Αποκατάσταση Εικόνας



Σχετικά έγγραφα
Ακαδηµαϊκό Έτος , Χειµερινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης

Βελτίωση Ποιότητας Εικόνας: Επεξεργασία στο πεδίο της Συχνότητας

Ψηφιακή Επεξεργασία Εικόνας

Παρουσίαση Νο. 6 Αποκατάσταση εικόνας

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη

Κατάτµηση Εικόνων: Ανίχνευση Ακµών και Κατάτµηση µε Κατωφλίωση

Digital Image Processing

Digital Image Processing

ΒΙΟΜΗΧΑΝΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 5 η : Αποκατάσταση Εικόνας

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης

ΒΕΣ 04: Συµπίεση και Μετάδοση Πολυµέσων. Περιεχόµενα. Βιβλιογραφία. Εικόνες και Πολυµεσικές Εφαρµογές. Ψηφιακή Επεξεργασία Εικόνας.

Ενότητα 4: Φιλτράρισµα στο Πεδίο Συχνοτήτων (ΙΙ)

Απαραίτητες αφού 3Δ αντικείμενα απεικονίζονται σε 2Δ συσκευές. Θέση παρατηρητή. 3Δ Μετασχ/σμός Παρατήρησης

ΚΕΣ 03: Αναγνώριση Προτύπων και Ανάλυση Εικόνας. KEΣ 03 Αναγνώριση Προτύπων και Ανάλυση Εικόνας. Κατάτµηση Εικόνων:

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης

Ενότητα 2: Οι Θεµελιώδεις Αρχές των Ψηφιακών Εικόνων

Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδηµαϊκό Έτος , Χειµερινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης

Κατάτµηση εικόνας σε οµοιόµορφες περιοχές

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης

Θεωρία μετασχηματισμών

Advances in Digital Imaging and Computer Vision

Ψηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ

Ψηφιακή Επεξεργασία Εικόνας

Παράδειγμα 14.2 Να βρεθεί ο μετασχηματισμός Laplace των συναρτήσεων

ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ

Παρουσίαση Νο. 5 Βελτίωση εικόνας

Μέθοδοι Αναπαράστασης Περιοχών

Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Ο αναδροµικός αλγόριθµος ελάχιστων τετραγώνων (RLS Recursive Least Squares)

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13

Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Digital Image Processing

Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης

Γεωμετρικοί μετασχηματιμοί εικόνας

Μετασχηµατισµοί 2 &3

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΤΙΚΗ FOURIER. Γ. Μήτσου

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση

Μετασχηµατισµός FOURIER ιακριτού χρόνου DTFT

Τοµογραφία Μετασχηµατισµός Radon

ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ

Διανύσµατα στο επίπεδο

ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 4 η : Βελτίωση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής

Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές

προβλήµατος Το φίλτρο Kalman διαφέρει από τα συνηθισµένα προβλήµατα ΜΕΤ σε δύο χαρακτηριστικά: παραµέτρων αγνώστων

Μια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB )

27-Ιαν-2009 ΗΜΥ (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης

Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές

Μετασχηματισμοί Μοντελοποίησης (modeling transformations)

Επίλυση Γραµµικών Συστηµάτων

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας

ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ & ΓΡΑΦΙΚΩΝ. Τρισδιάστατοι γεωμετρικοί μετασχηματισμοί

Κλασικη ιαφορικη Γεωµετρια

Ιατρικά Ηλεκτρονικά. Χρήσιμοι Σύνδεσμοι. ΙΑΤΡΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ - ΔΙΑΛΕΞΗ 5α. Σημειώσεις μαθήματος: E mail:

Περιεχόμενα. σελ. Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii

E[ (x- ) ]= trace[(x-x)(x- ) ]

HMY 220: Σήματα και Συστήματα Ι

ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ

Περιεχόµενα. ΕΠΛ 422: Συστήµατα Πολυµέσων. Γραφικά Υπολογιστών. Βιβλιογραφία

University of Cyprus. Σχεδιασμός Οπτικών Συστημάτων (Απεικόνιση) ό

Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας

Σχήµα 1: Χρήση ψηφιακών φίλτρων για επεξεργασία σηµάτων συνεχούς χρόνου

DFT ιακριτός µετ/σµός Fourier Discrete Fourier Transform

Μέθοδοι Αναπαράστασης Περιγραµµάτων

Περιγραφή Συστηµάτων Αυτοµάτου Ελέγχου

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις

Θεωρία Στοχαστικών Σηµάτων: Στοχαστικές διεργασίες, Περιγραφή εργοδικών στοχαστικών διεργασιών

Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Χωρικές Περιγραφές και Μετασχηµατισµοί

Μαθηματικός Ορισμός Διδιάστατου Χώρου (R 2 )

Εισαγωγή στα Προσαρµοστικά Συστήµατα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ

Μετασχηµατισµοί 2 & 3

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων.

ΚΑΤΑΝΟΜΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ

Κίνηση στερεών σωμάτων - περιστροφική

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

E [ -x ^2 z] = E[x z]

Συστήµατα και Αλγόριθµοι Πολυµέσων

Ανακατασκευή εικόνας από προβολές

Περιεχόµενα. ΕΠΛ 422: Συστήµατα Πολυµέσων. Βιβλιογραφία. Εισαγωγή. Συµπίεση εικόνων: Το πρότυπο JPEG. Εισαγωγή. Ευθύς µετασχηµατισµός DCT

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.

Συµπίεση Ψηφιακών Εικόνων: Συµπίεση µε Απώλειες. Πρότυπα Συµπίεσης Εικόνων

Μεθοδολογίες παρεµβολής σε DTM.

Αριθµητική Ανάλυση 1 εκεµβρίου / 43

Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής

x(t) = 4 cos(2π600t π/3) + 2 sin(2π900t + π/4) + sin(2π1200t) (1) w(t) = y(t)z(t) = 2δ(t + 1) (2) (2 sin(2π900t + π/4) t= 1 + sin(2π1200t) )

Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6)

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Βασική Εφικτή Λύση. Βασική Εφικτή Λύση

17-Φεβ-2009 ΗΜΥ Ιδιότητες Συνέλιξης Συσχέτιση

Transcript:

ΤΨΣ 50 Ψηφιακή Επεξεργασία Εικόνας Αποκατάσταση Εικόνας Τµήµα ιδακτικής της Τεχνολογίας και Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς Περιεχόµενα Βιβλιογραφία Περιεχόµενα Ενότητας Ορισµός & Παραδείγµατα Μοντέλο Υποβάθµισης Ποιότητας Αντίστροφο Φιλτράρισµα Φίλτρα Wiener Αποκατάσταση µε βάση τα Ελάχιστα Τετράγωνα Τυφλή Αποσυνέλιξη Γεωµετρικοί Μετασχηµατισµοί Βιβλιογραφία: Πήτας [999]: Κεφάλαιο 8 Gonzales [00]: Capter 5 Gonzales [004]: Capter 5

Ορισµός & Παραδείγµατα Η βελτίωση ποιότητας εικόνας και η αποκατάσταση εικόνας είναι συγγενικές περιοχές Οι βασικές τους διαφορές είναι: Στη βελτίωση ποιότητας εικόνας τα κριτήρια επιτυχούς βελτίωσης είναι καθαρά υποκειµενικά στοχεύουν στη δηµιουργία εικόνων οι οποίες είναι περισσότερο αρεστές στους ανθρώπους Στην αποκατάσταση εικόνας τα κριτήρια βελτίωσης είναι περισσότερο µαθηµατικοποιηµένα και εποµένως αντικειµενικά Στην αποκατάσταση εικόνας θεωρείται ότι έχουµε µια πρότερη γνώση για το φαινόµενο της υποβάθµισης της εικόνας κάτι το οποίο δεν ισχύει στη βελτίωση ποιότητας Παραδείγµατα χρήσης αποκατάστασης εικόνων: Αντιµετώπιση θολώµατος blur) εικόνων Ηµιτονοειδής θόρυβος σε ακτινογραφίες φαινόµενο Moire) Υποβάθµιση ποιότητας λόγω των χαρακτηριστικών των film Μοντέλο Υποβάθµισης Ποιότητας Εικόνας Το µοντέλο υποβάθµισης εικόνων αλλά και της αποκατάστασης εικόνας επιδεικνύεται στο παραπάνω σχήµα Η αρχική εικόνα fxy) υποβαθµίζεται εξαιτίας της επίδρασης µιας διεργασίας υποβάθµισης Η[fxy)]) η οποία µοντελοποιείται µέσω µιας συνάρτησης υποβάθµισης xy) Η σηµασία της ορθής µοντελοποίησης είναι τεράστια στην αποκατάσταση εικόνας Εκτός της διεργασίας υποβάθµισης στην εικόνα επενεργεί και αθροιστικός θόρυβος nxy)

Μοντέλο Υποβάθµισης Ποιότητας Εικόνας ΙΙ) Η διαδικασία της αποκατάστασης αφορά την εύρεση µιας σχετικά καλής εκτίµησης f ˆ x y) της εικόνας fxy) µε: εδοµένη την υποβαθµισµένη εικόνα gxy) ιαθέσιµη τη µοντελοποίηση της διεργασίας υποβάθµισης µέσω µιας συνάρτησης xy) ιαθέσιµα κάποια στατιστικά χαρακτηριστικά του θορύβου nxy) όπως µέση τιµή και διασπορά Στόχος είναι η ελαχιστοποίηση της διαφοράς ανάµεσα στην και την fxy) f ˆ x y) Μοντέλο Υποβάθµισης Ποιότητας Εικόνας ΙΙΙ) Στις ειδικές περιπτώσεις στις οποίες είναι εφικτή η µοντελοποίηση της διεργασίας υποβάθµισης µέσω µιας Γραµµικής Χωρικά Αναλλοίωτης συνάρτησης xy) η διαδικασία υποβάθµισης περιγράφεται από τη σχέση: gxy) = xy)*fxy)+nxy) όπου * δηλώνει τη διαδικασία της συνέλιξης Από τις ιδιότητες του Μετασχηµατισµού Fourier η παραπάνω σχέση στο χώρο της συχνότητας έχει τη µορφή: Gu = u Fu+Nu 3

