Izvođenje diferencijalne jednačine elastične linije Elastična linija, čija je jednačina y(z), je krivolinijski oblik ose nosača izazvan opterećenjem. Koordinatni sistem ćemo uvek uzimati tako da je koordinatni početak na levom kraju nosača, gde je osa z usmerena u desnu stranu a osa y naniže. Za svako z se zna y (ugib) i α (ugao nagiba, nagib). Precizno rečeno tan α y, međutim pošto se radi o malim deformacijama i y se smatra malom veličinom, imamo da je tan α α, zbog čega praktično važi da je α z y z To znači da se ugao nagiba (nagib) na ma kom mestu nosača, označen sa α, β ili drugačije, određuje preko prvog izvoda jednačine elastične linije. Jednačine elastičnih linija, u elementarnim slučajevima proste grede i konzole, dobijene su nakon integracija diferencijalne jednačine elastične linije gde se integracione konstante dobijaju iz graničnih uslova. ( ) ( ). elastična linija kod proste grede elastična linija kod konzole Granični uslovi za prostu gredu su: y(0)0 i y(l)0, a za konzolu: y(0)0 i y'(0)0. Dakle, na mestu oslonaca ugibi su jednaki nuli a na mestu uklještenja i ugib i nagib.
Za izvođenje diferencijalne jednačine S obzirom da je za male deformacije ( y ) 0, poznata formula iz elastične linije polazi se od ranije dobijene relacije koja povezuje njen diferencijalne geometrije za poluprečnik krivine [ ( ) ] poluprečnik krivine ρ i veličine E, I x i ρ + y y, M: E M M...( ) daje ρ y...( ) ρ I x ρ EI x y ρ Na osnovu jednakosti () i () i činjenice da je, prema usvojenoj konvenciji o znaku momenta savijanja i smeru ose y, moment pozitivan kada je drugi izvod funkcije y po z negativan, diferencijalna jednačina elastične linije ima oblik: M y U slučajevima koje ćemo proučavati važiće da je EI...( ) x const., EI x M M ( z) y y ( z). Elastična linija za prostu gredu opterećenu ravnomernim kontinualnim opterećenjem: M ( z) dy ql q y, y, M ( z) z z EI x dz ql q dy z z dz EI x ql q y z z dz + C EI x
y EI x ql z q z + C, y dy dz ql z q z dy dz + Cdz EI x 4 ql z q z ql z q z y dz + C dz + C y + Cz + C EI x EI x 4 6 4 Određivanje integracionih konstanti: 4 ql ql z q z ql y ( 0) 0 C y( l) 0 C 0, y + z 4EI x EI x 4 6 4 4EI x Princip dobijanja elastične linije kada postoje dve funkcije momenta savijanja: Kreće se od dve diferencijalne jednačine elastične linije. M Prva ( z) y, odnosi se na interval EI x 0 < z < a. M ( z) Druga y, odnosi se na interval EI x a < z < a + b. Nakon njihovih integracija po dva puta dobija se: y z f z + C z + C, y z f z + C z + C4 Integracione konstante C, C, C i C 4 određuju uslovi: y 0, y a y a, y a y a, y a + b 0 ( ) ( ) ( ) ( ). ( ) ( ) ( ) ( ) ( ) ( ). 0
Konačni oblik jednačine elastične u tablicama je dat u obliku: y sa značenjem y ( z) za 0 z a i y ( z) + g( z) y ( z) y Superponiranje deformacija. Deformacije izazvane uticajem više opterećenja jednake su algebarskom zbiru deformacija svakog opterećenja posebno. Primer 4. Za prostu gredu prikazanu na slici odrediti uglove nagiba kod oslonaca i ugib sredine? Na osnovu principa superponiranja deformacija tražene deformacije (ugib i nagibe) definišu izrazi: α α, + α α β β + β β, y y + y y. Na osnovu tablica, potrebni ugibi i nagibi za pojedinačna opterećenja imaju vrednosti: α α α 4 ( l) 5q( l), q β, y 4EI 84EI F( l) F( l) β, y, 48EI M l M l M l, β, y 6EI EI ( ) ( ) ( ). y ( z) + g( z), za a z a + b. y
Primer 4. Za konzolu prikazanu na slici odrediti ugibe na mestima C i B i nagib kraja? Na osnovu principa superponiranja deformacija tražene deformacije (ugibe i nagib) definišu izrazi: β β. + β β, y y + y y, y y + y y. C C C C B B B B Na osnovu tablica, potrebni ugibi i nagibi za pojedinačna opterećenja imaju vrednosti: y C ( l) 4 q l l l 6 4 +, 4EI l l l ( l) 4, q y B 8EI β ( l), F EI β ( l), q 6EI Pl Pl y C, β α, EI EI F( l) l l F y C ( l),. 6EI l l y B y B yc + lα EI,
Primer 4. Za gredu s prepustom prikazanu na slici odrediti ugib na mestu C? Kada se u primeru poput ovog traži bilo koja deformacija koja se nalazi između oslonaca najbolje je posmatrati prostu gredu sa spregom nad osloncem koji zamenjuje dejstvo opterećenja koje se nalazi na prepustu. Direktno na osnovu tablice proste grede, M ( 4l) Fl ( 4l) Fl y sa spregom nad osloncem, dobija se: C EI Primer 4.4 U problemu iz primera 4. detaljnijom analizom odrediti ugibe na mestima C i D? U tom cilju se prvo, originalnom sistemu sa prepustom, nad osloncem B dodaju dva uravnotežena sprega istih vrednosti kao u prethodnom primeru..
