ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Σχετικά έγγραφα
ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΘΕΜΑ 1 ο. Α3. Έστω η συνάρτηση f(x) = x ν, ν ϵ N-{0, 1}. Να αποδείξετε ότι η συνάρτηση f είναι παραγωγίσιμη στο και ότι ισχύει: , δηλαδή x 1

f ( x) f ( x ) για κάθε x A

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

5o Επαναληπτικό Διαγώνισμα 2016

ΘΕΜΑ 1 ο. Α1. Θεωρία, στη σελίδα 260 του σχολικού βιβλίου (Θ. Fermat). Α2. Θεωρία, στη σελίδα 169 του σχολικού βιβλίου.

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ - ΠΛΗΡΟΦΟΡΙΚΗ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

, να αποδείξετε ότι και η συνάρτηση f+g είναι παραγωγίσιμη στο x. και ισχύει. Μονάδες 9 Α2. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και [, ]

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0.

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 3 13/04/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

και γνησίως αύξουσα στο 0,

για κάθε x 0. , τότε f x στο Απάντηση είναι εσωτερικό σημείο του Δ και η f παρουσιάζει σ αυτό τοπικό μέγιστο, υπάρχει 0 τέτοιο, ώστε (x , ισχύει

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις

Λύσεις θεμάτων προσομοίωσης 1-Πανελλαδικές Εξετάσεις 2016

ΠΑΡΟΡΑΜΑΤΑ ΣΤΟ ΒΙΒΛΙΟ ΤΟΥ Η. ΡΟΥΣΑΛΗ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. ΤΟ 3ο ΚΑΙ ΤΟ 4ο ΘΕΜΑ (ΕΚΔΟΣΕΙΣ ΠΑΤΑΚΗ)

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α

) της γραφικής παράστασης της f που άγονται από το Α, τις οποίες και να βρείτε. Μονάδες 8 Γ2. Αν ( 1) : y x, και ( 2

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

3o Επαναληπτικό Διαγώνισμα 2016

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΛΥΣΕΙΣ. f(x) = g(x)+c. Α2. ί. Ποια είναι η γεωμετρική ερμηνεία του Θεωρήματος Μέσης Τιμής του διαφορικού λογισμού;; (Να κάνετε πρόχειρο σχήμα).

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΘΕΜΑ 1 ο. Α1. Πότε λέμε ότι μία συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α, β]; (Μονάδες 4)

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Διαγώνισμα προσομοίωσης Πανελλαδικών Εξετάσεων στα Μαθηματικά Κατεύθυνσης Δευτέρα 13 Μαΐου 2019

1o. Θ Ε Μ Α Β Ε. Γ Κ Ο Ρ Α. βρίσκεται ολόκληρη μέσα στο τετράγωνο ΑΒΓΔ.

1, x > 0 η οποία είναι συνεχής και παραγωγίσιμη σε κάθε ένα από τα διαστήματα (, 0) και (0, + ) του πεδίου ορισμού της D f = R.

4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. 0, αν x

Εξετάσεις 11 Ιουνίου Μαθηματικά Προσανατολισμού Γ Λυκείου ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

Απαντήσεις στα Μαθηματικά Κατεύθυνσης 2016

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΠΙΜΕΛΕΙΑ: ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ ΣΥΝΤΟΝΙΣΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΕΡΓΟΥ, 2 Ο ΠΕ.ΚΕ.Σ. ΝΟΤΙΟΥ ΑΙΓΑΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ

g είναι παραγωγίσιμες στο x 0, να αποδείξετε ότι και η συνάρτηση f x 0 και ισχύει

2η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

Κεφάλαιο 2ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ

ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ

5ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

x R, να δείξετε ότι: i)

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

2. Έστω η συνάρτηση f :[0, 6] με την παρακάτω γραφική παράσταση.

ΘΕΜΑ Α A1. Έστω μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο του x 0, στο οποίο όμως η f είναι συνεχής.