Μοντέλο Υποβάθµισης Ποιότητας Εικόνας ΙV) Η σχέση Gu = u Fu+Nu αποτελεί τη βάση για τη υλοποίηση των περισσότερων από τις µεθοδολογίες αποκατάστασης εικόνας Η συνάρτηση xy) είναι γνωστή και ως Point Spread Function PSF) ενώ ο µετασχηµατισµός Fourier της συνάρτησης u ονοµάζεται συχνά Optical Transfer Function OTF) Εξαιτίας της περιγραφής της διαδικασίας υποβάθµισης µέσω µιας συνελικτικής διαδικασίας η αποκατάσταση ονοµάζεται συχνά και αποσυνέλιξη Γραµµικά Χωρικά Αναλλοίωτα Συστήµατα Ένα σύστηµα είναι γραµµικό όταν: Η[k f xy)+ k f xy)] = k Η[f xy)]+ k [f xy)] Η παραπάνω σχέση δηλώνει ότι η απόκριση ενός γραµµικού συστήµατος στο άθροισµα δύο εισόδων ισούται µε το άθροισµα των αποκρίσεων στις επιµέρους εισόδους Επίσης η απόκριση στο πολλαπλάσιο µε µια σταθερά) µιας εισόδου ισούται µε την απόκριση στην είσοδο πολλαπλασιασµένο µε µια σταθερά Ένα σύστηµα είναι χωρικά αναλλοίωτο όταν: Η[fx-ay-b)] = gx-ay-a) όπου gxy) είναι η απόκριση του συστήµατος) Η παραπάνω σχέση δηλώνει ότι η απόκριση του συστήµατος περιγράφεται από την ίδια σχέση σε όλα τα σηµεία pixel) της εισόδου 4

Αποκατάσταση στη παρουσία θορύβου µόνο Μια ειδική περίπτωση υποβάθµισης ποιότητας έχουµε όταν υπάρχει µόνο επίδραση θορύβου και όχι διεργασία υποβάθµισης Στη περίπτωση αυτή η σχέση υποβάθµισης διαµορφώνεται ως: gxy) = fxy) + nxy) και στο χώρο της συχνότητας Gu = Fu+Nu Στις παραπάνω περιπτώσεις η διαδικασία αποκατάστασης εφαρµόζεται µε βάση τα στατιστικά χαρακτηριστικά του θορύβου και συγκεκριµένα την συνάρτηση πυκνότητας πιθανότητας probability density function pdf) του θορύβου Υπάρχουν πολλές µοντελοποιήσεις θορύβων που βοηθούν στην αποκατάσταση εικόνας θόρυβος Gauss Rayleig gamma οµοιόµορφος κλπ) Προσθήκη θορύβου σε µια εικόνα και διάφορα µοντέλα θορύβου υλοποιούνται στη Matlab µε τη συνάρτηση imnoise Μοντελοποίηση Θορύβου Μερικές από τις συναρτήσεις πυκνότητας πιθανότητας θορύβου φαίνονται στο διπλανό σχήµα Με διαθέσιµες τις συναρτήσεις πυκνότητας πιθανότητας του θορύβου µπορούν εύκολα να εκτιµηθούν τα στατιστικά χαρακτηριστικά του θορύβου όπως µέση τιµή και διασπορά) τα οποία χρειάζονται για την αποκατάσταση εικόνας 5

Υποβάθµιση εικόνας και είδη θορύβου Θόρυβος Gauss => µοντελοποίηση αισθητήρων καταγραφής οι οποίοι λειτουργούν σε χαµηλά επίπεδα φωτισµού Θόρυβος salt & pepper => µοντελοποίηση κακής λειτουργίας διαφράγµατος συσκευών απεικόνισης Θόρυβος lognormal => µοντελοποίηση της συµπεριφοράς φωτογραφικού film Εκθετικός θόρυβος και θόρυβος gamma => µοντελοποίηση θορύβου καταγραφής εικόνας µε ακτίνες laser Εκτίµηση παραµέτρων θορύβου Ένας τρόπος εκτίµησης της πυκνότητας πιθανότητας του θορύβου σε µια εικόνα επιτυγχάνεται µε την λήψη ιστογραµµάτων σε οµοιόµορφες περιοχές της εικόνας εδοµένου ότι οι τιµές φωτεινότητας της εικόνας σε αυτές τις περιοχές είναι σταθερές οποιαδήποτε διακύµανση στα ιστογράµµατα οφείλεται στο θόρυβο 6