Zatim se opterećenje podeli kao na slici. Za prvu dobijenu sliku sa samo jednim spregom koristi se tablica proste grede na osnovu koje se dobijaju y C i β : Fl ( 4l) y C, Fl 4l β. EI Dobijeno β određuje y D po formuli l. y D β Za drugu dobijenu sliku sa preostalim spregom i silom na prepustu, gde je y C 0, koristi se tablica konzole na osnovu koje se dobija y D : y ( ) D F l EI. Konačno, tražene ugibe definišu izrazi: y y y y + y. C C, D D D
Primer 4.5 Za gredu s prepustom prikazanu na slici odrediti ugib na mestu C? Kada se u primeru poput ovog traži bilo koja deformacija koja se nalazi između oslonaca najbolje je posmatrati prostu gredu sa spregom nad osloncem koji zamenjuje dejstvo opterećenja koje se nalazi na prepustu. Direktno na osnovu tablice proste grede, sa spregom nad osloncem, dobija se: ( 4l) ql ( 4l) M y C Primer 4.6 U problemu iz primera 4.5 detaljnijom analizom odrediti ugibe na mestima C i D? U tom cilju se prvo, originalnom sistemu sa prepustom, nad osloncem B dodaju dva uravnotežena sprega istih vrednosti kao u prethodnom primeru. ql EI 4.
Zatim se opterećenje podeli kao na slici. Za prvu dobijenu sliku sa samo jednim spregom koristi se tablica proste grede na osnovu koje se dobijaju y C i β : ql ( 4l) y C, ql 4l β. EI Dobijeno β određuje y D po formuli l. y D β Za drugu dobijenu sliku sa preostalim spregom i opterećenjem na prepustu, gde je y C 0, koristi se tablica konzole na osnovu koje je: y ( ) 4 D q l 8EI. Konačno, tražene ugibe definišu izrazi: y y y y + y. C C, D D D
Primer 4.7 Za gredu s prepustom prikazanu na slici odrediti samo ugib na mestu C? Kada se u primeru poput ovog traži bilo koja deformacija koja se nalazi između oslonaca najbolje je posmatrati prostu gredu sa spregom nad osloncem koji zamenjuje dejstvo celokupnog opterećenja koje se nalazi na prepustu. Spreg mora biti jednak algebarskom zbiru momenata celokupnog opterećenja koje se nalazi na prepustu za tačku oslonca B. Direktno na osnovu tablice proste grede, sa spregom nad osloncem, dobija se: y C M ( 4l) ( ql + Fl) ( 4l).
Primer 4.8 Za gredu s prepustom prikazanu na slici odrediti ugibe na mestima C i D? Na osnovu principa superponiranja deformacija tražene ugibe definišu izrazi: y y y y C, C C C y D y + y + y Za prvu dobijenu sliku sa samo jednim spregom koristi se tablica proste grede na osnovu koje se dobijaju y C i β (koje određuje y D ): D D D ( 4l), M M 4l y C β yd l β. 6EI. Dobijanje ugiba y C, y C, y D i y D prikazano je u primerima 4.-4.6.
Otpori oslonaca kao statički prekobrojne veličine Pokažimo ideju ove metode kod statički neodređene grede na tri oslonca (Sl.). Ovde se koristi činjenica da je ugib na mestu oslonca jednak nuli. Zamislimo da smo uklonili srednji oslonac i zamenili ga odgovarajućom silom F B koja se javlja u njemu (Sl.). Tu silu zvaćemo statički prekobrojnom veličinom. Dobila bi se prosta greda AC i mogućnost da se korišćenjem principa superponiranja deformacija odredi izraz za ugib y B preko zadatog opterećenja i statički prekobrojne veličine. Ovde je GUD (Geometrijski Uslov Deformacije) y B 0. Dopunska jednačina, dobijena iz GUD-a, odrediće statički prekobrojnu veličinu F B, nakon čega će statički uslovi ravnoteže sistema sa slike moći da odrede preostale nepoznate F A i F C.
Primer 4.9 Za zadati statički neodređen gredni nosač odrediti otpore oslonaca. Koristiti metod Otpor oslonca kao statički prkobrojna. Poznate veličine su q i l. Na zadat nosač, osim zadatog opterećenja, dejstvuju i tri nepoznate reakcije F, i, i pošto za A FB FC prikazan uravnotežen sistem (Sl.) imamo dve jednačine ravnoteže problem je jedan put statički neodređen. Zamišljenom zamenom srednjeg oslonca B statički prekobrojnom silom F B, dobija se prosta greda (Sl.), gde se geometrijski uslov deformacije (GUD) dobija iz uslova da je ugib na mestu oslonca B jednak nuli, tj. y B 0. GUD daje sledeću jednačinu po statički 4 5q ( 4l) prekobrojnoj veličini F B : + 84EI ( 4l) ( l ) ql F B 4 48EI 0.
