1. UVOD diesel motor

Σχετικά έγγραφα
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

PROSTORNI STATIČKI ODREĐENI SUSTAVI

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

1 Promjena baze vektora

Funkcije dviju varjabli (zadaci za vježbu)

1.4 Tangenta i normala

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA

Prostorni spojeni sistemi

Matematika 1 - vježbe. 11. prosinca 2015.

Linearna algebra 2 prvi kolokvij,

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

3.1 Granična vrednost funkcije u tački

( , 2. kolokvij)

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

Linearna algebra 2 prvi kolokvij,

Riješeni zadaci: Limes funkcije. Neprekidnost

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

Dinamika tijela. a g A mg 1 3cos L 1 3cos 1

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

Elementi spektralne teorije matrica

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

7 Algebarske jednadžbe

Eliminacijski zadatak iz Matematike 1 za kemičare

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

numeričkih deskriptivnih mera.

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

18. listopada listopada / 13

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

Mehanika je temeljna i najstarija grana fizike koja proučava zakone gibanja i meñudjelovanja tijela. kinematika, dinamika i statika

ELEKTROTEHNIČKI ODJEL

TRIGONOMETRIJSKE FUNKCIJE I I.1.

Teorijske osnove informatike 1

Matematička analiza 1 dodatni zadaci

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

TRIGONOMETRIJA TROKUTA

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

BIPOLARNI TRANZISTOR Auditorne vježbe

RIJEŠENI ZADACI I TEORIJA IZ

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO

III VEŽBA: FURIJEOVI REDOVI

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

5. Karakteristične funkcije

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Dijagonalizacija operatora

UZDUŽNA DINAMIKA VOZILA

IZVODI ZADACI (I deo)

Grafičko prikazivanje atributivnih i geografskih nizova

Kaskadna kompenzacija SAU

Gravitacija. Gravitacija. Newtonov zakon gravitacije. Odredivanje gravitacijske konstante. Keplerovi zakoni. Gravitacijsko polje. Troma i teška masa

5. PARCIJALNE DERIVACIJE

Rotacija krutog tijela

Operacije s matricama

Linearna algebra I, zimski semestar 2007/2008

Ispitivanje toka i skiciranje grafika funkcija

konst. Električni otpor

radni nerecenzirani materijal za predavanja

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio

šupanijsko natjecanje iz zike 2017/2018 Srednje ²kole 1. grupa Rje²enja i smjernice za bodovanje 1. zadatak (11 bodova)

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE

Riješeni zadaci: Nizovi realnih brojeva

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

SISTEMI NELINEARNIH JEDNAČINA

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Impuls i količina gibanja

Sila otpora oblika tijela u struji fluida

MEHANIKA FLUIDA HIDROSTATIKA 5. Osnovna jednadžba gibanja (II. Newtonov zakon) čestice idealnog fluida i realnog fluida u relativnom mirovanju

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

( ) p a. poklopac. Rješenje:

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

10. STABILNOST KOSINA

, 81, 5?J,. 1o~",mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pt"en:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M.

Otpornost R u kolu naizmjenične struje

9. Vježbe. između fluida i remena za slučaj Q = 0.

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

FAKULTET PROMETNIH ZNANOSTI

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti

ISPITNI ZADACI FORMULE. A, B i C koeficijenti (barem jedan A ili B različiti od nule)

INTELIGENTNO UPRAVLJANJE

Gauss, Stokes, Maxwell. Vektorski identiteti ( ),

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

Masa, Centar mase & Moment tromosti

Program testirati pomoću podataka iz sledeće tabele:

Osnovne teoreme diferencijalnog računa

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

Prikaz sustava u prostoru stanja

Transcript:

1. UVOD Osnovna je težnja svakog brodograditelja pri osnivanja broda odrediti takvu formu trupa broda trupa koja će pri plovidbi na površini vode, odnosno ispod nje, stvarati što je moguće manji otpor. Propulzijski sustav sastavljen od: brodskog trupa, propulzora (najčešće brodski vijak), pogonskog stroja i kormila mora biti što je moguće efikasniji tj. energija utrošena na gibanje broda mora biti što je moguće manja. Pogonski stroj može biti: parna turbina, plinska turbina, diesel motor, nuklearni pogon, jedra i vesla. Propulzijski sustav mora biti međusobno uravnotežen, tako da su svi njegovi elementi (trup, vijak, stroj i kormilo) prilagođeni jedan drugome i čine skladan sustav, što osigurava visok stupanj iskoristivosti uložene energije, odnosno omogućava da energija uložena za gibanje broda zadanom brzinom bude što je moguće manja. Istodobno, brod mora imati dobru upravljivost i pomorstvene karakteristike. Brod u plovidbi predstavlja složen hidrodinamički sustav. Proučavanjem i prognoziranjem hidrodinamičkih značajki broda bavi se hidrodinamika broda. Za lakše proučavanje sustav se raščlanjuje na jednostavnije dijelove, odnosno područja. Osnovna područja brodske hidrodinamike su: otpor i propulzija, propulzori i kavitacija, upravljivost (stabilnost kursa, okretljivost), pomorstvenost (držanje broda na valovima). Otpor se bavi pojavama u vodi pri jednolikom pravocrtnom gibanju, propulzija osiguravanjem potrebnog poriva za ostvarenje tražene brzine u plovidbi uz zadovoljenje uvjeta apsorcije snage, propulzori projektiranjem propulzora (najčešće brodskih vijaka) odgovarajućih hidrodinamičkih značajki, kavitacija istraživanjem tipova, volumena i rasporeda mjehurića pare koji se stvaraju oko krila vijka u zonama povećane brzine strujanja i smanjenog tlaka, upravljivost manevarskim sposobnostima, a pomorstvenost (držanje broda na valovima) pročava gibanje i akceleracije brodskog trupa uslijed gibanja na valovima. trujanje oko vijaka i projektiranje vijaka može se razmatrati kao dio područja otpor i propulzija broda. Hidrodinamika broda koristeći se znanjima iz općih znanstvenih disciplina, kao što su matematika, mehanika i hidrodinamika, pokušava pronaći optimalno hidrodinamičko rješenje forme brodskog trupa i propulzora. Naravno, postoji mnogo mogućih rješenja, a i načina rješavanja projektnog zadatka, ali danas je još uvijek vrlo teško naći najbolje rješenje. Temeljni pristupi za određivanje hidrodinamičkih značajki su: empirijsko/statistički pristupi U prošlosti su se svi projekti broda temeljili na iskustvu Projektanti trebaju jednostavne i razumno precizne procjene, npr. potrebne snage tegljenja broda. Uobičajenim pristupom se kombinira prilično jednostavan fizički model i regresijska