= R {x συν x = 0} ισχύει: 1 ( εφ x)' = συν

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

ln 1. ( ) vii. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη C f, τον άξονα η οποία είναι συνεχής στο και για την οποία ισχύει

Πες το με μία γραφική παράσταση

9 ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου

3.7 EΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ

Τελευταία Επανάληψη. την ευθεία x=1 και τoν x x. 2 1 x. Λύση. x 2 1 x 0, άρα. x 1 x. x x 1. γ) x 1 e x x 1 x e ln x 1 x f x.

ΔΙΑΓΩΝΙΣΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2019 ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2019

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Μαθηματικά Προσανατολισμού Γ' Λυκείου

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Α ΜΕΡΟΣ

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

Λύσεις του διαγωνίσματος στις παραγώγους

Μαθηματικά Γ Λυκείου

ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣΗΣ ΝΟ 2 Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕ.Λ. 18 ΜΑΙΟΥ 2018 ΘΕΜΑ Α. η f ικανοποιεί τις υποθέσεις του θεωρήματος μέσης.

( ) ( ) lim f x lim g x. z-3i 2-18= z-3 2 w-i =Im(w)+1. x x x x

2ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΗΜΕΡΟΜΗΝΙΑ: 05 ΜΑΙΟΥ 2016 ΑΠΑΝΤΗΣΕΙΣ

ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ

Διαγώνισμα (Μονάδες 2) β. Μια συνάρτηση f μπορεί να μην είναι συνεχής στα άκρα ακαι β αλλά να είναι συνεχής στο [ α, β ].

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

Α2. Να διατυπώσετε το θεώρημα του Fermat. (Απάντηση : Θεώρημα σελ. 260 σχολικού βιβλίου) Μονάδες 4

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ

ΘΕΜΑΤΑΚΙΑ ΓΕΝΙΚΑ. x 0. 2 x

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 11 Ιουνίου 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 2 Μαΐου 2019 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΕΚΦΩΝΗΣΕΙΣ. οι f, g είναι συνεχείς στο και f (x) = g (x) για κάθε εσωτερικό σηµείο του, ÏÅÖÅ

h ln 1 γ) Αν η συνάρτηση f είναι συνεχής στο Δ, τότε είναι και παραγωγίσιμη στο Δ.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. λέγεται κατακόρυφη ασύμπτωτη της γραφικής παράστασης της f; Μονάδες 5

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2008

Λύσεις θεμάτων προσομοίωσης 1-Πανελλαδικές Εξετάσεις 2016

f '(x 0) lim lim x x x x

2011 ΘΕΜΑΤΑ ΘΕΜΑ Γ 1. Δίνεται η συνάρτηση f: δύο φορές παραγωγίσιμη στο, με f (0) = f(0) = 0, η οποία ικανοποιεί τη σχέση:

Τεστ Θεωρίας Στα Μαθηματικά Προσανατολισμού Γ Λυκείου

ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 10 ΙΟΥΝΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ

Ασκήσεις Επανάληψης Γ Λυκείου

Transcript:

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 5/5/6 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο Α. Τι ορίζουμε ως εφαπτομένη (όχι κατακόρυφη) της γραφικής παράστασης C f μίας συνάρτησης f στο σημείο της Α(, f( )); Απάντηση Έστω f μια συνάρτηση και Α(, f( )) ένα σημείο της C f. Αν υπάρχει το lim f ( ) f ( ) και είναι ένας πραγματικός αριθμός λ, τότε ορίζουμε ως εφαπτομένη της C f στο σημείο της Α, την ευθεία ε που διέρχεται από το Α και έχει συντελεστή διεύθυνσης λ. Επομένως, η εξίσωση της εφαπτομένης στο σημείο Α(, f( )) είναι: y f ( ) ( ), lim f ( ) f ( ) A. Πότε δύο συναρτήσεις f και g λέγονται ίσες; Απάντηση Δύο συναρτήσεις f και g λέγονται ίσες όταν: έχουν το ίδιο πεδίο ορισμού Α και για κάθε A ισχύει f ( ) g( ). Για να δηλώσουμε ότι δύο συναρτήσεις f και g είναι ίσες γράφουμε f g. Α3. Έστω η συνάρτηση f() = ν, ν ϵ N-{, }. Να αποδείξετε ότι η συνάρτηση f είναι παραγωγίσιμη στο και ότι ισχύει: Απόδειξη, δηλαδή v. f v Αν είναι ένα σημείο του, τότε για ισχύει :