Ovde je: y + y, y B 4 ( ), y ( 4 ), 5q 4l FB l y y 84EI 48EI M ( 4l) ql ( 4l) y. Rešenje dobijene jednačine je: F B ql. 4 Određivanje preostalih otpora oslonaca (Sl.): M Ai 0 q 4 l l + F l + F 4l + M 0 B F C 8 ql. Y i 0 FA + FB + FC q 4 l 0 5 F A 8 ql. C
Za izračunate vrednosti otpora oslonaca, dijagrami transverzalnih sila i napadnog momenta imaju oblik prikazan na slici.
Primer 4.0 Za zadat statički neodređen gredni nosač odrediti otpor oslonaca B i reakcije u ukleštenju A. Koristiti metod Otpor oslonca kao statički prkobrojna. Poznate veličine su q i l. Na zadat nosač, osim zadatog opterećenja, dejstvuju i tri nepoznate reakcije F, i, i pošto za A FB M A prikazan uravnotežen sistem (Sl.) imamo dve jednačine ravnoteže problem je jedan put statički neodređen. Zamišljenom zamenom oslonca B statički prekobrojnom silom F B, dobija se konzola (Sl.), gde se geometrijski uslov deformacije (GUD) dobija iz uslova da je ugib na mestu oslonca B jednak nuli, tj. y B 0. GUD daje sledeću jednačinu po statički prekobrojnoj veličini : ( l) q 4 ql l ql l + + l 8EI EI EI F B ( l) EI 0. F B
Ovde je: y + y, y y C y B ( l) 4, y q ql l ql l y yc + l α + l, 8EI EI EI F l ql l F l ql l, α, EI EI EI EI y F B ( l). EI Rešenje dobijene jednačine je: 7 F B 6 ql. Određivanje preostalih otpora oslonaca (Sl.): M Ai 0 q 4 l l + FB l + FC 4l + M 0 Y i 0 F A 7 M A ql 8 + F + F q l 0 B. F A 6 ql.
Za izračunate vrednosti reakcija veza, dijagrami transverzalnih sila i napadnog momenta imaju oblik prikazan na slici.
Moment nad osloncem kao statički prekobrojna veličina
Pokažimo ideju ove metode kod statički neodređene grede na tri oslonca (Sl.). Ovde se koristi činjenica da je elastična linija glatka kriva bez preloma (bez promene nagiba) na mestu srednjeg oslonca (α B φ B ). Zamislimo da smo gredu AC presekli na mestu srednjeg oslonca i dobili dve proste grede AB i BC (Sl. i Sl.). Na svaku od dobijenih prostih greda, na mestu B, dejstvuje, po principu akcije i reakcije, moment M B kojeg ćemo nazivati statički prekobrojnom veličinom. Ovaj moment je zapravo moment savijanja u preseku. U tom preseku se, po principu akcije i reakcije, takođe javlja transverzalna sila, koja nam ovde nije od značaja jer ne izaziva deformaciju. Međutim, posledica njenog postojanja su, na levoj prostoj gredi sila F B, na desnoj F, gde je. B F B + F B FB Obično se iz praktičnih razloga umesto Sl. koristi Sl., tj. umesto ugla nagiba φ B koristi β B, tako da GUD ima oblik α + β 0. Principa superponiranja deformacija za levu prostu gredu (Sl.) određuje α B u zavisnosti od statički prekobrojne veličine i zadatog opterećenja levo od oslonca B a za desnu prostu gredu (Sl. ) određuje β B u zavisnosti od statički prekobrojne veličine i zadatog opterećenja desno od oslonca B. Dopunska jednačina, dobijena iz GUD-a, odrediće statički prekobrojnu veličinu M B, nakon čega će statički uslovi ravnoteže moći da odrede nepoznate F A, F B i F C. B B
Moment ukleštenja kao statički prekobrojna veličina Pokažimo ideju ove metode kod statički neodređene grede sa uklještenjem na jednom kraju a pokretnim osloncem na drugom (Sl.). Ovde se koristi činjenica da je ugao nagiba na mestu uklještenja jednak nuli. Zamislimo da smo uklještenje zamenili osloncem i spregom kakav se javlja u uklještenju (Sl.). Taj spreg zvaćemo statički prekobrojnom veličinom. Dobijena prosta greda AB pruža mogućnost da se korišćenjem principa superponiranja deformacija odredi izraz za ugao nagiba α preko zadatog opterećenja i statički prekobrojne veličine. Ovde je GUD α 0. Dopunska jednačina, dobijena iz GUD-a, odrediće statički prekobrojnu veličinu M A, nakon čega će statički uslovi ravnoteže sistema sa slike moći da odrede preostale nepoznate F A i F B.