Εκτίµηση παραµέτρων θορύβου ΙΙ) ΦιλτράρισµαΘορύβου Το φιλτράρισµα του θορύβου µπορεί να γίνει είτε στο χώρο της εικόνας όταν υπάρχει µοντελοποίηση του θορύβου µέσω της αντίστοιχης pdf και κατά συνέπεια εκτίµηση των στατιστικών του θορύβου κυρίως της µέσης τιµής και της διασποράς) µε βάση της σχέσεις: gxy) = fxy) + nxy) αθροιστικός θόρυβος) gxy) = fxy) + nxy) fxy) πολλαπλασιαστικός θόρυβος) Είτε στο χώρο της συχνότητας κυρίως για απαλοιφή περιοδικού θορύβου µε πεπερασµένο φάσµα συχνοτήτων µε βάση τη σχέση: Gu = u+nu 7

ΦιλτράρισµαΘορύβου στο χώρο της εικόνας Υπάρχουν υλοποιηµένα πάρα πολλά φίλτρα για την απαλοιφή του θορύβου στο χώρο της εικόνας κατάλληλα για συγκεκριµένα είδη θορύβου Μερικά παραδείγµατα φίλτρων δίνονται στη συνέχεια: Αριθµητικού µέσου γραµµικό δηµιουργία µέσω της συνάρτησης fspecial average [mn])) Γεωµετρικού µέσου µη γραµµικό δεν υπάρχει συγκεκριµένη υλοποίηση στη Matlab) Αρµονικού µέσου µη γραµµικό δεν υπάρχει συγκεκριµένη υλοποίηση στη Matlab) Αντιαρµονικού µέσου µη γραµµικό δεν υπάρχει συγκεκριµένη υλοποίηση στη Matlab) Τάξης median min max - µη γραµµικά συναρτήσεις medfilt ordfilt) Ενδιάµεσου σηµείου µη γραµµικό δεν υπάρχει συγκεκριµένη υλοποίηση στη Matlab) ΦιλτράρισµαΘορύβου στο χώρο της συχνότητας Εφαρµόζεται σε περιπτώσεις περιοδικού θορύβου ο οποίος αναλύεται σε λίγες συχνότητες οι οποίες µπορούν να εντοπιστούν από το µετασχηµατισµό Fourier Gu της υποβαθµισµένης εικόνας gxy) Απαλοιφή θορύβου τέτοιας µορφής επιτυγχάνεται µε ζωνοφρακτικά φίλτρα και φίλτρα εγκοπής 8

Η συνάρτηση µεταφοράς µετασχηµατισµός Fourier) ενός ζωνοφρακτικού φίλτρου Butterwort δίνεται από τη σχέση: br u = D u W + D u D 0 ΦιλτράρισµαΕγκοπής Notc Filtering) n Η συνάρτηση µεταφοράς φίλτρου εγκοπής βλέπε διπλανό σχήµα) δίνεται από τη σχέση: br u = D 0 + D u D u n ΦιλτράρισµαΕγκοπής II) br u = D 0 + D u D u n D u και D u είναι οι αποστάσεις της συχνότητας u από τη συχνότητα που πρέπει να αποκοπεί και τη συµµετρική της υπενθυµίζεται ότι στο µετασχηµατισµό Fourier υπάρχει συµµετρία ως προς την αρχή των αξόνων) D 0 είναι η ακτίνα της εγκοπής µε κέντρο τη συχνότητα που αποκόπτεται 9

Αποκατάσταση µε θόρυβο & διεργασίας υποβάθµισης Στις περισσότερες περιπτώσεις η υποβάθµιση της εικόνας προέρχεται από συνδυασµό µιας διεργασίας υποβάθµισης που µπορεί να οφείλεται στο χρησιµοποιούµενο εξοπλισµό αλλά και στη παρουσία θορύβου Σε αυτές τις περιπτώσεις απαλοιφή του θορύβου µέσω της µοντελοποίησης του δεν είναι αρκετή Απαιτείται µοντελοποίηση της διεργασίας υποβάθµισης και εφαρµογή µεθόδων αποκατάστασης που την απαλείφουν ή τουλάχιστον την περιορίζουν Αποκατάσταση µε θόρυβο & διεργασίας υποβάθµισης ΙΙ) Η απαλοιφή των προβληµάτων που προκαλεί η διεργασία υποβάθµισης µπορεί να γίνει: Πειραµατισµό στις ρυθµίσεις του εξοπλισµού ώστε να περιοριστούν τα προβλήµατα αυτό στις περισσότερες περιπτώσεις δεν είναι εφικτό πχ Ακτινογραφίες ή όταν η πρόσβαση στον εξοπλισµό κοστίζει ή είναι δύσκολή) ηµιουργία µιας συνάρτησης xy) συχνά επονοµαζόµενης και ως PSF Point Spread Function) η οποία µοντελοποιεί τη διεργασία υποβάθµισης και εφαρµογή τεχνικών αποκατάστασης εικόνων image restoration) Αν η διεργασία υποβάθµισης δεν είναι γνωστή ή δεν µπορεί να µοντελοποιηθεί εύκολα τότε εφαρµόζεται µια µεθοδολογία αποκατάστασης εικόνων µε ταυτόχρονη εκτίµηση της xy) Η τεχνική αυτή είναι γνωστή και ως τυφλή αποσυνέλιξη blind deconvolution) 0