analiza kako bi se odredili traženi koeficijenti, bilo iz jednog sličnog broda ili serije brodova. Koeficijenti mogu biti dani u obliku konstanti, formula ili dijagrama. Zbog uspjeha u ispitivanju modela, razvijene su eksperimentalne serije forme trupa broda u kojima su varirani parametri trupa broda. Velike serije brodova su ispitane u 1940-im godinama kao i u naredna dva desetljeća. Ovakve serije su formirane oko dobre forme trupa koja se smatrala kao forma-roditelj. Utjecaj osnovnih parametara trupa, npr. koeficijenta istisnine, je bio određen sistematskim variranjem tih parametara. Zbog troškova izrade modela i ispitivanja modela ne postoje novije ispitane tako velike serije modernih formi trupa, a serije tradicionalnih brodova mogu se danas smatrati pomalo zastarjelima. Premda su empirijski i statistički pristupi još uvijek popularni u inženjerskoj praksi, oni imaju malu važnost za brodske hidrodinamičare. eksperimentalni pristupi, bilo ispitivanja na modelima ili mjerenja na brodovima u naravi Osnovna ideja ispitivanja modela je mjerenje na modelu broda, kako bi se izmjereni rezultati mogli ekstrapolirati na brod u naravnoj veličini. Unatoč stalnim istraživačkim i normizacijskim naporima još uvijek je potreban izvjestan stupanj empirije, posebno pri korelaciji model-brod. To je metoda za poboljšanje točnosti predviđanja otpora broda empirijskim sredstvima. Ukupni otpor se može rastaviti na više načina. Tradicionalno, bazeni za ispitivanje modela imaju tendenciju da usvoje pristupe koji im se čine najprikladniji na temelju njihovog stečenog iskustva i akumulirane baze podataka. Nažalost, posljedica toga je da su različiti pristupi i s njima povezani akumulirani empirijski podaci nekompatibilni. Premda se malo toga promijenilo u osnovnoj metodologiji od vremena Foudea (1874 god.) razni aspekti metoda su napredovali. Danas imamo bolja saznanja o strujanju oko trodimenzijskih brodova s privjescima, posebno o učincima graničnog sloja. Moderne eksperimentalne tehnike, kao mjerenje brzine laser-doplerom, omogućavaju mjerenje polja brzina u vrtložnom tragu kako bi se poboljšao projekt brodskog vijka. Druga novija eksperimentalna metoda je analiza reljefa slobodne površine (slike vala) kako bi se odredio otpor slike vala. Iako su postupci za predviđanje otpora broda na temelju modelskih ispitivanja dobro prihvaćeni, mjerenja na brodovima u naravnoj veličini za potrebe validacije su vrlo rijetka i teško ih je ostvariti. Promatranje i mjerenje na brodovima u naravnoj veličini komplicirano je i skupo te zahtjeva mnogo vremena, što naročito dolazi do izražaja ako se želi sustavno mijenjati neke značajke broda. Potrebna snaga pogonskog stroja se potvrđuje pokusnim vožnjama na stvarnim brodovima koji se u idealnom slučaju provode na mirnom moru. Parametri koji se pri tome obično mjere su: moment, broj okretaja i brzina. Poriv se mjeri jedino na poseban zahtjev zbog poteškoća i troškova koji su nužni za dobivanje točnih podataka o porivu. Kad god je to moguće i prikladno, rade se korekcije zbog utjecaja valova, struje, vjetra i plitke vode. Uvođenje GP (Global Positioning ystem) sistema i kompjutorskog sistema za prikupljanje podataka od 1990-ih je znatno povećalo točnost i ekonomičnost mjerenja u naravi. GP je eliminirao potrebu za pokusnim vožnjama na mjernoj milji u blizini obale, gdje postoji mogućnost utjecaja plitke vode na rezultate mjerenja. Danas se pokusne vožnje provode daleko od obale. numerički pristupi, bilo analitički ili upotrebom numeričke mehanike fluida (CFD- Computational Fluid Dynamics

Za predviđanje otpora broda i potrebne snage, CFD postaje svakim danom sve važniji, tako da je sada neizostavan dio procesa projektiranja. Obično se neviskozne metode sa slobodnom površinom, koje se temelje na metodi rubnih elementa, koriste za analizu prednjeg dijela trupa broda, a posebno za interakciju pramčanog bulba i pramčanog ramena. Programski paketi koji se temelje na viskoznom strujanju često zanemaruju stvaranje valova i fokusiraju se na stražnji dio trupa broda ili privjeske. Programski paketi kojima se modelira viskozno strujanje i stvaranje valova predstavljaju vrhunac praktične primjene. U industriji se još uvijek CFD smatra nedovoljno točnim za predviđanje otpora ili snage broda. Umjesto toga CFD se koristi za dobivanje uvida u detalje lokalnog strujanja i za dobivanje preporuka o tome kako poboljšati određeni projekt ili pak da se odabere najpovoljniji projekt (projekt koji najviše obećava ) za modelsko ispitivanje. Danas se u brodskoj hidrodinamici koriste matematičko-numerički i fizički modeli. Razvoj elektroničkih računala omogućava rad s vrlo kompliciranim matematičkim modelima. Međutim, još dugo će biti potrebno uspoređivati tako dobivene rezultate s eksperimentalnim.. MATEMATIČKI MODELI.1 UVOD Mnogi prirodni fenomeni mogu se jednostavno opisati matematičkom jednadžbom ili sustavom matematičkih jednadžbi. Takve jednadžbe ili sustave jednadžbi naziva se matematičkim modelima. Modeli su prikazi stvarnih fizičkih pojava Drugi Newtonov zakon gibanja: dv F m ma (.1) dt je primjer matematičkog modela, gdje je: F - sila, m - masa, v - brzina, t - vrijeme, a - ubrzanje. ila je jednaka produktu mase i ubrzanja ukoliko je masa konstantna. Arhimedov zakon kojega opisuje izraz: F g (.) također predstavlja primjer matematičkog modela, gdje je: F - sila uzgona, - gustoća fluida, - volumen istisnine, g - ubrzanje zemljine sile teže. To je matematički model koji se najviše primjenjuje u brodogradnji. U nastavku će se razmatrati ostali važni matematički modeli otpora i propulzije broda. 3

trujanje oko trupa broda je trodimenzijsko i matematički modeli bi trebali opisati takvo strujanje. Međutim, vrlo je teško, a često i nemoguće, oformiti točan i upotrebljiv trodimenzijski matematički model. U takvim slučajevima mogu se ponekad primijeniti dvodimenzijski modeli, uz pretpostavku da se strujanje odvija u ravninama i strujanje u jednoj ravnini ne utječe na strujanje u susjednoj paralelnoj ravnini.. KOORDINATNI UTAVI I JEDNADŽBE GIBANJA BRODA Da bi se postavio matematički model za gibanje tijela u fluidu (voda, zrak) mora se definirati koordinatni sustav. Obično se primjenjuje desni ortogonalni Kartezijev koordinatni sustav. Kako je duljina broda njegova najveća dimenzija, a ravnina simetrije (uzdužna simetralna ravnina) okomita na površinu zemlje, pogodno je tri međusobno okomite osi x, y i z postaviti tako da se ishodište koordinatnog sustava podudara s težištem broda ili s nekom drugom prikladnom točkom koja leži u uzdužnoj simetralnoj ravnini, tako da osi x i z leže u uzdužnoj simetralnoj ravnini, a os y okomito na nju. Budući brod nema horizontalnu ravninu simetrije, x os, uz to što leži u vertikalnoj simetralnoj ravnini, usmjerena je prema naprijed i paralelna je s projektnom vodnom linijom. Kada prolazi kroz težište broda, x os se približno podudara s uzdužnom osi inercije broda. Os y je usmjerena prema desnom boku. obzirom da su osi x,y i z fiksirane za brod, njihovo ishodište i smjer se mijenjaju u vremenu relativno u odnosu na zemlju. Pozitivne orijentacije su: - os x prema pramcu, - os y prema desnom boku, - os z prema dolje. lika.1. Koordinatni sustavi U brodskoj hidrodinamici primjenjuju se tri koordinatna sustava, slika.1.: 1. Inercijski koordinatni sustav Oxyz 0 0 0 0. ustav je postavljen nepomično prema promatranom prostoru za vrijeme gibanja. 4

. Brodski koordinatni sustav Ox yz. Čvrsto je vezan uz brod kroz cijelo vrijeme trajanja gibanja. 3. Hidrodinamički koordinatni sustav Oxyz 1111. Vezan je za brod s ishodištem u težištu sistema broda (težište masa). Os x 1 postavljena je u smjeru vektora brzine broda ili strujanja tekućine. Os y 1 usmjerena je prema desnom boku, os z 1 usmjerena je prema dolje, a tvori s dvije definirane osi desni koordinatni sustav. Za opisivanje gibanja broda upotrebljavaju se osnovni zakoni dinamike krutog tijela. Newtonovi zakoni, za slučaj kad je ishodište koordinatnog sustava smješteno u težište sistema broda (CG) glase: Rezultirajuća sila: dmv dv F m ma m const. dt dt (.3) Rezultirajući moment: di d M I I I const. dt dt (.4) gdje je: dmv - promjena količine gibanja u vremenu ili brzina promjene količine gibanja, dt di - promjena momenta količine gibanja u vremenu ili brzina promjene momenta dt količine gibanja. ( I mi -moment inercije, m je masa broda, i -polumjer inercije) obzirom da je brzina promjene mase uslijed potrošnje goriva zanemariva, masa broda je praktično konstantna u vremenu. Vektor rezultirajuće sile F može se rastaviti na komponente X, YZ, uzduž osi brodskog koordinatnog sustava x, yz,, pa se jednadžba (1.3) može napisati u obliku: F Xi Y j Zk (.5) M je vektor rezultirajućeg momenta na brod s komponentama M x, My, M z uzduž osi brodskog koordinatnog sustava x, yz,, pa imamo: M M i M j M k (.6) x y z Vektor linearne brzine v moguće je razložiti na komponente vx, vy, v z u smjeru koordinatnih osi x, yz:, v v i v j v k (.7) x y z 5