Οπότε: Δηλαδή: ( ν ) = ν ν Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας τη λέξη α. Αν Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση. lim f ( ) ή, τότε lim f ( ). Σωστό (πρόταση του σχολικού βιβλίου στη σελίδα 78) 4 β. Αν f ( ) t dt, τότε f (3). Σωστό ( η παράγωγος της f είναι παντού αφού η f είναι σταθερή συνάρτηση, ως ορισμένο ολοκλήρωμα). γ. Μια συνάρτηση f είναι «-», αν και μόνο αν κάθε οριζόντια ευθεία (παράλληλη στον ) τέμνει τη γραφική παράστασή της σε ένα τουλάχιστον σημείο. Λάθος ( όχι σε ένα τουλάχιστον σημείο αλλά σε ένα το πολύ σημείο). δ. Αν η παραγωγίσιμη συνάρτηση f : f ( ) για κάθε. είναι γνησίως αύξουσα τότε υποχρεωτικά Λάθος (δεν ισχύει υποχρεωτικά, αφού π.χ. η συνάρτηση 3 f ( ), είναι γνησίως αύξουσα στο ενώ f ( ) 3, δηλαδή μπορεί και να μηδενίζεται σε κάποια σημεία). ε. Αν η γραφική παράσταση μιας συνάρτησης f έχει στο οριζόντια ασύμπτωτη, τότε δεν έχει πλάγια ασύμπτωτη στο. Σωστό (Αν έχει οριζόντια ασύμπτωτη την y a θα είναι lim f ( ) a. Τότε όμως f ( ) lim, οπότε ασύμπτωτη είναι πάλι η y a ). Εδώ προφανώς εννοεί «πλάγια ασύμπτωστη» ευθεία της μορφής y a με, όπως ορίζεται στο σχολικό βιβλίο στη σείδα 8.

ΘΕΜΑ ο Δίνεται η συνάρτηση f : Β. Να βρείτε το f (5). για την οποία ισχύει: fof ( ) f ( ) Β. Να αποδείξετε ότι η f αντιστρέφεται. Β3. Να βρείτε το f., για κάθε και f () 5. Β4. Να λύσετε την εξίσωση: ΛΥΣΗ f f 7. Β. Η σχέση ισχύει για κάθε, οπότε για έχουμε: Β. Έστω με, τότε έχουμε διαδοχικά: (επειδή η είναι συνάρτηση) και άρα: οπότε η είναι, και άρα αντιστρέφεται. Β3. Θέτουμε όπου το και έχουμε:. 3

Β4. Έχουμε: ή. Παρατήρηση: Κανονικά σε τέτοιου είδους ασκήσεις θα πρέπει εξ αρχής να βρούμε το πεδίο ορισμού της f,δηλαδή το σύνολο τιμών της f για να δούμε για ποια χορίζεται η εξίσωση., Αυτό δεν είναι πάντα εφικτό. Στην προκειμένη περίπτωση είναι D f. ΘΕΜΑ 3 ο Δίνονται οι συναρτήσεις, ισχύουν οι επόμενες σχέσεις: Γ. Να δείξετε ότι α=. Γ. Αν g( e), να δείξετε ότι Γ3. Αν f g με g παραγωγίσμιμη στο, f ( ) ( a) με a, f ( ) για κάθε και g ( )ln g( ), για κάθε g( ) ln g( ) (ln ) σε όλο το διάστημα,, για κάθε,, για τις οποίες. i) Να αποδείξετε ότι υπάρχει μοναδική τιμή, για την οποία η διαφορά f ( ) g( ) γίνεται ελάχιστη. ii) Να αποδείξετε όι υπάρχει μοναδικό ζεύγος σημείων Μ, Ν με M, f ( ) γραφικής παράστασης C της f και N f, g( ) της g με,, στα οποία οι C και f σημεία Μ και Ν αντίστοιχα. σημείο της σημείο της γραφικής παράστασης C g C g δέχονται παράλληλες εφαπτομένες στα 4