Μοντέλο Θολώµατος blurring function) Μια από της πιο συνηθισµένες διεργασίες υποβάθµισης της εικόνας είναι το θόλωµα blur) Το θόλωµα µπορεί να προέρχεται από δύο αιτίες: Συνθήκες λήψης της εικόνας πχ Ατµοσφαιρικές συνθήκες σε αεροφωτογράφηση ή κακή εστίαση φακού) Κίνηση είτε του αντικειµένου που απεικονίζεται είτε της κάµερας Τόσο στη µία όσο και στην άλλη περίπτωση η συνάρτηση η οποία µοντελοποιεί το θόλωµα έχει την τάση να διασκορπίζει µια φωτεινή σηµειακή πηγή όπως φαίνεται στο επόµενο σχήµα) αιτιολογώντας την ονοµασία Point Spread Function Μοντέλο Θολώµατος II) Η µοντελοποίηση της σε περιπτώσεις στατικής λήψης γίνεται µέσω ενός χαµηλοπερατού φίλτρου Gauss Βλέπε συνάρτηση fspecial gaussian size sigma) στη Matlab Η µοντελοποίηση της κίνησης µπορεί επίσης να προσοµοιαστεί µε εφαρµογή κατάλληλου φίλτρου Βλέπε συνάρτηση fspecial motion len teta) στη Matlab

Μοντέλο Θολώµατος IIΙ) Μοντέλο Θολώµατος IV) Στη διπλανή εικόνα το θόλωµα έχει µοντελοποιηθεί ως συνδυασµός διαγώνιας κίνησης αλλά και Γκαουσιανού φιλτραρίσµατος

Μοντέλο Θολώµατος V) Original Image Motion Blurred Image Blurred Image Sarpened Image Αντίστροφο Φιλτράρισµα Όταν η διεργασία υποβάθµισης µπορεί να µοντελοποιηθεί µέσω µιας συνάρτησης xy) η οποία είναι ΓΧΑ Γραµµική Χρονικά Αναλλοίωτη) τότε το µοντέλο υποβάθµισης δίνεται από τη σχέση: gxy)= xy)*fxy) + nxy) Από τις ιδιότητες του Μετασχηµατισµού Fourier προκύπτει ότι ισχύει η σχέση: Gu = u Fu+Νu Εποµένως αν γνωρίζουµε την xy) µπορούµε να σχηµατίσουµε µια εκτίµηση f ˆ x y) της fxy) από τη σχέση: f ˆ x y) = IDFT{ Fˆ u } όπου IDFT{} δηλώνει τον αντίστροφο Μετασχηµατισµό Fourier και ˆ N u F u = F u + u 3

Αντίστροφο Φιλτράρισµα ΙΙ) Η τεχνική του αντίστροφου φιλτραρίσµατος θα µπορούσε να είναι αποτελεσµατική αν: ˆ N u F u = F u + u εν υπήρχε θόρυβος στην υποβαθµισµένη εικόνα ή Ο µετασχηµατισµός Fourier του θορύβου Νu) ήταν γνωστός Ακόµα και στις παραπάνω περιπτώσεις όµως και επειδή ο πίνακας u περιέχει συνήθως πολλά µηδενικά ιδιαίτερα στις υψηλές συχνότητες και δεν είναι εν γένει αντιστρέψιµος η Fˆ u δεν προσεγγίζει ικανοποιητικά την Fu και εποµένως ούτε η fˆ x y) προσεγγίζει την fxy) Αντίστροφο Φιλτράρισµα III) 4

Φίλτρα Wiener Η αποκατάσταση µε φίλτρα Wiener προσπαθεί να απαλείψει τα µειονεκτήµατα και τα προβλήµατα της αποκατάστασης µε βάση το αντίστροφο φιλτράρισµα Για το σκοπό αυτό η εικόνα f ˆ x y) υπολογίζεται µε ελαχιστοποίηση του στατιστικού σφάλµατος: f ) e = E ˆf όπου Ε{ } δηλώνει την αναµενόµενη τιµή της ποσότητας εντός των αγκυλών Από την ελαχιστοποίηση της παραπάνω ποσότητας e = E f ˆf ) ) προκύπτει η σχέση στο πεδίο της συχνότητας: ˆ u F u = G u u Sn u u + S f u όπου: Φίλτρα Wiener ΙΙ) ˆ u F u = G u u Sn u u + S f u Ηu = µετασχηµατισµός Fourier της συνάρτησης υποβάθµισης * u = u u και Η*u ο αναστροφοσυζυγής του Ηu S f u = F u το φάσµα ισχύος της µη υποβαθµισµένης εικόνας fxy) S n u = N u το φάσµα ισχύος του θορύβου nxy) Το πρόβληµα µε τη χρήση της παραπάνω σχέσης είναι ότι στις περισσότερες περιπτώσεις δεν υπάρχει γνώση του S n u και σχεδόν ποτέ του S f u 5