je vektor kutne brzine s komponentama x, y, z oko osi brodskog koordinatnog sustava x, yz:, i j k (.8) x y z Na analogan način moguće je izvršiti dekompoziciju vektora linearnog ubrzanja a, odnosno kutnog ubrzanja : a a i a j a k (.9) x y z i j k x y z Moment količine gibanja može se izraziti kako slijedi: (.10) Ixx Ixy Ixz x I Iyx Iyy Iyz y Izx Izy Izz z (.11) gdje su I xx, xy I, I xz, elementi tenzora inercije. Elementi I xx, I yy, I zz su aksijalni momenti inercije krutog tijela s obzirom na osi x, yz,, a I xy, I xz, I yx, I yz, I zx, I zy su centrifugalni momenti inercije krutog tijela. Ako ishodište koordinatnog sustava prolazi kroz težište sistema i ako su izabrane osi glavne osi inercije onda su elementi tenzora inercije za par međusobno okomitih osi jednaki nuli, osim dijagonalnih. U tom slučaju moment količine gibanja glasi: odnosno: Ixx Ixy Ixz x I Iyx Iyy Iyz y Izx Izy Izz z I I i I j I k xx x yy y zz z (.1) (.13) Pomoću jednadžbi (1.3) - (1.13) moguće je odrediti skup jednadžbi, koje opisuju gibanje broda. loženo gibanje broda može se opisati kao gibanje tijela sa šest stupnjeva slobode gibanja (tri translacije i tri rotacije u smjeru i oko koordinatnih osi x, y, z ). Ukoliko se ishodište koordinatnog sustava nalazi u težištu sistema broda jednadžbe translacijskog gibanja glase: X mv v v x y z z y y z x x z Y m v v v (.14a) Z mv v v z x y y x 6

a jednadžbe rotacijskog gibanja glase: M I ( I I ) x xx x zz yy y z M I ( I I ) (.14b) y yy y xx zz z x M I ( I I ) z zz z yy xx x y Točka iznad veličine predstavlja derivaciju te veličine po vremenu ddt. Izvod ovih jednadžbi moguće je pronaći u Abkowich-u (1964. god. p 1-13; 1969. god. p I-1-13). Ukoliko se ishodište koordinatnog sustava ne nalazi u težištu sistema broda, a koordinate težišta sistema broda su xg, yg, z G tada jednadžbe gibanja poprimaju nešto kompliciraniji oblik. ustav jednadžbi kojim se opisuje translacija u smjeru koordinatnih osi glasi: X mv x yvz zvy xg( y z ) yg( xy z) zg( xz y) Y mv y zvx xvz yg( z x ) zg( yz x) xg( yx z) (.15a) Z mv z xvy yvx zg( x y ) xg( zx y) yg( zy x) ustav jednadžbi kojim se opisuje rotacija oko koordinatnih osi glasi: M x Ixx x ( Izz Iyy ) yz m yg ( vz xv y yvx ) zg ( vy zvx xvz ) M y Iyy y ( Ixx Izz) xz mzg( vx yvz zvy) xg( vz xvy yvx) (.15b) M y Iyy y ( Ixx Izz) xz mzg( vx yvz zvy) xg( vz xvy yvx) Kod problema gibanja broda na valovitom moru, kada brod ima svih šest stupnjeva slobode gibanja, upotrijebit će se svih šest jednadžbi gibanja. Kada se radi o problemima kormilarenja i upravljivosti površinskog broda, kada brod ima tri stupnja slobode gibanja, sustav se može reducirati na sustav od tri jednadžbe, dvije jednadžbe translacijskog gibanja u smjeru osi x i y i jednu jednadžbu rotacijskog gibanja oko osi z : X mv ( v ) x z y Y m( v v ) (.16) M y I z zz z z x Kada se radi o problemima iz otpora i propulzije ostaje samo jedna jednadžba translacijskog gibanja u smjeru osi x : 7

X mv x (.17) Razlikuju se stacionarna ili neperiodična te nestacionarna ili periodična gibanja. tacionarna ili neperiodična gibanja su: Translacijska gibanja: - napredovanje (u smjeru osi x ) - zanošenje (u smjeru osi y ) - uron ili izron (u smjeru osi z ) Rotacijska gibanja: - bočni nagib (oko osi x ) - trim (oko osi y ) - zakretanje (oko osi z ) Nestacionarna ili periodična gibanja su: Translacijska gibanja: - zalijetanje (u smjeru osi x ), eng. surge - zanošenje (u smjeru osi y ), eng. sway - poniranje (u smjeru osi z ), eng. heave Rotacijska gibanja: - valjanje (oko osi x ), eng. roll - posrtanje (oko osi y ), eng pitch - zaošijanje (oko osi z ), eng. yaw Na slikama 1.. i 1.3. prikazana su gibanja broda s obzirom na brodski koordinatni sustav. lika.. tacionarna ili neperiodična gibanja broda 8

lika.3. Nestacionarna ili periodična gibanja broda.3 ILE KOJE DJELUJU NA BROD Na brod djeluju četiri nezavisne sile, čiji je uzrok: Gravitacija zemlje, koja djeluje na brod i na vodu u koju je brod uronjen (okolna voda) Brzina broda relativno prema vodi i zraku ili vodi kroz koju se giba Djelovanje brodskog propulzora Četiri sile mogu se opisati na sljedeći način: 1. ila gravitacije, težina broda je jednaka umnošku mase broda i ubrzanja zemljine sile teže, G mg.. Hidrostatički uzgon, F g, je kao i mg uvijek paralelan s osi z. 3. Rezultantna hidrodinamička sila, F, je sila kojom okolna voda djeluje na brod uslijed gibanja broda kroz nju. ila F može se razložiti na dvije komponente: hidrodinamički uzgon L okomit na brzinu broda V, Otpor R ili D paralelan s brzinom broda V (oznaku R koristimo kada govorimo o otporu broda, eng. resistance, dok se oznaka D odnosi na otpor profila, eng drag). 4. ila poriva T, je sila koju generira brodski propulzor i čiji je uzrok djelovanje vode na brodski propulzor. Djelovanje sile poriva T općenito je suprotnog smjera od sile otpora R. Na slici 1.4 prikazane su sile koje djeluju na brod. 9

lika.4. ile koje djeluju na brod Ukoliko je suma sila i suma momenata oko nekog proizvoljnog ishodišta jednaka nuli: R 0 (.18a) M 0 (.18b) tada je brzina broda V konstantna i nema rotacije. U najopćenitijem slučaju gibanje broda je horizontalno, brzina V je paralelna s osi x 1 i hidrodinamička sila F i sila poriva T imaju komponente paralelne s brzinom V. Poriv T je jednak i suprotnog smjera od R, gdje je R horizontalna komponenta ukupne hidrodinamičke sile. Rezultantna hidrodinamička sila je ovisna o mnogim parametrima i može se izraziti: Hidrodinamička sila=f značajke broda, značajke gibanja, značajke tekućine (.19).3.1 Značajke broda Značajke broda su njegova veličina, forma (oblik trupa), masa, raspodjela mase itd Navedene značajke mogu se opisati na sljedeći način: veličina broda: Kad se govori o veličini broda kao značajka veličine obično se uzima duljina broda L. U problemima otpora i propulzije to je duljina vodne linije L WL ili najveća uronjena duljina L O kod brodova s pramčanim bulbom. U drugim slučajevima je bolje uzeti duljinu između okomica L pp, vidi sliku 1.5. forma: Nije jednostavno opisati geometriju broda. Oblik trupa broda se opisuje pomoću različitih koeficijenata i omjera: C B, koeficijent punoće (.0) LBT 10

