ένα διάστημα Δ. Να αποδείξετε ότι, αν > σε κάθε εσωτερικό σημείο του Δ, τότε η είναι γνησίως αύξουσα σε όλο το Δ. μονάδες β Αν = για κάθε εσωτερικό σημείο του Δ, τι συμπεραίνετε για τον τύπο της μονάδες Β. α Για τη συνάρτηση ισχύουν : = για κάθε R και =. Να αποδείξετε ότι : Ι Η συνάρτηση είναι σταθερή μονάδες ΙΙ =, για κάθε R. μονάδες β Να χαρακτηρίσετε τις προτάσεις που ακολουθούν ΣΩΣΤΟ ή ΛΑΘΟΣ Ι Αν μια συνάρτηση είναι γνησίως αύξουσα στο διάστημα Δ και παραγωγίσιμη σε αυτό, τότε > για κάθε Δ. μονάδες ΙΙ Αν > για κάθε R, τότε τα σημεία Α, και Β, - ανήκουν και τα δύο στη γραφική παράσταση της. μονάδες ΙΙΙ Αν μια συνάρτηση είναι παραγωγίσιμη με συνεχή παράγωγο σε ένα διάστημα Δ και ισχύει για κάθε Δ, τότε η είναι γνησίως μονότονη στο Δ. μονάδες ΖΗΤΗΜΑ ο Α. Δίνεται η συνεχής συνάρτηση : R R με τύπο Να δείξετε ότι : α α = μονάδες 7 β Η είναι παραγωγίσιμη στο R. μονάδες 8 Β. Δίνεται η συνάρτηση με τύπο ln με >. α Να μελετηθεί η ως προς τη μονοτονία και τα ακρότατα. μονάδες 5 β Δείξετε ότι για κάθε >. μονάδες 5

ΖΗΤΗΜΑ ο Α. α Έστω συνάρτηση δύο φορές παραγωγίσιμη στο R για την οποία ισχύει, για κάθε R. Να αποδείξετε ότι η γραφική παράσταση της δεν παρουσιάζει σημείο καμπής. μονάδες 6 β Έστω παραγωγίσιμη στο [α,β] και, συνεχής στο [α,β] με c Αν για κάθε α,β δείξτε ότι η εξίσωση c έχει μία μόνο ρίζα στο α,β. μονάδες 6 Β. α Αν παραγωγίσιμη στο R, = 5 και για κάθε R ισχύει : 6 να βρείτε την εφαπτομενη της στο χ= μονάδες 6 β Δίνεται η συνάρτηση, δύο φορές παραγωγίσιμη στο [α,β]. Έστω m η ελάχιστη και Μ η μέγιστη τιμή της στο [α,β]. Αν ισχύει : m < α < β < Μ να δείξετε ότι η εξίσωση = έχει τουλάχιστον μία ρίζα στο α,β μονάδες 7 ΖΗΤΗΜΑ ο Έστω η δύο φορές παραγωγίσιμη συνάρτηση :, + R για την οποία ισχύουν : 5 για κάθε >, = και = -. α Να αποδείξετε ότι η συνάρτηση ln, είναι σταθερή. μονάδες 8 β Να βρείτε τον τύπο της συνάρτησης. μονάδες γ Να βρείτε τις ασύμπτωτες της γραφικής παράστασης της. μονάδες δ Να βρείτε το σύνολο τιμών της. μονάδες ε Να αποδείξετε ότι αν < α < β <, τότε ισχύει : ln ln μονάδες 8

ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΖΗΤΗΜΑ ο Α. α Θεωρια βιβλιο σελ β =c B.α.. αρα =c Για χ= εχω = ara = β Λ,Λ,Σ ΖΗΤΗΜΑ ο Α.α a a β Η παραγωγίσιμη για χ ως πηλίκο για χ=: 9 9 αρα παραγωγίσιμη στο R B. α ln ln X + + - ολ.με στη θεση χ= παρουσιαζει ολικο μεγιστο = β αρα για κάθε χ> ΖΗΤΗΜΑ ο Α. αεστω ότι η παρουσιαζει σημείο καμπής χ,.τοτε χ=.παραγωγίζω:. για χ=χ εχουμε δηλ : Όμως η ψ=χ και η ψ= δεν εχουν κανένα κοινό σημείο αρα η είναι αδύνατη αρα η δεν εχει σημεία καμπής. β Θεωρώ = -c σχς στο [α,β] ως διαφορά συνεχων. c c αρα ισχύει το Θ.Βolzano δηλ υπαρχει τουλάχιστον ριζα της = στο α,β. Επίσης = και συνεχής αρα διατηρει πρόσημο δηλ η είναι γν.μονότονη και η ρίζα είναι μοναδική B. α Εχω: 6 Θεωρώ 6 h και εχω h= αρα η γινεται h h για κάθε χ στο R δηλ στη θέση χ= εσωτερικό σημείο η h παρουσιάζει ακρότατο είναι πργμ δηλ από θεώρημα Frmat h =. Όμως h h Η εξίσωση της εφαπτομένης είναι:ψ-= - δηλ ψ-5=-χ αρα ψ=-χ+5

βεπειδη η είναι συνεχής στο [α,β] εχει μέγιστη Μ και ελάχιστη m τιμή.απο την σχέση m < α < β < Μ αποκλείεται τα ακρα α,β να είναι θέσεις ακροτάτων αρα εχει εσωτερικά σημεία που είναι θέσεις ακροτάτων εστω χ,χ.απο θ.frmat = = Στο [χ,χ] η είναι πργμ και σχς και = =.Αρα ισχύει το Θ.Roll αρα η εξίσωση = έχει τουλάχιστον μία ρίζα στο χ,χ α,β ΖΗΤΗΜΑ ο α.. αρα... 5 Δηλ χ. =c για = εχω =c αρα c = από Αρα από εχω = δηλ σταθερη β εχω c ln και για χ= εχω c= αρα ln ln γ στο,+ εχουμε: ln ln αρα ψ= οριζόντια ασυμπτωτη στο + ln..ln ln δ εχω = X + - + ολ.ε στη θεση παρουσιάζει ολικό ελάχιστο Για το σύνολο τιμών εχουμε:, ] [, [, [, [, [, ενωνοντας τα δυο σύνολα εχουμε ότι A [,

ln ln ε η σχέση διαιρωντας με αβ γίνεται: δηλ: ln ln a a ln ln ln Με Θ.Μ.Τ για την h στο [α,β] υπαρχει, : h a ln Όμως h Από,, θελω να δειξω : β < ξ < α Όμως στο, η είναι γν. φθίνουσα αρα: με α<ξ<β επεται α > ξ > β