Φίλτρα Wiener ΙΙI) Στην πράξη εφαρµόζεται η σχέση: ˆ u F u = G u u u R + όπου R είναι είτε: µια σταθερά ανάλογη της µέσης ισχύος του θορύβου προς τη µέση ισχύ της εικόνας ένας πίνακας που αντιπροσωπεύει τους λόγους ισχύος θορύβου προς εικόνα στις διάφορες συχνότητες Στη πράξη η τιµή του R υπολογίζεται µετά από διάφορες δοκιµές µια τεχνική που είναι γνωστή ως παραµετρικό φιλτράρισµα Wiener Φίλτρα Wiener ΙV) Για την υλοποίηση σε Matlab της αποκατάστασης µε βάση τα φίλτρα Wiener χρησιµοποιείται η συνάρτηση deconvwnr και αποτελεί υλοποίηση του παραµετρικού φιλτραρίσµατος Wiener 6

7 Φίλτρα Wiener V) Στην αποκατάσταση µε βάση τα ελάχιστα τετράγωνα η σχέση: εκφράζεται σε µορφή γινοµένου πινάκων ως: όπου τα g f n είναι διανύσµατα στήλες διάστασης MNx και έχουν προκύψει µε λεξικογραφική σάρωση των γραµµών των εικόνων πινάκων µεγέθους ΜxN) gxy) fxy) και nxy) Ο πίνακας Η έχει διαστάσεις MNxMN και έχει την παρακάτω µορφή: Αποκατάσταση µε βάση τα Ελάχιστα Τετράγωνα ) ) ) ) ) ) 0 0 y x n y i x m n f N M y x n y x f y x M i N + = + = = n f g + = = 0 3 M M M M 0 M M 0 µε = 0) 3) ) ) ) ) 0) ) ) ) ) 0) N N N N N N

Η εύρεση της f ˆ x y) γίνεται µε κριτήριο τη βελτιστοποίηση της οµοιοµορφίας της ελαχιστοποίηση της ποσότητα C): C = M N f x y) ) x= 0 y= 0 Αποκατάσταση µε βάση τα Ελάχιστα Τετράγωνα ΙΙ) υποκείµενης στον περιορισµό: τετράγωνα) ελάχιστα Από τις παραπάνω σχέσεις προκύπτει η σχέση στο πεδίο της συχνότητας µετασχηµατισµοί Fourier) * ˆ u F u = u + γ P u G u g fˆ = n Αποκατάσταση µε βάση τα Ελάχιστα Τετράγωνα ΙΙI) όπου Η*u ο αναστροφοσυζυγής του Ηu γ µια παράµετρος που ρυθµίζεται έτσι ώστε να ικανοποιείται ο περιορισµός: g fˆ = n και Pu ο µετασχηµατισµός Fourier του επεκταµένου µε µηδενικά) διδιάστατου διακριτού τελεστή Laplace: 0 p x y) = 0 4 0 0 Για την υλοποίηση σε Matlab της αποκατάστασης µε βάση τα ελάχιστα τετράγωνα χρησιµοποιείται η συνάρτηση deconvreg 8

Αποκατάσταση µε βάση τα Ελάχιστα Τετράγωνα ΙV) Για την επιτυχή αποκατάσταση της εικόνας µε βάση τα ελάχιστα τετράγωνα είναι κρίσιµα να υπάρχει γνώση της ισχύος του θορύβου που έχει επιδράσει στην εικόνα ποσότητα n = T n n) διότι βάσει αυτής ρυθµίζεται η παράµετρος γ Στο επόµενο σχήµα επιδεικνύεται η σηµασία της χρήσης µιας σχετικά σωστής εκτίµησης για την ισχύ του θορύβου που έχει επιδράσει στην εικόνα Τυφλή Αποσυνέλιξη Σε πολλές περιπτώσεις η γνώση της διαδικασίας υποβάθµισης της εικόνας δεν είναι γνωστή ή δεν είναι εύκολο να προσοµοιωθεί µε κάποια συνάρτηση Στις περιπτώσεις αυτές εφαρµόζεται µια επαναληπτική διαδικασία αποκατάστασης της εικόνας στην οποία σε κάθε επανάληψη έχουµε µια νέα εκτίµηση της xy) µε βάση την αρχή βελτιστοποίησης της µέγιστης πιθανοφάνειας maximum likeliood estimation) Παρόλο που στις παραπάνω περιπτώσεις δεν υπάρχει άλλη επιλογή για την αποκατάσταση της εικόνας µε βάση κάποια αντικειµενικά κριτήρια η τυφλή αποσυνέλιξη παρουσιάζει και µειονεκτήµατα: εν είναι εύκολο να γνωρίζεις πότε η επαναληπτική διαδικασία πρέπει να σταµατήσει Σχετικά χρονοβόρα µεθοδολογία λόγω των πολλών επαναλήψεων που µπορεί να χρειαστούν για να επιτευχθεί το επιθυµητό αποτέλεσµα 9