C C C C Bpp, pp X, X P, v, koeficijent punoće izražen preko L pp (.1) L BT pp A koeficijent poprečnog presjeka (.) BT C P, uzdužni prizmatički koeficijent (.3) A L X vertikalni prizmatički koeficijent (.4) A T WL L B omjer duljine i širine (.5) B T omjer širine i gaza (.6) M 1/3 /3 L B L 1 1/3 T B 1/3 C B koeficijent vitkosti ili izduženja (.7) gdje su: A X bezdimenzijska površina (.8) /3 - površina uronjenog poprečnog presjeka, A WL - površina vodne linije, - volumen istisnine brodskog trupa, - oplakana površina brodskog trupa. Osim navedenih koeficijenata postoje drugi koeficijenti koji opisuju formu trupa (oblik rebara), zatim polovica kuta zaoštrenja pramčanog dijela vodne linije ( i E ) i polovica kuta zaoštrenja krmenog dijela vodne linije ( i R ). masa: Označava se s m. Pored iznosa mase broda za opisivanje njegova gibanja važan je i raspored mase odnosno momenti inercije (tromosti) mase Ixx, Iyy, I zz. Raspored masa na brodu definiran je položajem težišta sistema broda x, y, z. G G G 11

lika.5. Definicija duljine.3. Značajke gibanja Značajke gibanja su definirane s: 1. orijentacijom gibanja u odnosu na tekućinu i. kinematikom gibanja. Orijentacija može biti opisana u fiksnom inercijskom koordinatnom sustavu Oxyz 0 0 0 0. Orijentacija gibanja u odnosu na tekućinu opisuje se pomoću translacijskih i rotacijskih gibanja oko koordinatnih osi brodskog koordinatnog sustava: Translacijska gibanja: - zalijetanje (u smjeru osi x ), eng. surge - zanošenje (u smjeru osi y ), eng. sway - poniranje (u smjeru osi z ), eng. heave Rotacijska gibanja: - valjanje (oko osi x ), eng. roll - posrtanje (oko osi y ), eng pitch - zaošijanje (oko osi z ), eng. yaw Za opisivanje kinematike gibanja potrebne su sljedeće veličine: Brzina: Komponente linearne brzine u smjeru koordinatnih osi x, yz, su vx, vy, v z. Komponente kutne brzine oko koordinatnih osi x, yz, su,,. x y z 1

Ubrzanje: Komponente linearnog ubrzanja u smjeru koordinatnih osi x, yz, su ax, ay, a z. Komponente kutnog ubrzanja oko koordinatnih osi x, yz, su x, y, z. Broj okretaja: Broj okretaja osovine vijka označava se s n, a kutna brzina osovine vijka s. Gibanje broda kontroliramo pomoću kontrolnih površina. Kontrolne površine su kormila, pramčani i krmeni hidroplani, površine za ronjenje i krilca za stabiliziranje ljuljanja..3.3 Značajke tekućine, zraka i okoline Značajke vode i zraka određena su sljedećim veličinama: 3 - gustoća, kg m A - gustoća zraka, 3 kg m - dinamički koeficijent viskoznosti, kg ms - kinematički koeficijent viskoznosti, m - koeficijent površinske napetosti, Nm s 3 - koeficijent kinematičke kapilarnosti, m s p - tlak, N m p v - tlak isparavanja, tlak zasićenja para, N m g - ubrzanje zemljine sile teže, ms Gustoća morske vode za standardnu temperaturu od 15 C iznosi 105,9 kg m 1,6 kg m, kinematički koeficijent 3 3 W, a zraka 15 C A 15 C 6 viskoznosti 1,1883110 m s W. 15 C Okolina također utječe na gibanje broda na površini ili kroz tekućinu. Značajke okoline su: Dubina vode h, širina kanala ili rijeke b, pravocrtno ili kružno gibanje tekućine (pravocrtno-struje ili kružno-valovi), vjetar..3.4 Bezdimenzijski modeli U nekim slučajevima formiranja matematičkog modela potrebno je primijeniti poseban sustav mjernih jedinica. U tom slučaju dolazi do promjene originalnih koeficijenata u jednadžbi. Zbog toga je prikladnije formirati bezdimenzijske matematičke jednadžbe. Prednost primjene bezdimenzijskih veličina pri analizi fizikalnih zakona je smanjenje broja parametara odnosno varijabli. 13

.3.5 ile na brodski trup ile na brodski trup koji se giba kroz tekućinu mogu biti normalne (okomite) na površinu 1 broda (sile tlaka), ili tangencijalne na površinu broda (sile trenja). Izraz V ima dimenziju tlaka i zove se dinamički tlak. Djelovanju dinamičkog tlaka na neku površinu A 1 stvara silu dinamičkog tlaka koja je okomita na površinu: gdje je: A 1 1 V 1 F1 V A1 1 (.9) - karakteristična površina brodskog trupa, - bezdimenzijski koeficijent koji ovisi o geometrijskim značajkama broda, lokalnoj brzini i pravcu sile tlaka u prostoru, - brzina broda. Tangencijalna sila ili sila trenja na neki element površine broda može se izraziti kao: gdje je: V A F V A (.30) L - dinamički koeficijent viskoznosti tekućine kroz koju se brod giba, - brzina broda, - karakteristična površina brodskog trupa, - bezdimenzijski koeficijent koji ovisi o geometrijskim značajkama broda. dv Tangencijalna sila definirana je izrazom A gdje je d V gradijent brzine okomit na dy dy površinu. Gravitacijska sila na brod se izražava kao: gdje je: L A 3 3 F LA g (.31) 3 3 3 - gustoća tekućine kroz koju se brod giba, - duljina broda, - karakteristična površina brodskog trupa, - bezdimenzijski koeficijent koji ovisi o geometrijskim značajkama broda. Ako za problem koji razmatramo treba uzeti u obzir sile napetosti površine, ona se izražava: F L (.3) 4 4 gdje je: L - koeficijent površinske napetosti tekućine kroz koju se brod giba, - duljina broda, 14

4 - bezdimenzijski koeficijent koji ovisi o geometrijskim značajkama broda..3.6 Bezdimenzijski odnosi Kod provođenja mjerenja obično se promatraju odnosi istih fizikalnih veličina, pa se na taj način dobivaju bezdimenzijske varijable. U brodskoj hidrodinamici je u svrhu zadovoljenja uvjeta dinamičke sličnosti, prikladno koristiti odnose pojedinih sila s inercijskom (dinamičkom) silom. Dijeljenjem različitih sila s inercijskom silom dobiju se bezdimenzijski odnosi ili koeficijenti sila koji su jednaki za model i brod u naravi. Bezdimenzijski odnos ili koeficijent inercijske sile jednak je: C 1 i predstavlja Newtonov broj. F 1 (.33) 1 V A 1 Za tangencijalnu silu (silu trenja) koeficijent sile glasi: gdje je: 5 C V F A (.34) L 5 F 1 1 V A VL 11 - bezdimenzijski koeficijent koji ovisi o geometrijskim značajkama broda 5, 1 1 - kinematički koeficijent viskoznosti. Reynoldsov broj predstavlja odnos između inercijske sile i sile trenja i definiran je izrazom: R n VL (.35) pa jednadžbu (1.34) možemo napisati u obliku: (.36) VL C 5 Na taj način možemo bezdimenzijski odnos C prikazati kao funkciju Reynoldsovog broja i geometrije broda: n, 5 C f R (.37) Za gravitacijsku silu koeficijent sile može se izraziti odnosom: 15

gdje je: 6 C F LA g gl (.38) 3 3 3 3 6 F 1 1 V A V 11 - bezdimenzijski koeficijent koji ovisi o geometrijskim značajkama broda 3 6, 1 1 gl - kvadrat recipročne vrijednosti Froudovog broja. V W. Froude je prvi uočio važnost bezdimenzijskog odnosa: F n V (.39) gl u brodskoj hidrodinamici pa ga stoga zovemo Froudeovim brojem. Prema tome koeficijent gravitacijske sile možemo prikazati kao funkciju Froudeovog broja i geometrije broda: C f( F, ) (.40) 3 n 6 Potrebno je napomenuti da se često u brodograđevnoj literaturi susrećemo s pojmom relativne brzine V L, gdje je V brzina izražena u čvorovima, a L duljina izražena u stopama. Odnos ovih značajki nije bezdimenzijski (za razliku od Froudeovog broja) i zato nije prikladan za upotrebu. Koeficijent sile napetosti površine dan je izrazom: C F L (.41) 4 4 4 7 F 1 1 V A V L 11 gdje je 7 bezdimenzijski koeficijent koji ovisi o geometrijskim značajkama broda 4 7, 1 1 a bezdimenzionalni faktor je Weberov broj: W n V L V L V L (.4) gdje je koeficijent kinematičke kapilarnosti. Bezdimenzijski koeficijent sile napetosti površine funkcija je Webwerovog broja i geometrije broda: C 4 n, 7 f W (.43) U bezdimenzijskoj formi koeficijent rezultirajuće sile koja djeluje na brod ili model može se napisati kao: 16