Γ4. i) Να υπολογίσετε το όριο lim g( ) f ( ) ii) Να υπολογίσετε το εμβαδόν του χωρίου που περικλείεται από τις γραφικές παραστάσεις C και f ΛΥΣΗ C g των f και g αντίστοιχα και των ευθειών, e. Γ. Έχουμε: f ( ) f ( ) f ( ) f (), για κάθε Άρα η συνάρτηση f παρουσιάζει ακρότατο (ολικό ελάχιστο) στο σημείο, το οποίο είναι εσωτερικό σημείο του. Επιπλέον, η συνάρτηση f είναι παραγωγίσιμη στο με f ( ) a,. Επομένως, σύμφωνα με το Θεώρημα του Fermat, θα είναι: f () Παρατήρηση: Θα πρέπει να επαληθεύσουμε την ευρεθείσα τιμή, αφού το αντίστροφο του Θεώρηματος του Fermat δεν ισχύει. Έχουμε: Για η συνάρτηση f γίνεται: Παρατηρούμε ότι Γ. Για κάθε, f ( ) ( ), f ( ) f (), για κάθε. Επομένως η τιμή α= είναι δεκτή. έχουμε διαδοχικά: g( ) g( ) g ( )ln g ( ) ln g ( ) ln ln g( ) g ( )ln ln g( ) g( ) ( ) ln ln ( ) 4 g g ln ln g( ) Επομένως, υπάρχει σταθερά c, ώστε να ισχύει c ln,,. Για e είναι: g( e) e c c ln e Επομένως: g( ) ln Γ3. i) Θεωρούμε τη συνάρτηση: g( ) ln,,, η οποία είναι συνεχής στο K( ) f ( ) g( ) ln,,,. 5

Θα βρούμε το ελάχιστο της K( ). Η συνάρτηση K( ) είναι παραγωγίσιμη στο, (ώς άθροισμα παραγωγίσιμων συναρτήσεων στο, ) με: Θεωρούμε, επίσης, τη συνάρτηση ln K ( ) ln, ( ) ln, η οποία είναι συνεχής στο,. (Οι ρίζες και το πρόσημο της συνάρτησης K( ) είναι όμοια με τις ρίζες και το πρόσημο αντίστοιχα της συνάρτησης ( ) ). Η συνάρτηση ( ) άθροισμα παραγωγίσιμων συναρτήσεων στο, ) με,. Άρα η συνάρτηση ( ) διάστημα,, οπότε: είναι παραγωγίσιμη στο, (ώς ( ), για κάθε είναι γνησίως αύξουσα στο, lim ( ), lim ( ),, αφού lim ( ) lim ln lim ( ) lim ln Επειδή,, υπάρχει, Έχουμε: Άρα η συνάρτηση Κ() είναι:,, άρα και στο τέτοιο, ώστε ( ) K ( ). ( ) ( ) ( ) K ( ) ( ) ( ) ( ) K ( ) Γνησίως φθίνουσα στο διάστημα (, ] (στο είναι συνεχής) και Γνησίως αύξουσα στο διάστημα, Η μονοτονία και τα ακρότατα της συνάρτησης Κ φαίνονται στον επόμενο πίνακα μεταβολών. K () - + K() Ολ. Ελ 6