Τυφλή Αποσυνέλιξη ΙΙ) A = Blurred and Noisy True PSF Εφαρµογή της συνάρτησης deconvblind Deblured Image Recovered PSF Βασικές Γεωµετρικές Λειτουργίες Εικόνας Οι γεωµετρικές λειτουργίες εικόνας είναι αντίθετες των λειτουργιών σηµείου: αλλάζουν την τοποθεσία των pixel αλλά όχι την τιµή τους Μια γεωµετρική λειτουργία γενικά χρειάζεται δυο βήµατα: Μια ταύτιση χώρου των συντεταγµένων της εικόνας µας δίνει µια νέα συνάρτηση εικόνας J: Ji ) = Ii ) = I[ai ) bi )] Οι συντεταγµένες ai ) and bi ) δεν είναι γενικά ή συνήθως ακέραιοι! Για παράδειγµα: ai ) = i/35 bi ) = /45 Τότε Ji ) = Ii/35 /45) το οποίο έχει απροσδιόριστες συντεταγµένες! Έτσι συνεπάγεται η ανάγκη δεύτερης λειτουργίας: Μετατρέπουµε τις µη-ακεραίες συντεταγµένες ai ) και bi ) σε ακέραιες τιµές έτσι ώστε το J να µπορεί να παραστεί σε µορφή σειρών-στηλών πίνακα) 0

Παρεµβολή Πλησιέστερου Γείτονα Με απλή σκέψη: Οι γεωµετρικά µετασχηµατισµένες συντεταγµένες ταυτίζονται στις πλησιέστερες ακέραιες συντεταγµένες: Ji ) = I{INT[ai )+05] INT[bi )+05]} Σοβαρό µειονέκτηµα: Ξαφνικές αλλαγές της φωτεινότητας έχουν σαν αποτέλεσµα τις σπασµένές ακµές Για κάποια συντεταγµένη i ) είτε INT[ai )+05] < 0 ή INT[bi )+05] < 0 είτε INT[ai )+05] > N- ή INT[bi )+05] > N- τότε Ji ) = I{INT[ai )+05] INT[bi )+05]} δεν µπορεί να προσδιοριστεί Συνήθως θέτουµε το Ji ) = 0 για αυτές τις τιµές ιγραµµική Παρεµβολή ηµιουργία µιας πιο οµαλής παρεµβολής από την προσέγγιση του πλησιέστερου γείτονα ίδονται τέσσερις συντεταγµένες Ii 0 0 ) Ii ) Ii ) και Ii 3 3 ) η νέα εικόνα Ji ) υπολογίζεται ως ακολούθως: Ji ) = A 0 + A i + A + A 3 i όπου τα διγραµµικά βάρη A 0 A A και A 3 είναι το αποτέλεσµα της λύσης του πιο κάτω συστήµατος εξίσωσεων: A0 A = A A3 i i i i 0 3 0 3 i0 0 i i i3 3 I i0 0) I i ) I i ) I i3 3) Ένας γραµµικός συνδυασµός των τεσσάρων πλησιέστερων τιµών Το πιο καλό ταίριασµα επιπέδου στις τέσσερις πλησιέστερες τιµές