C f R, F, W, (.44) n n n Često se pored dosad navedenih odnosa mora uvesti i neke dodatne odnose kako bi se pojava mogla točnije opisati. Takav je Eulerov E n ili kavitacijski broj, koji se kao koeficijent sličnosti javlja u strujanjima gdje se pojavljuje kavitacija. Kavitacijski (Eulerov) broj definiran je izrazom: gdje je: p p v p pv p p v (.45) q 1 V - apsolutni tlak okoline, - tlak isparavanja tekućine, 1 q V - dinamički tlak. 1 Umjesto V katkada se za kavitacijski broj upotrebljava izraz 1 nd, gdje je n broj okretaja vijka, a D je promjer vijka. Pri modeliranju nestacionarnih pojava potrebno je upotrijebiti trouhalov broj koji predstavlja odnos inercijskih sila pri nestacionarnom gibanju: n L (.46) VT gdje je: L - duljina broda, V - brzina broda, T - period nestacionarne pojave. Pri stacionarnim pojavama iznos trouhalovog broja jednak je jedinici: n L 1 L V 1 (.47) VT V T V 3 Bezdimenzionalnost mase postiže se dijeljenjem mase s L, a bezdimenzionalnost momenta 5 inercije dijeljenjem s L. U najvećem broju slučajeva matematički modeli koji se odnose na problem otpora i propulzije brodova temelje se na pretpostavci da je okolna tekućina beskonačne dubine, duljine i širine osim u nekim posebnim situacijama kada se uvode novi bezdimenzijski odnosi. U posebnim slučajevima kada se promatra gibanje broda u vodi ograničene dubine, ograničenoj širini plovnog puta te uz prisutnost struja uvode se novi bezdimenzijski odnosi: Za dubinu: h T, gdje je h dubina vode, T gaz broda. Za širinu: b L ili b, gdje je b širina kanala, L duljina broda, B širina broda. B V Za struju: str V, gdje je V str brzina struje, V brzina broda. 17

V Za relativnu brzinu vjetra: R V, gdje je V R relativna brzina vjetra, V brzina broda. 3. DIMENZIJKA ANALIZA I ZAKONI LIČNOTI Zbog matematičke složenosti vrlo je malen broj problema dinamike viskoznog strujanja koji imaju egzaktna analitička rješenja. U drugoj grupi zadataka, zbog određenih odnosa i razlike u redu veličine između pojedinih fizikalnih veličina u prirodi pojave, dopušteno je da se zanemare pojedini članovi Navier-tokesovih jednadžbi, pa se egzaktna analitička rješenja tako pojednostavnjenih jednadžbi nazivaju približnim rješenjima zadataka viskoznog strujanja. uvremena računala omogućavaju direktno numeričko rješavanje problema viskoznog strujanja metodom konačnih elemenata, metodom konačnih diferencija, metodom kontrolnih volumena, metodom rubnih elemenata ili spektralnim metodama. Unatoč uspjesima koji su ostvareni teorijskim pristupom rješavanju zadataka dinamike viskoznog strujanja, glavni izvor osnovnih spoznaja i temelj razvoja i provjere teorije i teorijskih rješenja još su uvijek i dugo će ostati rezultati eksperimentalnih istraživanja. Tako je i brodska hidrodinamika kao dio mehanike fluida, poput većine grana fizike, u svojoj biti teorijskoeksperimentalna znanost. Zakoni sličnosti u mehanici fluida definiraju kriterije za provođenje eksperimenata. Na zakonima sličnosti zasnivaju se metode za generalizaciju eksperimentalnih rezultata i za predviđanje toka prototipne pojave na temelju ispitivanja modela. Dimenzijska analiza i zakoni sličnosti predstavljaju znanstveni temelj eksperimentalnom istraživanju složenih fizikalnih pojava kako u mehanici fluida, hidromehanici broda tako i u ostalim područjima fizike. 3.1 DIMENZIJKA ANALIZA Kao i sve grane fizike i brodska hidrodinamika kao dio mehanike fluida je eksperimentalnoteorijsko-numerička znanstvena disciplina u čijim se istraživanjima isprepliću dva različita pristupa: eksperimentalni i teorijski. Pri eksperimentalnom pristupu se na temelju iskustva i intuicije istraživača izabiru fizikalne veličine kao varijable za koje se smatra da upravljaju pojavom koja se istražuje. istematski mijenjajući varijable provode se eksperimenti i rezultati mjerenja se unose u dijagrame ili tablice. To je eksperimentalno rješenje pojave. Takav pristup se naziva fenomenološki. Pri teorijskom pristupu polazi se od analitički formuliranih zakona mehanike fluida pomoću kojih se postavlja teorijski model pojave i matematičko-numeričkom analizom se istražuje utjecaj pripadnih varijabli na odvijanje pojave. To je pristup racionalne mehanike. U brodskoj hidrodinamici ti pristupi nadopunjuju jedan drugi i ne mogu, a i ne smiju se odvajati. U jedinstvenom istraživačkom timu trebali bi biti inženjeri, fizičari, matematičari, numeričari i eksperimentatori. Osnova napretka brodske hidrodinamike je kontinuirano funkcioniranje tipičnog analitičkog procesa: Eksperiment teorija eksperiment Dimenzijska analiza određuje opći oblik jednadžbi ili funkcija kojima se opisuju prirodne pojave. Ona ne rješava problem već samo organizira eksperimentalna i teorijska istraživanja poopćavajući rezultate izvan okvira koje pokriva jedan eksperiment. Dimenzijska analiza se primjenjuje kada se rješenje nekog problema ne može odrediti egzaktno tj. kada nam je na raspolaganju djelomično poznavanje problema u kojem nam 18

pojedinosti nisu dovoljno jasne da bi nam dozvolile egzaktnu analizu. Prednost dimenzijske analize što je za njenu primjenu dovoljno poznavanje jedino onih varijabli o kojima ovisi rješenje problema. Pri primjeni dimenzijske analize na otpor broda treba jedino znati o kojim varijablama ovisi otpor broda odnosni strujanje oko trupa broda. Na taj način, dimenzijska analiza postaje snažan alat, jer ispravnost dimenzijskog rješenja ne ovisi o ispravnosti detaljne analize, već jedino o ispravnom izboru osnovnih varijabli. Treba napomenuti da se dimenzijskom analizom ne dolazi do konkretnih brojčanih rezultata, nego se dolazi do funkcionalne ovisnosti traženog rješenja o analiziranim varijablama. Primjenom dimenzijske analize potrebno je pronaći opći oblik zavisnosti ukupnog otpora broda od fizikalnih veličina koje upravljaju pojavom: duljina broda L, oplakana površina, volumen istisnine, hrapavost brodske oplate k, brzina strujanja V, ubrzanje sile teže g, dinamički koeficijent viskoznosti, gustoća fluida. Fizikalne dimenzijske veličine o kojima ovisi pojava su L,,, kv,, g,, Pretpostavlja se da je otpor broda definiran nekom funkcijom G navedenih devet fizikalnih veličina, pa vrijedi: G R,,,,,,,, 0 T L k V g (3.1) obzirom da nas zanima ovisnost sile otpora broda o ostalim fizikalnim veličinama slijedi: R f L,,, k, V, g,, (3.) T Prvo je potrebno napraviti tablicu s popisom veličina, simbola i dimenzija fizikalnih veličina koje upravljaju pojavom, Tablica 3.1. Tablica 3.1. Popis fizikalnih veličina i njihovih dimenzija Veličina imbol Dimenzija ukupni otpor broda R T MLT duljina broda L L oplakana površina L volumen istisnine 3 L hrapavost brodske oplate k L -1 brzina strujanja V LT ubrzanje sile teže g - LT dinamički koeficijent viskoznosti -1-1 ML T gustoća fluida -3 ML U Tablici 1. imamo n 9 fizikalnih veličina i 3 M,L,T, te se izabire skup od 3 dimenzijski nezavisne veličine (to treba dokazati). Dimenzije svih 9 fizikalnih veličina mogu se izraziti s dimenzijama 3 osnovne veličine. obzirom da želimo odrediti ovisnost otpora broda od ostalih veličina, on se neće uključiti u dimenzijski nezavisan skup. Otpor broda je posljedica viskoznosti i hrapavosti stjenke čiji se utjecaj želi istražiti te k osnovne dimenzije 19

se te dvije veličine neće uključiti u dimenzijski nezavisan skup. Hrapavost brodske oplate i duljina broda imaju istu dimenziju, a s obzirom da je duljina broda najkarakterističnija veličina odabiremo L. Kao dimenzijski nezavisan skup odabire se skup, v, L u čijim se dimenzijama pojavljuju sve tri dimenzije što se osnovni preduvjet dimenzijske nezavisnosti skupa. Zatim je potrebno dokazati dimenzijsku nezavisnost izabranog skupa odnosno a b c 0 0 0 v L MLT 1 (3.3) -3 a -1 b c 0 0 0 ML LT L =M L T Što daje sustav linearnih algebarskih jednadžbi M : a 0 L : 3abc0 T : b 0 (3.4) (3.5) čije je rješenje trivijalno a bc 0, što dokazuje dimenzijsku nezavisnost skupa. Dakle skup, v, L je dimenzijski nezavisan skup. Nadalje potrebno je od svake fizikalne veličine koja nije obuhvaćena dimenzijski nezavisnim skupom formirati po jedan π parametar. Moguće je formirati n k 93 6π parametara. Parametar π 1 formira se s ukupnim otporom broda R T u obliku: π 1 R V L T a1 a a3 (3.6) što izraženo pomoću dimenzija daje: - -3 a1-1 a a3 0 0 0 MLT ML LT L =M L T (3.7) Izjednačavanjem eksponenata iznad istih baza na lijevoj i desnoj strani jednadžbe dobiva se sustav od tri linearne algebarske jednadžbe: M : 1a 0 a 1 1 1 L : 13a a a 0 a 3a a 1 1 3 3 1 T : a 0 a (3.8) kojeg je rješenje a1 1, a, a3, što uvršteno u jednadžbu (3.6) daje: π R R uobičajeno: π1 T (3.9) V L 1 V L T 1 0

vaki Pi parametar se smije potencirati i množiti proizvoljnom konstantom. Faktor 1 je uveden jer izraz q 1 V predstavlja dinamički tlak. Parametar π formira se s oplakanom površinom broda u obliku: π V L a1 a a3 (3.10) što izraženo pomoću dimenzija daje: -3 a1-1 a a3 0 0 0 L ML LT L =M LT (3.11) Izjednačavanjem eksponenata iznad istih baza na lijevoj i desnoj strani jednadžbe dobiva se sustav od tri linearne algebarske jednadžbe: M : a 0 a 0 1 1 L : 3a a a 0 a 3a a 1 3 3 1 T : a 0 a 0 (3.1) kojeg je rješenje a1 0, a 0, a3, što uvršteno u jednadžbu (3.10) daje: (3.13) L π Parametar π 3 formira se s volumenom istisnine broda u obliku: π 3 V L a1 a a3 (3.14) što izraženo pomoću dimenzija daje: 3-3 a1-1 a a3 0 0 0 L ML LT L =M LT M : a 0 a 0 1 1 L : 33a a a 0 a 3a a 33 1 3 3 1 T : a 0 a 0 (3.15) (3.16) kojeg je rješenje a1 0, a 0, a3 3, što uvršteno u jednadžbu (3.13) daje: (3.17) L π 3 3 Parametar π 4 formira se s visinom hrapavosti brodske oplate broda k u obliku: π 4 k V L a1 a a3 (3.18) 1

što izraženo pomoću dimenzija daje: -3 a1-1 a a3 0 0 0 L ML LT L =M LT (3.19) Izjednačavanjem eksponenata iznad istih baza na lijevoj i desnoj strani jednadžbe dobiva se sustav od tri linearne algebarske jednadžbe: M : a 0 a 0 1 1 L : 13a a a 0 a 3a a 11 1 3 3 1 T : a 0 a 0 (3.0) kojeg je rješenje a1 0, a 0, a3 1, što uvršteno u jednadžbu (3.18) daje: π 4 k (3.1) L Parametar π 5 formira se s ubrzanjem sile teže g u obliku: π 5 g V L a1 a a3 (3.) što izraženo pomoću dimenzija daje: - -3 a1-1 a a3 0 0 0 LT ML LT L =M L T (3.3) Izjednačavanjem eksponenata iznad istih baza na lijevoj i desnoj strani jednadžbe dobiva se sustav od tri linearne algebarske jednadžbe: M : a 0 a 0 1 1 L : 13a a a 0 a 3a a 11 1 3 3 1 T : a 0 a (3.4) kojeg je rješenje a1 0, a, a3 1, što uvršteno u jednadžbu (3.) daje: gl V uobičajeno: π5 (3.5) V gl π 5 Parametar π 6 formira se s dinamičkim koeficijentom viskoznosti u obliku: π 6 V L a1 a a3 (3.) što izraženo pomoću dimenzija daje: -1-1 -3 a1-1 a a3 0 0 0 ML T ML LT L =M L T (3.3)

Izjednačavanjem eksponenata iznad istih baza na lijevoj i desnoj strani jednadžbe dobiva se sustav od tri linearne algebarske jednadžbe: M : 1 a 0 a 1 1 1 L : 13a a a 0 a 3a a 11 1 3 3 1 T : 1 a 0 a 1 (3.4) kojeg je rješenje a1 1, a 1, a3 1, što uvršteno u jednadžbu (3.) daje: π 6 VL uobičajeno: π6 (3.5) VL Primjenom Pi teorema jednadžba (3.1) prelazi u oblik π, π, π, π, π, π 0 (3.6) 1 3 4 5 6 odnosno π 1 3 4 5 6 π, π, π, π, π (3.7) R T k V VL,,,, 3 1 V L L L L gl (3.8) R T 1 k V VL,,,, L L L gl V L 3 (3.9) U jednadžbi (3.9) L i k 3 su koeficijenti koji definiraju formu trupa broda, L L predstavlja relativnu hrapavost, V gl predstavlja Froudeov broj F n, a VL Reynoldsov broj R n. Uzevši u obzir da je kod geometrijski sličnih formi oplakana površina proporcionalna s L jednadžbu (3.9) možemo pisati u obliku: gdje je R k,,, koeficijenti forme trupa 1 V T CT Rn Fn L (3.30) C T bezdimenzijski koeficijent ukupnog otpora. Izraz (3.30) rezultat je dimenzijske analize i pokazuje da je koeficijent ukupnog otpora funkcija geometrijskih, kinematičkih i dinamičkih varijabli. Kada za dva geometrijski slična tijela svi Pi-parametri u zagradama na desnoj strani jednadžbi imaju iste vrijednosti, strujanje oko tih tijela će biti slično te će bezdimenzijski koeficijent ukupnog otpora C T imati istu vrijednost. 3

