Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Σχετικά έγγραφα
7 Algebarske jednadžbe

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

1.4 Tangenta i normala

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

TRIGONOMETRIJSKE FUNKCIJE I I.1.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.

Linearna algebra 2 prvi kolokvij,

Riješeni zadaci: Nizovi realnih brojeva

1 Promjena baze vektora

Uvod u teoriju brojeva

Matematička analiza 1 dodatni zadaci

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

6 Polinomi Funkcija p : R R zadana formulom

Linearna algebra 2 prvi kolokvij,

( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Riješeni zadaci: Limes funkcije. Neprekidnost

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

1. Osnovne operacije s kompleksnim brojevima

18. listopada listopada / 13

Operacije s matricama

3.1 Granična vrednost funkcije u tački

1 Obične diferencijalne jednadžbe

Elementi spektralne teorije matrica

Numerička matematika 2. kolokvij (1. srpnja 2009.)

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

Funkcije dviju varjabli (zadaci za vježbu)

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

Obične diferencijalne jednadžbe 2. reda

41. Jednačine koje se svode na kvadratne

Teorem 1.8 Svaki prirodan broj n > 1 moºe se prikazati kao umnoºak prostih brojeva (s jednim ili vi²e faktora).

IZVODI ZADACI (I deo)

Dijagonalizacija operatora

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

radni nerecenzirani materijal za predavanja

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

ELEKTROTEHNIČKI ODJEL

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

RIJEŠENI ZADACI I TEORIJA IZ

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i

4.1 Elementarne funkcije

Osnovne teoreme diferencijalnog računa

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A :

numeričkih deskriptivnih mera.

Uvod u teoriju brojeva. Andrej Dujella

Teorijske osnove informatike 1

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

x bx c + + = 0 po nepoznatoj x, vrijedi da je

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio

16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum

9. PREGLED ELEMENTARNIH FUNKCIJA

Linearna algebra I, zimski semestar 2007/2008

> 0 svakako zadovoljen.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Riješeni zadaci: Realni brojevi i realne funkcije jedne realne varijable

5. Karakteristične funkcije

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

DIFERENCIJALNE JEDNADŽBE

MJERA I INTEGRAL 2. kolokvij 30. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

Kaskadna kompenzacija SAU

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

ISPITNI ZADACI FORMULE. A, B i C koeficijenti (barem jedan A ili B različiti od nule)

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x

TRIGONOMETRIJA TROKUTA

Matematika 2. Vježbe 2017/ lipnja 2018.

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.

Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje 6 1 / 60

y f x y g x Bernouli diferencijalna jed.: y' f x y g x y n realni broj; Svodi se na linernu dif.jed. Homogena diferencijalna jed.

1 Pojam funkcije. f(x)

6. Nelinearne jednadžbe i sustavi

Zadaci iz trigonometrije za seminar

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

Periodične funkcije. Branimir Dakić, Zagreb

SISTEMI NELINEARNIH JEDNAČINA

1. Skup kompleksnih brojeva

IZVODI ZADACI (I deo)

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO

2.7 Primjene odredenih integrala

4. poglavlje (korigirano) LIMESI FUNKCIJA

IZRAČUNAVANJE KONAČNIH SUMA METODIMA DIFERENTNOG RAČUNA

F (t) F (t) F (t) OGLEDNI PRIMJER SVEUČILIŠTE J.J.STROSSMAYERA U OSIJEKU ZADATAK

Transcript:

Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 + ax + bx + c = 0, gdje je a = a a 3, b = a 1 a 3, c = a 0 a 3. Poništenje kvadratnog člana. Supstitucijom x = y a 3 riješit ćemo se kvadratnog člana i jednadžba poprima oblik

gdje je y 3 + py + q = 0, (1) p = b 1 3 a, q = 7 a3 1 ab + c. 3 Takva jednadžba u kojoj nema kvadratnog člana zove se kanonski oblik jednadžbe trećeg stupnja. 3 Rješenje kanonske jednadžbe (1) tražimo u obliku y = u + v, () gdje su u i v za sada još neodredeni brojevi. Kako se svaki broj može na beskonačno načina prikazati u obliku zbroja dvaju brojeva, na rastav () možemo postaviti još jedan uvjet.