Επομένως, η συνάρτηση K( ) f ( ) g( ) παρουσιάζει ένα μόνο ελάχιστο (ολικό) στο,. ii) Αρκεί να αποδείξουμε ότι υπάρχει μοναδικό ξ, Η συνάρτηση K( ) f ( ) g( ) έχει ακρότατο στο,, (ως διαφορά παραγωγίσιμων συναρτήσεων στο K ( ) f ( ) g ( ) τέτοιο, ώστε f ( ) g ( )., ) με:,,. και είναι παραγωγίσιμη στο Επομένως, σύμφωνα με το θεώρημα του Fermat, θα είναι: Το K ( ) f ( ) g ( ) f ( ) g ( ) είναι μοναδικό, ως μοναδική ρίζα της συνάρτησης του ερωτήματος (Γ3i) (αφού η είναι γνησίως αύξουσα στο, ), άρα και μοναδική ρίζα της συνάρτησης K. Γ4. i) Έχουμε διαδοχικά: I lim lim lim g( ) ln ln f ( ) ( )( ) ln ( )( ) lim Θα βρούμε ξεχωριστά τα παραπάνω όρια. Με χρήση του κανόνα του de l Hospital για τα παραπάνω όρια έχουμε: ( )ln( ) u lim lim e lim e, ό u ( ) ln( ) u u lim lim e e uu uu ln( ) lim ( ) ln( ) lim lim lim u lim lim ( ό u, ό u ) u u ln ln ln lim lim lim 3 ( )( ) 3 7

Επομένως: I lim( ) ln lim lim ( )( ) ii) Το εμβαδόν του ζητούμενου χωρίου Ω είναι:, όπου e e e e ( ) ( ) ( ) ( ) ln f g d K d K d d e e 3e 4 d d ln d J e J J ( V ) 3 3 3 3 3 e 3 3 e e e e J e ln d. Τώρα για το J έχουμε: e e e e e J ln d ln d ln ln d e ln d e e e e e e ( ) ln d e ln d e e d e e e e Επομένως, από τη σχέση (V), έχουμε τελικά:, δηλαδή ΘΕΜΑ 4 ο 3 3 3 3 3 4 3 4 3 4 3 6 6 e e J e e e e e e e e 3 3 3 3 3 e 6e τ.μ 3 Δίνεται μια συνάρτηση f ορισμένη στο, με συνεχή πρώτη παράγωγο για την οποία ισχύουν οι σχέσεις: f ( ) f ( ), για κάθε και f ( ), για κάθε Δ. Να βρείτε την μοναδική ρίζα της εξίσωσης f ( ) Δ. Να αποδείξετε ότι υπάρχει, τέτοιο, ώστε Δ3. Έστω η συνάρτηση f ( ) g( ), f ( ) f ( ) f () Να αποδείξετε ότι η εφαπτομένη της γραφικής παράστασης της συνάρτησης g, στο σημείο στο οποίο αυτή τέμνει τον άξονα, σχηματίζει με αυτόν γωνία Δ4. i) Να αποδείξετε ότι f ( ) d 45. 8

Δίνεται επιπλέον ότι f ( ) d καθώς και ότι η συνάρτηση f είναι συνεχής στο. ii) Να υπολογίσετε το εμβαδόν Ε(Ω) του χωρίου που περικλείεται παράσταση της f και τις ευθείες Δ5. i) Να υπολογίσετε την παράσταση: ΛΥΣΗ ii) Nα βρείτε το όριο:,. f ( ), όπου K( ) f ( ) d f ( ) d lim K( ) ln f ( ) e από τη γραφική Δ. Aφού η f είναι συνεχής και f ( ) για κάθε, η f διατηρεί σταθερό πρόσημο στο, δηλαδή f ( ) για κάθε ή f ( ) για κάθε. Eπομένως η συνάρτηση f είναι γνησίως αύξουσα ή γνησίως φθίνουσα στο, αντίστοιχα. Aπό την σχέση f ( ) f ( ), για Άρα ρίζα της εξίσωσης f ( ) είναι η f είναι γνησίως μονότονη άρα και «-». Δ. Για τη συνάρτηση f ισχύουν: είναι συνεχής στο, και είναι παραγωγίσιμη στο, έχουμε: f f f f, η οποία είναι μοναδική διότι η συνάρτηση Άρα, από το Θεώρημα Μέσης Τιμής του Διαφορικού Λογισμού, στο διάστημα, προκύπτει ότι υπάρχει, τέτοιο, ώστε: f () f () f ( ) f ( ) f () f () f ( ) f () f () f ( ) f () (γιατί για από την σχέση f ( ) f ( ) έχουμε f () f () f () f () ). 9