Βασικοί Γεωµετρικοί Μετασχηµατισµοί Με τον όρο µετασχηµατισµοί αναφερόµαστε στο χειρισµό των θέσεων των pixels µε συγκεκριµένους τρόπους οι οποίοι τη χωροταξική διάταξη τους Οι κυριότεροι γεωµετρικοί µετασχηµατισµοί είναι: Μετατόπιση translation) γραµµική κίνηση Κλιµάκωση scaling) αλλαγή µεγέθους Αντικατοπτρισµός reflection) σχηµατισµός ειδώλου Περιστροφή rotation) Κύρτωση searing - skewing) Οι µετασχηµατισµοί µπορεί να εφαρµοστούν αριθµητικά µε εφαρµογή µαθηµατικών συναρτήσεων στις θέσεις των pixel Ένας γεωµετρικός µετασχηµατισµός απεικονίζει κάθε σηµείο Α x A y A ) του επιπέδου σε ένα άλλο σηµείο Β x B y B ) µέσω µίας συνάρτησης Τ έτσι ώστε: Τx A y A ) = x B y B ) ή πιο συνοπτικά: ΤΑ) = Β Οµοπαραλληλικοί affine) µετασχηµατισµοί Οι µετασχηµατισµοί αυτοί έχουν µια αρκετά απλή µορφή βλέπε συνάρτηση maketform στη Matlab Αν ένας τέτοιος µετασχηµατισµός απεικονίζει το σηµείο Α που αναφέραµε προηγουµένως σε ένα σηµείο Β τότε οι συντεταγµένες των δύο σηµείων θα συνδέονται µε τους τύπους: x B = a χ Α + c y A + l x y B = b χ Α + d y A + l y όπου a b c d l x l y σταθερές και a d διάφορο του b c Η µορφή που γράψαµε µπορεί να εκφραστεί σε µορφή πινάκων ως: x B y B ) = x A y A ) M + l x l y ) όπου ο Μ είναι ένας x πίνακας µε τη µορφή: a M = c c d

Μετατόπιση Η µετατόπιση είναι η πιο απλή γεωµετρική λειτουργία και δεν χρειάζεται παρεµβολή Η µετατόπιση ενός σηµείου σε ένα γεωµετρικό µετασχηµατισµό περιγράφεται από τις παραµέτρους l x l y ) Στον συγκεκριµένο µετασχηµατισµό ο πίνακας Μ έχει τη µορφή: 0 M = 0 Το αποτέλεσµα της εφαρµογής ενός τέτοιου µετασχηµατισµού σε ένα σηµείο Α είναι η µετατόπιση του A κατά l x και κατά l y αντίστοιχα στους άξονες x και y Κλιµάκωση Αλλαγή µεγέθους) Η µεγέθυνση / σµίκρυνση ενός σχήµατος κατά S x και S y αντίστοιχα στους άξονες x και y επιτυγχάνεται µε τον πολλαπλασιασµό των αντίστοιχων συντεταγµένων κάθε σηµείου του µε τα δύο αυτά ποσοστά µεγέθυνσης / σµίκρυνσης Για την υλοποίηση της παραπάνω λειτουργίας ο πίνακας Μ έχει τη µορφή: Sx M = 0 0 S y και το l x l y ) έχει τη µορφή 0 0) Θα πρέπει να σηµειώσουµε ότι αν κάποιο από τα S x S y είναι αρνητικό τότε ο συγκεκριµένος µετασχηµατισµός πέρα από τη µεταβολή των διαστάσεων του σχήµατος το µετατοπίζει στο συµµετρικό του σχήµατος κατά τους άξονες y και x αντίστοιχα 3

Κλιµάκωση ΙΙ) Για µεγάλη µεγέθυνση η µεγεθυσµένη εικόνα θα φαίνεται θολή αν χρησιµοποιηθεί απλή παρεµβολή πλησιέστερου γείτονα Η διγραµµική παρεµβολή δίνει καλύτερα αποτελέσµατα Η κλιµάκωση είναι και γνωστή ως ψηφιακό zoom Περιστροφή Στη περιστροφή ενός σηµείου κατά γωνία θ ως προς το κέντρο των αξόνων του συστήµατος συντεταγµένων ο πίνακας Μ έχει τη µορφή: cos θ ) M = sin θ ) sin θ ) cos θ ) και το l x l y ) έχει τη µορφή 0 0) Περιστροφή κατά 30 0 θ= 30 0 ) 4

Κύρτωση Η κύρτωση περιλαµβάνει τη µεταβολή των συντεταγµένων στον άξονα των x ενός σηµείου κατά ένα ποσό που είναι ανάλογο της συντεταγµένης του ίδιου σηµείου κατά τον άξονα των y Ένα παράδειγµα ενός τέτοιου µετασχηµατισµού αποτελεί η µετατροπή ορθής γραφής σε πλάγια italics) Κατά το µετασχηµατισµό αυτό η γενική µορφή του πίνακα Μ είναι: M = g και το l x l y ) έχει τη µορφή 0 0) Κύρτωση ΙΙ) Κάθετη κύρτωση g = = 0) Οριζόντια κύρτωση g=0 =5) 5

Σύνοψη Το υλικό που παρουσιάστηκε σε αυτή την ενότητα αναφέρεται στη αποκατάσταση ποιότητας εικόνας µε τεχνικές τόσο στο πεδίο της συχνότητας όσο και στο πεδίο του χώρου Στην αποκατάσταση εικόνας θεωρείται ότι υπάρχει γνώση της διαδικασίας υποβάθµισης της εικόνας και των στατιστικών του θορύβου Τα κριτήρια της αποκατάστασης είναι µαθηµατικές σχέσεις και αυτό διαφοροποιεί τις τεχνικές αποκατάστασης από τις τεχνικές βελτίωσης ποιότητας 6