3. ZAKONI LIČNOTI Pri upotrebi fizičkih modela potrebno je fizičke veličine dobivene ispitivanjem modela preračunati za brod. Zato je potrebno poznavati ili ustanoviti prenošenja rezultata s modela na brod (tzv. korelacija). Modeliranje ima važnu ulogu u brodskoj hidrodinamici. Ispitivanja i istraživanja s brodovima u naravnoj veličini vrlo su skupa i zavisna o uvjetima okoline (meteorološki i dr.). Pri ispitivanju u naravi vrlo je teško razlučiti posljedice pojedinih utjecaja koji djeluju na promatranu pojavu, kao što je to moguće u laboratorijskim uvjetima. Zato se ispitivanja u naravi provode samo u svrhu provjere rezultata modelskih ispitivanja odnosno određivanja korelacije rezultata model-brod i provjere ispunjenja ugovorenih obveza. Modelska ispitivanja zauzimaju značajno mjesto u brodskoj hidrodinamici. Mnoga znanja proizašla su upravo iz modelskih ispitivanja. Modelska ispitivanja predstavljaju danas, još uvijek jedini pouzdani način prognoziranja hidrodinamičkih značajki neke novogradnje. Da bi se fizikalne pojave s modela mogle prenijeti na brod potrebno je ostvariti fizikalnu sličnost, što podrazumijeva ostvarenje: Geometrijske sličnosti, Kinematičke sličnosti, Dinamičke sličnosti. 3..1 Geometrijska sličnost Kada se govori o glavnim značajkama modela odnosno broda čini se da geometrijsku sličnost nije teško postići. Potrebno je geometrijske značajke modela pomnožiti s koeficijentom geometrijske sličnosti ili mjerilom da se dobiju odgovarajuće geometrijske značajke broda, lika 3.1. Moguće je napraviti model u nekim tolerancijama točnosti izrade ukoliko se radi o brodu s glatkom oplatom (površinom) trupa, ali u slučaju kada oplata trupa nije glatka vrlo je teško reproducirati mikrogeometriju hrapave oplate. Čak i kada bi površina modela bila točna kopija površine broda, odnosno čak i u slučaju da postignemo potpunu geometrijsku sličnost u modeliranju hrapavosti, strujanje uzduž površine modela neće biti slično strujanju uzduž površine broda, zbog značajki okolne tekućine. To znači da pojave u graničnom sloju broda ne mogu biti korektno reproducirane na modelu. toga se prilikom obrade površine modela zanemaruje geometrijska sličnost hrapavosti površine trupa modela i broda i površina modela se radi potpuno glatka (tehnički glatka površina). Zbog nemogućnosti ostvarenja potpune sličnosti strujanja u graničnom sloju, rezultate dobivene modelskim ispitivanjima potrebno je korigirati, no o tome će biti govora kasnije. lični problemi postoje i kod modeliranja geometrije modela brodskog vijka. Bridovi vrhova krila brodskog vijka katkada moraju biti nešto deblji nego što to zahtjeva geometrijska sličnost zbog potrebne čvrstoće krila. Površina mora i površina vode u bazenu također moraju biti slične. Najlakše je ostvariti mirnu površinu vode u bazenu. Mirnu površinu vode u bazenu i glatku površinu modela broda nazivamo uvjetima bazena. Tlak na površini vode u bazenu i u naravi su isti, a u bazenu bi tlak morao biti niži da bi se ostvarila jednakost kavitacijskog broja. Brod u naravi često plovi u praktički neograničenim uvjetima (dubina i širina), dok su u bazenu dimenzije ograničene, tako da dimenzije modela moraju biti male u odnosu na 4

dimenzije bazena. Pri izboru mjerila geometrijske sličnosti treba odabrati mjerilo s kojim će se izbjeći utjecaj stijenki bazena odnosno dna bazena na rezultate ispitivanja. Vidjeli smo da geometrijsku sličnost treba ostvariti s glavnim dimenzijama, oblikom trupa i obzirom na okolinu. lika 3.1. Odnos dimenzija broda i modela Mjerilo geometrijske sličnosti ili mjerilo modela određeno je omjerom glavnih izmjera broda i modela: L B T L (3.31) L B T M M M Koordinate x, y i z kao i pomaci uzduž tih osi također moraju biti u istom odnosu: tj. geometrijski slični: x y z L L (3.3) x y z L M M M M Ukoliko odaberemo neku karakterističnu dimenziju recimo L, možemo formirati bezdimenzijske odnose (bezdimenzijske koordinate): x x M x (3.33) L L M pa se na taj način dobiva jednake veličine u oba sustava; broda i modela. Iz geometrijske sličnosti izlazi da se površine odnose kao kvadrati mjerila geometrijske sličnosti, a volumeni kao kubovi mjerila geometrijske sličnosti: M L (3.34) 3 L M (3.35) 5

3.. Kinematička sličnost Kinematička sličnost modela i broda bit će osigurana ako odgovarajuće točke modela i broda opisuju odgovarajuće putanje u odsječcima vremena, koji su u konstantnom odnosu. Koeficijent sličnosti ili mjerilo vremena određeno je odnosom: t t (3.36) t M Bezdimenzijske vrijednosti vremena jednake za model i brod dobiju se dijeljenjem s karakterističnim vremenom T. To može biti period nekog cikličkog procesa ili vrijeme potrebno da model ili brod prijeđu put jednak vlastitoj duljini: t t t M T T (3.37) M U kinematički sličnim sustavima modela i broda vektori brzina u odgovarajućim prostornovremenskim točkama istog su smjera, međusobno su paralelni, a veličine su im u stalnom odnosu. Koeficijent sličnosti ili mjerilo brzina određeno je izrazom: v v (3.38) v M Ako je s prevaljeni put broda, a s M prevaljeni put modela, tada vrijedi: v ds ds i v M M dt dt (3.39a) Uvrštavajući (3.39a) u (3.38) slijedi: M ds v dt dtm ds 1 L v d L v s M M dt ds M t (3.39b) t dt M v v v (3.39c) L M v M t odnosno mjerilo brzine dano je odnosom: L v (3.39d) t U kinematički sličnim sustavima modela i broda vektori ubrzanja u odgovarajućim prostornovremenskim točkama istog su smjera, međusobno su paralelni, a veličine su im u stalnom odnosu: a a (3.40) a M Za ubrzanje broda a i modela a M vrijedi: 6

a dv dv i a M M dt dt (3.41a) M Uvrštavajući (3.41a) u (3.40) slijedi: dv a dt dt dv 1 1 a (3.41b) a t v M L L dv v d d M M M t t t t dtm a a a (3.41c) L M a M t odnosno mjerilo ubrzanja dano je odnosom: a (3.41d) L t Prilikom provedbe pokusa s modelom brodskog vijka, omjer između brzine napredovanja i obodne brzine bilo kojeg elementa krila vijka mora biti isti kao odgovarajući omjer za vijak broda u naravi. To znači da vrijedi: ili ili vm v (3.4) n R n R π π M M vm v (3.43) n D n D M M J M J (3.44) gdje je: R v n D J - radijus elementa kojeg razmatramo, - brzina napredovanja, - broj okretaja, - promjer vijka, - koeficijent napredovanja. 3..3 Dinamička sličnost Pri dinamičkoj sličnosti sustava model-brod vektori sila u odgovarajućim prostornovremenskim točkama istog su smjera, međusobno su paralelni, a veličine su im u stalnom odnosu. Razmotrit će se četiri stanja tekućine u kojima se brod odnosno model u razmatranju hidrodinamičkih pojava može naći: 7

1. Nestlačiva tekućina bez trenja i bez slobodne površine. Nestlačiva tekućina bez trenja sa slobodnom površinom 3. Nestlačiva tekućina s trenjem i bez slobodne površine 4. Nestlačiva tekućina s trenjem i sa slobodnom površinom Pretpostavlja se da su geometrijska i kinematička sličnost između modela i broda zadovoljene. Koeficijenti dinamičke sličnosti slijede iz primjene mjerila za pojedine fizikalne veličine: mjerilo gustoće (3.45) M mjerilo mase m m m M M M 3 L (3.46) mjerilo površine L (3.47) M mjerilo volumena M 3 L (3.48) t mjerilo vremena L t (3.49) t M V V mjerilo brzine L V (3.50) V M t mjerio ubrzanja V a V a a (3.51) M t L Pri tome se indeks odnosi na brod, a M na model. 1. Nestlačiva tekućina bez trenja i bez slobodne površine Pored inercijskih sila djeluju još samo sile tlaka. Koeficijent sličnosti ili mjerilo sile je: Fi ma a 3 3 V F i L a L FiM mm am MM am L F L V (3.5) i budući je inercijska sila jednaka umnošku mase i akceleracije. Indeks i označava inercijsku silu. Jednadžba (1.8) može se prikazati u obliku odnosa inercijskih sila po odgovarajućim površinama: 8