ος τρόπος: Αποδεικνύεται και με την εφαρμογή του θεωρήματος του Rolle για την συνάρτηση K( ) f ( ) f (),, προϋποθέσεις του. Δ3. Για το σημείο, ( ), αφού στο διάστημα [,] πληρούνται οι A g στο οποίο η g τέμνει τον άξονα έχουμε: f ( ) g( ) f ( ) f ( ) f, αφού η f είναι συνάρτηση «-» ( ) Άρα f A, g Για να αποδείξουμε ότι η εφαπτομένη της γραφικής παράστασης C g της συνάρτησης g, στο σημείο A, g σχηματίζει με τον άξονα γωνία 45 πρέπει να αποδείξουμε ότι η g είναι παραγωγίσιμη στο με g. Έχουμε: f ( ) g( ) g f ( ) f f ( ) f ( ) lim lim lim lim f ( ) f ( ) f ( ) f lim lim f ( ) f f Αφού: f ( ) f lim f ή f ( ) και f lim f, δηλαδή g Επομένως, g 45 Δ4 i) Έχουμε ότι:, όπου f ( ) f ( ) f ( ) d f ( ) d I I () I f ( ) d και ( ). Για το ολοκλήρωμα I f d I έχουμε: u u d du Θέτουμε:, οπότε έχουμε: u u Η παραγώγιση της συνάρτησης g γενικά από τον τύπο της δεν είναι δυνατή, αφού αυτό απαιτεί η f να είναι δύο φορές παραγωγίσιμη, το οποίο όμως δεν είναι δεδομένο αλλά ούτε προκύπτει ως συνέπεια των δεδομένων.

I f ( ) d f ( u) du f ( u) du f ( ) d I Επομένως, από τη σχέση (), έχουμε: ii) Είναι I I I I I f ( ) d f ( ) d f () f () ( I ) από την σχέση f ( ) f ( ), για έχουμε f () f () ( II) Από τις σχέσεις (Ι) και (ΙΙ), προσθέτοντας κατά μέλη, έχουμε f () f (). Το ζητούμενο εμβαδόν του χωρίου Ω είναι f ( ) d. Θέτουμε: f ( ) u f ( u) d f ( u) du f ( u) f ( u) f () u f ( u) f ( u) f () u Επομένως, έχουμε διαδοχικά: (αφού η f είναι «-») f ( ) d u f ( u) du ( ) u f u du uf ( u) f ( u) du f (), δηλαδή τ.μ. Δ5. i) Θέτουμε ξανά: και έχουμε: f u f u d ( ) ( ) f ( u) du u f u ύ f () ( ) f ( ) u f f ( ) u f ( ) K( ) f ( ) d f ( ) d f ( ) d uf ( u) du f ( ) d uf ( u) f ( u) du f ( ) f f ( ) f f ( ) ii) Με επαναλαμβανόμενη χρήση του κανόνα του de l Hospital έχουμε διαδοχικά:

( ) ln f ( ) ln ln ln lim lim lim lim lim lim f ( ) e f ( ) e e e e e Επεξεργασία λύσεων: www.mathp.gr Συντονιστής: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος