ΕΚΦΩΝΗΣΕΙΣ. οι f, g είναι συνεχείς στο και f (x) = g (x) για κάθε εσωτερικό σηµείο του, ÏÅÖÅ

Σχετικά έγγραφα
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÏÅÖÅ. x και f ( x ) >, τότε f ( ) 0

ÈÅÌÁÔÁ 2008 ÏÅÖÅ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ. f x > κοντά στο x0.

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ. Α.3 Πότε η ευθεία y = l λέγεται οριζόντια ασύµπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ

z-4 =2 z-1. 2z1 2z2 β) -4 w 4. ( ) x 1 3 x 2 e t dt, x 0

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

Κεφάλαιο 2ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

f( ) + f( ) + f( ) + f( ). 4 γ) υπάρχει x 2 (0, 1), ώστε η εφαπτοµένη της γραφικής παράστασης της

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ).

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί

Γ1. Να μελετήσετε την f ως προς τη μονοτονία και να αποδείξετε ότι το σύνολο τιμών της είναι το διάστημα (0, + ).

( ) ( ) ɶ = = α = + + = = z1 z2 = = Οπότε. Έχουµε. ii) γ) 1ος Τρόπος. Οπότε Ελάχιστη απόσταση είναι:

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

2.8. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1.i)

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

7 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 61. Έστω συνάρτηση f παραγωγίσιµη στο R, τέτοια ώστε. (e + 1)dt = x 1

, να αποδείξετε ότι και η συνάρτηση f+g είναι παραγωγίσιμη στο x. και ισχύει. Μονάδες 9 Α2. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και [, ]

ΜΑΘΗΜΑ ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ Κοίλα κυρτά συνάρτησης Σηµεία καµπής Θεωρία Σχόλια Μέθοδοι Ασκήσεις

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ

Κεφάλαιο 3ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

Ερωτήσεις πολλαπλής επιλογής

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ. είναι μιγαδικοί αριθμοί, να αποδειχθεί ότι:

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα

Μαθηµατικά Θετικής & Τεχνολογικής Κατεύθυνσης Γ' Λυκείου 2001

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΙΟΣ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο 5 + i Α. Δίνεται ο μιγαδικός αριθμός z =. + i α) Να γράψετε τον z στη μορφή α + βi, α, β IR. Στην παρ

5ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

και γνησίως αύξουσα στο 0,

) της γραφικής παράστασης της f που άγονται από το Α, τις οποίες και να βρείτε. Μονάδες 8 Γ2. Αν ( 1) : y x, και ( 2

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

ΜΑΘΗΜΑΤΙΚΑ - ΠΛΗΡΟΦΟΡΙΚΗ

3o Επαναληπτικό Διαγώνισμα 2016

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. σε µια σελίδα Α4 ανά έτος.. προσαρµοσµένα στις επιταγές του ΝΤ MΑΘΗΜΑΤΙΚΑ ΟΜΟΓΕΝΩΝ 05 ΣΕΠΤΕΜΒΡΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2012 ΕΚΦΩΝΗΣΕΙΣ. β α

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Γ. Το µέτρο της διαφοράς δύο µιγαδικών αριθµών είναι ίσο µε την απόσταση των εικόνων τους στο µιγαδικό επίπεδο.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2008 ΕΚΦΩΝΗΣΕΙΣ

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

= R {x συν x = 0} ισχύει: 1 ( εφ x)' = συν

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

Μονάδες 2. ΘΕΜΑ 2 ο ίνεται ο μιγαδικός αριθμός με α IR. α. Να αποδειχθεί ότι η εικόνα του μιγαδικού z ανήκει στον κύκλο με κέντρο Ο(0,0)

Εξετάσεις 11 Ιουνίου Μαθηματικά Προσανατολισμού Γ Λυκείου ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

Θεµατικές διαδροµές στην Ανάλυση

( ) ( ) lim f x lim g x. z-3i 2-18= z-3 2 w-i =Im(w)+1. x x x x

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

( 1 ) ( 2) ΘΕΜΑ 1 ο Α. 1 Θεώρημα σχ. βιβλίου σελ. 98 Α. 2 Ορισμός σχ. βιβλίου σελ. 141 Α. 3 Ορισμός σχ. βιβλίου σελ. 280

2. Έστω η συνάρτηση f :[0, 6] με την παρακάτω γραφική παράσταση.

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

Π Ρ Ο Ο Π Τ Ι Κ Η ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2015 ΘΕΜΑ Α. Α1. Απόδειξη σελίδα 194. Α2. Ορισμός σελίδα 188. Α3. Ορισμός σελίδα 259

[ ] [ ] ΘΕΜΑ 1o A. Για x x 0 έχουµε: παραγωγίσιµη στο χ 0 ) άρα η f είναι συνεχής στο χ 0.

2011 ΘΕΜΑΤΑ ΘΕΜΑ Γ 1. Δίνεται η συνάρτηση f: δύο φορές παραγωγίσιμη στο, με f (0) = f(0) = 0, η οποία ικανοποιεί τη σχέση:

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0.

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ., τότε η f είναι πάντοτε συνεχής στο x., τότε η f είναι συνεχής στο x.

ÖÑÏÍÔÉÓÔÇÑÉÏ ÏÑÏÓÇÌÏ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α.3 Πότε η ευθεία y = λέγεται οριζόντια ασύμπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ln 1. ( ) vii. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη C f, τον άξονα η οποία είναι συνεχής στο και για την οποία ισχύει

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ

ln x e οπότε lim x x lim lim = + lim = 0 1 x = 0. x 1 ) = = 1 (ln x) (x)

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. lim = 0. Βλέπε σελίδα 171 σχολικού. σχολικού βιβλίου.

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Για παραγγελίες των βιβλίων

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj

προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. c είναι παράγουσες της f στο Δ και κάθε άλλη παράγουσα G της f στο Δ παίρνει τη μορφή G( x) F( x) c,

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ

ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

f ( x) f ( x ) για κάθε x A

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

5o Επαναληπτικό Διαγώνισμα 2016

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2013 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

( ) ( ) ΘΕΜΑ 2 ο Α. Είναι. f (x) > 0 e 1 x > 0 1 x > 0 1 > x x < 1. η f είναι γνησίως αύξουσα Στο [ 1, + ) η f είναι γνησίως φθίνουσα.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

y = 2 x και y = 2 y 3 } ή

ÈÅÌÁÔÁ 2003 ÏÅÖÅ ( ) ) ( x ) ( ) Β. α) Για α=1 έχουµε: max. Η x= 0 είναι κατακόρυφη ασύµπτωτη και η y= 0 οριζόντια ασύµπτωτη.

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Transcript:

Επαναληπτικά Θέµατα ΟΕΦΕ 8 ΘΕΜΑ ο Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α. α. Έστω δυο συναρτήσεις f, g ορισµένες σε ένα διάστηµα. Αν οι f, g είναι συνεχείς στο και f () g () για κάθε εσωτερικό σηµείο του, να αποδείξετε ότι υπάρχει σταθερά c τέτοια, ώστε για κάθε να ισχύει: f () g() c β. Να αποδείξετε ότι η συνάρτηση f () ν, ν IN{, } είναι παραγωγίσιµη στο IR και ισχύει: f () ν ν ΜΟΝΑ ΕΣ 5 Β. Έστω οι µιγαδικοί αριθµοί z, z. Να χαρακτηρίσετε καθεµιά από τις επόµενες προτάσεις ως Σωστή (Σ) ή Λανθασµένη (Λ): α. Η διανυσµατική ακτίνα του αθροίσµατος των z και z είναι το άθροισµα των διανυσµατικών τους ακτίνων. ΜΟΝΑ ΕΣ β. Είναι: z z z z γ. Είναι: z z z z z z ΜΟΝΑ ΕΣ ΜΟΝΑ ΕΣ ÈÅÌÁÔÁ 8 δ. Η εξίσωση z z z z µε z z παριστάνει τη µεσοκάθετο του τµήµατος µε άκρα τα σηµεία Α(z ) και Β(z ). ΜΟΝΑ ΕΣ

Επαναληπτικά Θέµατα ΟΕΦΕ 8 Γ. Έστω η συνάρτηση F() f(t) dt, όπου f η συνάρτηση του διπλανού σχήµατος που η γραφική της παράσταση αποτελείται από τα ευθύγραµµα τµήµατα ΟΑ και ΑΒ. Το εµβαδό του γραµµοσκιασµένου χωρίου Ω είναι Ε(Ω) 36 τ.µ. Να συµπληρώσετε τις ισότητες: α. F() β. F(4) γ. F() ΘΕΜΑ ο ίνεται η συνάρτηση f µε ηµ λ, αν > f() µε λ, µ IR (µ ), αν α. Να βρείτε την τιµή του λ, ώστε η f να είναι συνεχής. Ο 4 ÈÅÌÁÔÁ 8 y 4 A Ω B β. Να βρείτε την τιµή του µ, ώστε η f να είναι παραγωγίσιµη στο. ΜΟΝΑ ΕΣ 8 γ. Να αποδείξετε ότι η f δεν είναι -. δ. Για λ και µ, να υπολογίσετε το ολοκλήρωµα f() d. ΘΕΜΑ 3 ο ίνεται η συνάρτηση f µε f () e e, IR. α. i. Να την µελετήσετε ως προς την µονοτονία. π ΜΟΝΑ ΕΣ 3 ΜΟΝΑ ΕΣ 8 ΜΟΝΑ ΕΣ 4 e ii. Να αποδείξετε ότι f () (e ) e, να µελετήσετε την f ως προς την κυρτότητα και να βρείτε το σηµείο καµπής της γραφικής της παράστασης. ΜΟΝΑ ΕΣ 5 β. Να βρείτε τις οριζόντιες ασύµπτωτες της γραφικής παράστασης της f. γ. Να παραστήσετε γραφικά την f. ΜΟΝΑ ΕΣ 4 δ. Να βρείτε το εµβαδόν του χωρίου που ορίζεται από την γραφική παράσταση της f (), τους άξονες, y y και την ευθεία ln.

Επαναληπτικά Θέµατα ΟΕΦΕ 8 3 ΘΕΜΑ 4 ο Οι συναρτήσεις f, g: IR IR είναι συνεχείς και για κάθε πραγµατικό αριθµό ισχύουν: Να αποδείξετε ότι: f(t) dt g(t) dt () και g() () α. Η f είναι παραγωγίσιµη στο και f () g() β. g() < για κάθε IR γ. f(t) dt f(t) dt για κάθε IR ΜΟΝΑ ΕΣ 5 ΜΟΝΑ ΕΣ 7 δ. H εξίσωση f () g() έχει τουλάχιστον µια ρίζα στο διάστηµα (, ). ΜΟΝΑ ΕΣ 7 ÈÅÌÁÔÁ 8 3

Επαναληπτικά Θέµατα ΟΕΦΕ 8 ΘΕΜΑ ο Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΠΑΝΤΗΣΕΙΣ Α. α. Βλέπε Πόρισµα σελίδα 5 σχολικού βιβλίου. β. Βλέπε σελίδα 4 σχολικού βιβλίου. Β. α. (Σ), β. (Σ), γ. (Σ), δ. (Σ). Γ. α., β. 8, γ. 44 ΘΕΜΑ ο ΜΑΘΗΜΑΤΙΚΑ α. Η f είναι συνεχής για <, ως πολυωνυµική και για >, ως άθροισµα της τριγωνοµετρικής ηµ µε την σταθερή c() λ. Στο έχουµε: f() (ηµ λ) λ f() ((µ ) ) Ακόµα f(). Για να είναι η συνάρτηση συνεχής στο πρέπει και αρκεί: f() f() f() λ Εποµένως, η ζητούµενη τιµή είναι λ. β. Για > έχουµε: Για < έχουµε: f() f() ηµ λ ηµ ηµ ÈÅÌÁÔÁ 8 f() f() (µ ) (µ ) µ Για να είναι η συνάρτηση παραγωγίσιµη στο πρέπει και αρκεί: f() f() f() f() µ µ Εποµένως, η ζητούµενη τιµή είναι µ. γ. Είναι π.χ. f (π) f(π) λ, άρα η συνάρτηση δεν είναι.

Επαναληπτικά Θέµατα ΟΕΦΕ 8 δ. Είναι ηµ, f(), αν > αν και π ΘΕΜΑ 3 ο π f() d f() d f() d ( ) d α. i. Για κάθε IR είναι : e f () (e )' ( e [ συν ] π π )' e e e e e e π (ηµ ) d e Επειδή e e > είναι f () < στο IR, άρα η f είναι γνησίως φθίνουσα στο IR ii. Για κάθε IR είναι: f () ( e e )' ( e )' e e ( e ) e e (e e ÈÅÌÁÔÁ 8 ) e Έτσι:f () (e ) e e e e και f () > >, f () < < H f είναι συνεχής στο IR µε f () < στο διάστηµα (, ), άρα στρέφει τα κοίλα κάτω στο διάστηµα (, ]. Ακόµα είναι f () > στο διάστηµα (, ), άρα η f στρέφει τα κοίλα άνω στο [, ). Τέλος, η συνάρτηση έχει σηµείο καµπής το (, f ()), γιατί εκατέρωθεν του αλλάζει κυρτότητα και υπάρχει η εφαπτοµένη της γραφικής της παράστασης σ αυτό, αφού είναι παραγωγίσιµη. Είναι f () e e έτσι, η συνάρτηση έχει σηµείο καµπής το (, ). β. Θα βρούµε, αν υπάρχουν, τα όρια: e e f() (e ) και f() (e ) Θέτουµε u e οπότε: Τότε είναι: u (- e ) και u (- e ) - και -e f() (e ) e u u

Επαναληπτικά Θέµατα ΟΕΦΕ 8 3 f() (e e u ) (e ) e Εποµένως, η γραφική παράσταση της συνάρτησης έχει οριζόντια ασύµπτωτη την y στο και την y e στο. u γ. Με βάση τις πληροφορίες των προηγουµένων ερωτηµάτων σχεδιάζουµε την γραφική παράσταση της συνάρτησης: y e δ. Στο α ερώτηµα βρήκαµε f () <, οπότε f () f () και έτσι: E f ' () d f ' () d ln e ΘΕΜΑ 4 ο e ln / e e e [ ()] ln ln τµ f f() f ln α. Επειδή οι συναρτήσεις f, g είναι συνεχείς, οι συναρτήσεις f(t) dt και g(t) dt, που ορίζονται από ολοκλήρωµα, είναι παραγωγίσιµες, έτσι µπορούµε να παραγωγίσουµε και τα δύο µέλη της (), οπότε έχουµε: ( f(t) dt )' ( g(t)dt)' ÈÅÌÁÔÁ 8 ή f () g() g(t) dt (3) Για παίρνουµε: f () Με από την (3) έχουµε: και: y Ο y e f() y g(t) dt g() g(t)dt f () f () e f () 3

Επαναληπτικά Θέµατα ΟΕΦΕ 8 4 f() g() g(t)dt Επειδή η g είναι συνεχής στο IR, άρα και στο, είναι g( ) g(). Η συνάρτηση h(), οπότε: Εποµένως, το όριο: g(t) dt, IR, είναι παραγωγίσιµη, άρα είναι συνεχής στο g(t)dt h() h() g(t)dt g(t)dt είναι µορφή / και υπολογίζεται µε τον κανόνα του De L Hospital: Έτσι: οπότε, τελικά: g(t)dt ( f() g() g(t)dt)' g() g() ()' g(t)dt g() f() f() f() f '() g() β. H () για δίνει g(t) dt (4) Επειδή η g() δεν µηδενίζεται και είναι συνεχής στο IR διατηρεί πρόσηµο σ αυτό. Αν ήταν g() > τότε g(t)dt > > Άτοπο. Άρα είναι g() <, για κάθε IR. γ. H () για δίνει f(t) dt f(t) dt (5) Είναι g() < g() > για κάθε IR, έτσι: ÈÅÌÁÔÁ 8 µε είναι [ g(t)]dt g(t)dt, άρα: g(t) dt µε < είναι [ g(t)]dt > g(t)dt >, άρα: g(t) dt < Εποµένως, για κάθε IR από την () είναι: g(t) dt f(t) dt 4

Επαναληπτικά Θέµατα ΟΕΦΕ 8 5 f(t) dt [ f(t) dt από (5)] f(t) dt f(t) dt ος τρόπος: Έστω η συνάρτηση F() f(t) dt, IR για την οποία F () f (). Από την (3), αφού g() <, βρίσκουµε: µε > είναι f () g() g(t) dt < F () < µε είναι f () F () µε < είναι f () g() g(t) dt > F () > οπότε η F() έχει µέγιστο το F(), άρα για κάθε IR : F() F() f(t) dt f(t) dt δ. (Απόδειξη µε Rolle σε αρχική). Θεωρούµε την συνάρτηση: Η() f(t) dt g(t)dt µε [, ] Επειδή οι f, g είναι συνεχείς, οι συναρτήσεις f(t) dt και g(t) dt ως οριζό- µενες από ολοκλήρωµα, είναι παραγωγίσιµες. Ακόµα η είναι παραγωγίσιµη, ως πολυωνυµική, άρα η Η(), ως αλγεβρικό άθροισµα παραγωγίσιµων συναρτήσεων, είναι: Παραγωγίσιµη στο πεδίο ορισµού της, άρα και στο (, ) µε Η () f () g() συνεχής στο [, ], ως παραγωγίσιµη σ αυτό. Ακόµα: Η() και Η() f(t) dt g(t)dt f(t) dt g(t)dt () [ από (4) και (5) ] Εποµένως, εφαρµόζεται για την Η() το θεώρηµα του Rolle, οπότε υπάρχει τουλάχιστον ένα ξ (, ) µε ÈÅÌÁÔÁ 8 Η (ξ) f (ξ) g(ξ) f (ξ) g(ξ), που σηµαίνει ότι το ξ είναι ρίζα στο (, ) της εξίσωσης f () g(). 5