Fi 0,5V Fi L V F im 0,5MVM M (3.53) Koji vrijedi za sve odgovarajuće sile oba sustava: model i brod. Faktor 0,5 je uveden jer je 0,5 V dinamički tlak i jednak je tlaku u točki stagnacije tijela koje se nalazi u potencijalnom strujanju, lika 1.1. Oznaka predstavlja površinu. U problemima otpora i propulzije, je općenito oplakana površina trupa modela odnosno broda. lika 1.1. Profil u potencijalnom strujanju Bezdimenzijski koeficijent sile C nezavisan od mjerila glasi: F F C (3.54) 0,5 0,5 i im V MVM M Ako se radi o nestlačivoj tekućini bez trenja i bez slobodne površine izrazom (3.53) odnosno (3.54) je zadovoljena dinamička sličnost. Odgovarajuće sile su u stalnom odnosu a broj: F i C (3.55) 0,5V se naziva Newtonov broj čijom se jednakošću za model i brod u slučaju tekućine bez trenja i bez slobodne površine osigurava dinamička sličnost sustava model-brod.. Nestlačiva tekućina bez trenja sa slobodnom površinom U ovom slučaju gravitacijska sila ima važnu ulogu, jer ona upravlja pojavom valova. Koeficijent sličnosti gravitacijskih sila jednak je omjeru gravitacijskih sila koje djeluju na odgovarajuće mase m M i m : gdje je: g g F m g (3.56) g 3 Fg L g FgM mm gm - gravitacija ili ubrzanje zemljine sile teže, - mjerilo gravitacije ili mjerilo ubrzanja zemljine sile teže. Ukoliko se želi ostvariti dinamička sličnost onda odnos bilo koje gravitacijske i inercijske sile za model i brod mora imati istu vrijednost: 9

F F im gm F i (3.57) F g ili F F i im Fg i Fi Fg (3.58) F gm Što daje: 3 L V L g (3.59) pa slijedi V g L (3.60) Jednadžba (1.16) može se napisati u obliku: ili ili gl M gm LM V V (3.61a) M V V (3.61b) g L g L M M VM V Fn (3.61c) g L g L M M gdje je F n Froudeov broj. Uz geometrijsku i kinematičku sličnost i jednakost Froudeovih brojeva, moguće je preračunati bilo koju silu izmjerenu na modelu u odgovarajuću silu na brod pomoću mjerila sile: 3 F F F g L (3.6) i g Na osnovu zakona sličnosti i promatranja slika valova na modelima iste forme ali različite veličine, William Froude je 1868. godine formulirao Zakon usporedbe na slijedeći način: Preostali otpori geometrijski sličnih brodova odnose se kao treće potencije mjerila linearnih dimenzija, ako se njihove brzine odnose kao drugi korijen mjerila linearnih dimenzija. Froudeov Zakon usporedbe zapisan u matematičkom obliku glasi: R R R RM 3 L (3.63) 30

V V M L (3.64) 3. Nestlačiva tekućina s trenjem i bez slobodne površine Viskozna sila može se izraziti kao: F V dv (3.65) dy gdje je: - dinamički koeficijent viskoznosti, dv - komponenta gradijenta brzine okomita na površinu, dy - površina. Omjer između viskoznih sila modela i broda glasi: FV dv dy V F V L F dv dy (3.66) Fv V L M M M M M L (3.67) Mjerilo viskoznih sila mora biti jednako mjerilu inercijskih sila: F V (3.68) F i V L L V (3.69) (3.70) L V L V (3.71) L V M M M M Kako je kinematički koeficijent viskoznosti definiran izrazom slijedi: VMLM VL Rn (3.7) M gdje je R n Reynoldsov broj. Ukoliko se želi zadovoljiti dinamička sličnost u nestlačivoj tekućini s trenjem i bez slobodne površine neophodno je uz geometrijsku i kinematičku sličnost zadovoljiti i jednakost Reynoldsovog broja za model i brod. 31

4. Nestlačiva tekućina s trenjem i sa slobodnom površinom Kada se brod giba na slobodnoj površini mora, na njega djeluju gravitacijske, viskozne i inercijske sile.za ostvarenje dinamičke sličnosti sve tri vrste sila moraju biti u istom odnosu. Uvjet dinamičke sličnosti glasi: odnosno: (3.73) F F F i g V 3 L V L g V L (3.74) Usporedbom inercijskih i gravitacijskih sila dobiva se: 3 L v L g (3.75) v L g (3.76) Što se može napisati u obliku: v M v L L M g g M (3.77) vm v (3.78) g L g L M M V V M Fn (3.79) g L g L M M Jednakost Froudeovih brojeva broda i modela uz g modela: g daje sljedeći odnos brzina broda i M V V L L (3.80) V L M M Usporedbom inercijskih i viskoznih sila dobiva se: F i (3.81) F V L V V L (3.8) (3.83) L V L V (3.84) L V M M M M 3

VL VML M (3.85) M Budući su kinematički koeficijenti viskoznosti za slanu i slatku vodu približno jednaki: M slijedi: VL VMLM (3.86) Za odnos brzina vrijedi: V LM 1 (3.87) V L M L V V 1 V (3.88) M L Iz jednadžbi (3.88) i (3.80) slijedi: 1 (3.89) V L što znači da se prilikom provođenja eksperimenta s modelom čije je mjerilo različito od 1 nije moguće zadovoljiti potpunu dinamičku sličnost. ile izmjene na modelu ne mogu se direktno prenositi na brod jednostavnim množenjem rezultata određenim mjerilom sličnosti. Potrebno je primijeniti posebne postupke o čemu će biti govora kasnije. 4. OTPOR BRODA 4.1 UVOD Otpor broda pri određenoj brzini je sila kojom tekućina djeluje na brod suprotno od smjera gibanja broda. Otpor broda jednak je komponenti sile tekućine u smjeru paralelnom s osi gibanja broda. Na slici 3.1 prikazane su krivulje koeficijenata otpora za tijelo pri gibanju na slobodnoj površini i duboko uronjeno ispod slobodne površine, u idealnoj i viskoznoj tekućini. Koeficijenat otpora: R C f( Fn ) (4.1) 1 v prikazan je na temelju Froudeovog broja: V Fn (4.) gl 33

lika 4.1. Krivulje koeficijenta otpora Ukupni otpor broda, kojega se označava s R T, može se podijeliti na komponente, prema uzroku nastajanja. Između pojedinih komponenata otpora postoji složena interakcija. Otpor trenja R F (eng. frictional resistance) je komponenta otpora dobivena integracijom tangencijalnih naprezanja po oplakanoj površini broda u smjeru gibanja broda. Preostali otpor R R (eng. residual resistance) je komponenta otpora dobivena oduzimanjem od ukupnog otpora iznos otpora trenja izračunatog prema odgovarajučoj formulaciji. To je obično trenje ekvivalentne ploče (ploče koja ima duljinu broda, a površinu jednaku oplakanoj površini broda). Općenito, najveći dio preostalog otpora kod trgovačkih brodova tvori otpor valova. Viskozni otpor R V (eng. viscous resistance) je komponenta otpora povezana s energijom utrošenom zbog viskoznih učinaka. Otpor tlaka R P (eng. pressure resistance) je komponenta otpora dobivena integracijom normalnih naprezanja po oplakanoj površine broda u smjeru gibanja broda. Viskozni otpor tlaka R PV (eng. viscous pressure resistance) je komponenta otpora dobivena integracijom komponenata normalnih naprezanja uslijed viskoznosti i turbulencije. Ova komponenta se ne može direktno mjeriti, osim za tijelo duboko uronjeno u tekućinu, gdje je jednaka otporu tlaka (ovu komponentu se naziva i otpor forme). Otpor valova R W (eng. wavemaking resistance) je komponenta otpora povezana s energijom utrošenom na stvaranje gravitacijskih valova. Ova komponenta sastoji se od otpora slike vala i otpora lomljenja valova. 34