Ako je () korijen jednadžbe (1), onda ju on mora zadovoljavati, tj. mora biti (u + v) 3 + p(u + v) + q = 0, odnosno (3uv + p)(u + v) + (u 3 + v 3 + q) = 0. Odaberimo onaj od rastava () za koji vrijedi 3uv + p = 0. Ako uvrstimo u prethodnu jednadžbu, dobivamo u 3 + v 3 = q.

Problem rješavanja kanonske jednadžbe (1) svodi se na rješavanje sustava u 3 + v 3 = q uv = p (3) 3 jer ako su u i v rješenja od (3), onda je očito u + v rješenje od (1). Umjesto sustava (3) promatramo sustav u 3 + v 3 = q ( p 3 u 3 v 3 = 3) (4) Sustavi (3) i (4) nisu ekvivalentni. Svako rješenje sustava (3) jest rješenje sustava (4), ali obrnuto ne mora vrijediti.

Dakle, sustav (3) možemo riješiti tako da riješimo sustav (4) i uzmemo samo ona rješenja od (4) koja zadovoljavaju drugu jednadžbu u (3). Iz (4), prema Vièteovim formulama, slijedi da su u 3 i v 3 korijeni jednadžbe ( p ) 3 t + qt = 0. 3 Odavde slijedi ) + ( p 3 ) 3. t 1, = q ± (q

Dakle, u = 3 v = 3 q + (q q (q ) + ( p 3) 3 ) + ( p 3) 3 Rješenje kanonske jednadžbe (1) može se napisati u obliku y = 3 q ( q ) ( p ) 3+ + 3 + q ( q ) ( p ) 3 3 + (5) 3 Formula (5) se zove.

Važna napomena. Kako treći korijen ima tri vrijednosti iz Cardanove formule se čini da kubna jednadžba ima devet rješenja. Medutim, to nije tako, jer sjetimo se izvoda formule i neekvivalentnosti sustava (3) i (4), brojevi u i v moraju još zadovoljavati jednadžbu 3uv + p = 0 pa imamo samo tri rješenja.

je nespretna za računanje pa ćemo ju malo modificirati. Neka je u 1 = 3 q (q ) ( p 3 + + 3) bilo koja vrijednost korijena i v 1 = p 3u 1. Neka je ε = 1 i 3 treći korijen iz jedinice. Tada je ε = 1 + i 3, ε3 = 1, ε 4 = ε, ε 5 = ε, ε 6 = 1,...

Tada se rješenja jednadžbe mogu zapisati u obliku x 3 + px + q = 0 x 1 = u 1 + v 1 x = u 1 ε + v 1 ε x 3 = u 1 ε + v 1 ε Da je x 1 korijen te jednadžbe očito je iz postupka pomoću kojeg je izvedena. Provjerimo da je i x zaista korijen te jednadžbe. Uvrstimo li x u gornju jednadžbu, dobivamo (u 1 ε + v 1 ε ) 3 + p(u 1 ε + v 1 ε ) + q = = u 3 1 + v1 3 + q +ε(u }{{} 1 + v 1 ε)(3u 1 v 1 + p) = 0, }{{} =0 =0

pa je zaista x korijen. Analogno se provjeri da je i x 3 takoder rješenje te jednadžbe. Primjer 1. Riješite jednadžbu x 3 + 30x + 90 = 0. Rješenje

pa je zaista x korijen. Analogno se provjeri da je i x 3 takoder rješenje te jednadžbe. Primjer 1. Riješite jednadžbu x 3 + 30x + 90 = 0. Rješenje u = 3 q + ( q ) + ( p 3) 3, p = 30, q = 90 u 1 = 3 10 (uzmemo realnu vrijednost) v 1 = p 3u 1 = 3 100 ε = 1 i 3 Sada prema formulama rješenja su

x 1 = u 1 + v 1 x 1 = 3 10 3 100 x = u 1 ε + v 1 ε x = 3 10 + 3 100 3 10 + 3 100 3 i x 3 = u 1 ε + v 1 ε x 3 = 3 10 + 3 100 + 3 10 + 3 100 3 i x 3 nismo trebali niti računati jer imamo jednadžbu s realnim koeficijentima, a znamo da se onda kompleksni korijeni javljaju u konjugiranim parovima.

U Cardanovoj formuli javlja se izraz ( q ) ( p 3 = + 3) koji zovemo diskriminanta jednadžbe x 3 + px + q = 0. Teorem 1. Neka je diskriminanta jednadžbe x 3 + px + q = 0 s realnim koeficijentima. Tada vrijedi: Ako je > 0, onda zadana jednadžba ima jedan realni i dva konjugirano kompleksna korijena. Ako je = 0, onda su svi korijeni zadane jednadžbe realni i barem jedan od njih je višestruki. Ako je < 0, onda su svi korijeni zadane jednadžbe realni i različiti.

Napomena. Do otkrića kompleksnih brojeva došlo je preko kubne jednadžbe, a ne preko kvadratne kako se uči u školi. Naime, krenulo se od kubne jednadžbe (x + 1)(x 1)(x ) = 0 za koju se zna da ima tri korijena 1, 1,. Ako se ta jednadžba svede na kanonski oblik supstitucijom x = y + 3 dobiva se jednadžba y 3 7 3 y + 0 7 = 0. Prema Cardanovoj formuli je x = 3 + 3 10 7 + 9161 79 + 3 10 7 9161 79. Vidimo da se pojavio drugi korijen iz negativnog broja, a znamo da rezultat mora biti realan, pa je to bio pravi razlog uvodenja kompleksnih brojeva.

Neka je a 4 x 4 + a 3 x 3 + a x + a 1 x + a 0 = 0, a 4 0 algebarska jednadžba 4. reda. Pogledajmo kako se ona rješava Ferrarijevom metodom. Prvo treba normalizirati jednadžbu tako da je vodeći koeficijent jednak 1. Dakle, podijelimo zadanu jednadžbu s a 4 i dobivamo x 4 + ax 3 + bx + cx + d = 0, gdje je a = a 3 a 4, b = a a 4, c = a 1 a 4, d = a 0 a 4. Sljedeći korak je jednadžbu prikazati kao razliku kvadrata.

Neka je y neki realan broj. Tada vrijedi jednakost x 4 + ax 3 + bx + cx + d = = (x + a ) [( ) ] a x + y 4 b + y x + (ay c)x + y d. Da bi izraz u uglatoj zagradi bio potpuni kvadrat, mora diskriminanta kvadratnog polinoma u varijabli x biti jednaka nula, tj. ( ) a (ay c) 4 4 b + y (y d) = 0. Prethodnu jednadžbu zovemo Ferrarijeva rezolventa od zadane jednadžbe 4. stupnja. To je jednadžba 3. stupnja po y i ima stoga barem jedno realno rješenje. U tom slučaju je izraz u uglatoj zagradi kvadrat nekog polinoma F (x).

Možemo pisati [(x + a ) ] x + y + F (x) [(x + a ) ] x + y F (x) = 0 Preostaje da se riješe dvije kvadratne jednadžbe koje onda daju 4 rješenja. Primjer. Riješite jednadžbu x 4 + x + 4x + 8 = 0. Rješenje

Možemo pisati [(x + a ) ] x + y + F (x) [(x + a ) ] x + y F (x) = 0 Preostaje da se riješe dvije kvadratne jednadžbe koje onda daju 4 rješenja. Primjer. Riješite jednadžbu x 4 + x + 4x + 8 = 0. Rješenje [ ] (x + 0 + y) (y )x 4x + y 8 = 0. ( ) Rezolventa zadane jednadžbe je 16 4(y )(y 8) = 0. Jedno realno rješenje te rezolvente je y = 3.

Uvrstimo li y = 3 u ( ) dobivamo (x + 3) (4x 4x + 1) = 0, odnosno (x + 3) (x 1) = 0. Faktorizacijom dobivamo (x + x + )(x x + 4) = 0. Riješimo li kvadratne jednadžbe x + x + = 0, x x + 4 = 0 dobivamo tražena rješenja x 1 = 1 + i, x = 1 i, x 3 = 1 + i 3, x 4 = 1 i 3.