ΕΚΠ. ΕΤΟΥΣ -4 Λύσεις Θέμα ο α) H f παραγωγίσιμη στο (,) ως άθροισμα παραγωγίσιμων συναρτήσεων με: f() για κάθε (,). Αφού η f είναι συνεχής στο (,) και f() για κάθε (,) είναι γνησίως αύξουσα στο (,) άρα και -. f() f() f() β) Από την υπόθεση έχουμε: f ln( z i ) z i ln( z ) z f( z i ) f( z ) z i z z i z z i z i z z z k vi z zi iz z z i z z z v k i vi k v v k v k v συνεπώς z k vi vi, γ) Από την υπόθεση έχουμε: ln w i w i f w i f() f: w( i) w( i) άρα οι εικόνες των μιγαδικών w Μ(w) είναι σημεία του κύκλου με κέντρου Κ(, -) και ακτίνας ρ=/. δ) Το z w παριστάνει την απόσταση των εικόνων Μ(z) από τις εικόνες Μ(w). Συνεπώς z w(oh) αλλά (OH)(ΟΚ) ρ άρα z w. Σελίδα από 6
ΕΚΠ. ΕΤΟΥΣ -4 Θέμα ο α) Η f είναι συνεχής στο (,) ως άθροισμα, διαφορά και γινόμενο συνεχών συναρτήσεων. Η f είναι παραγωγίσιμη στο (,) ως άθροισμα, διαφορά και γινόμενο παραγωγίσιμων συναρτήσεων με: f() για κάθε (,) άρα η f είναι γνησίως αύξουσα στο (,). Ισχύει : f() ln Άρα για κάθε έχουμε: f f() f() f() ενώ για κάθε έχουμε: f f() f() f() β) Η g είναι συνεχής στο (,) ως διαφορά, πηλίκο και γινόμενο συνεχών συναρτήσεων. Η g είναι παραγωγίσιμη στο (,) ως διαφορά πηλίκο και γινόμενο παραγωγίσιμων συναρτήσεων με: ln ( ln) 4 g() 4 4 4 ln ( ln) f() 4 4 4 f() g(), 4 Για κάθε ισχύει 4 άρα f() g() f() 4 Αφού η g είναι συνεχής στο (,) και σύμφωνα με το διπλανό πίνακα θα g ισχύουν: g η g είναι γνησίως φθίνουσα στο (,], η g είναι γνησίως αύξουσα στο [,), η g παρουσιάζει για ολικό ελάχιστο το g(). γ) Η g είναι γνησίως φθίνουσα στο (,] άρα για κάθε (,) με ισχύει: g g() g() g() f Σελίδα από 6
ΕΚΠ. ΕΤΟΥΣ -4 άρα η g() δεν έχει ρίζα στο (,). Η g είναι γνησίως αύξουσα στο [,) άρα για κάθε (,) με ισχύει: g() g() g() άρα η g() δεν έχει ρίζα στο (,) Αλλά g() άρα η g() έχει μοναδική θετική ρίζα το στο (,). Σελίδα από 6 g δ) Η εφαπτομένη της w στο σημείο της Α(,w()) θα είναι: y w() w()( ) y ( ) y Άρα : y η εφαπτομένη της w στο Α. Αφού η w κυρτή στο (,) και εφαπτομένη της για κάθε (,) θα ισχύει: () Η εφαπτομένη της f στο σημείο της B(,f()) θα είναι: y f() f()( ) y ( ) y Άρα : y η εφαπτομένη της f στο B. Αφού f(), η f κοίλη στο (,). H εφαπτομένη της, άρα για κάθε (,) θα ισχύει: f() () Τότε από (), () θα έχουμε: f() συνεπώς f() για κάθε (,) ε) Έστω ότι υπάρχουν σημεία K(,y), (,y), (,y) με που ανήκουν στην C w ώστε να είναι συνευθειακά. Τότε ο συντελεστής διεύθυνσης της ευθείας (ε) που ορίζουν τα Κ, Λ θα y y είναι: Ο συντελεστής διεύθυνσης της ευθείας (η) που ορίζουν τα Λ, Μ θα είναι: y y Αφού τα Κ, Λ, Μ συνευθειακά η άρα () Η w συνεχής σε καθένα από τα [, ], [, ] αφού είναι παραγωγίσιμη στο (,). Η w παραγωγίσιμη σε καθένα από τα (,),(,).
ΕΚΠ. ΕΤΟΥΣ -4 Συνεπώς ισχύει το Θεώρημα Μέσης Τιμής διαφορικού λογισμού σε καθένα από τα διαστήματα [, ], [, ] άρα υπάρχουν (,),(,) τέτοια ώστε: w() και w() Τότε από την σχέση () έχουμε w() w() άτοπο γιατί : Η w είναι κυρτή άρα η w γνησίως αύξουσα στο (,) και w w() w(). Συνεπώς δεν υπάρχουν σημεία Κ, Λ, Μ που να ανήκουν στην C w και να είναι συνευθειακά. στ) Αφού lim f() υπάρχει τέτοιο ώστε για κάθε να είναι f() και λόγω της σχέσης f() και για κάθε. Τότε για κάθε ισχύει f() Αλλά lim. f() f() f() Τότε από το κριτήριο παρεμβολής lim Έστω h() τότε h() Αφού h() για κάθε και lim h() lim lim h() Θέμα ο α) Έστω ότι υπάρχει [, ) ώστε f() τότε επειδή f() η f είναι γνησίως φθίνουσα στο [,] οπότε αφού θα ισχύει f() f() που είναι άτοπο. Άρα f() για κάθε [, ] και επειδή είναι συνεχής στο [, ] αφού f δύο φορές παραγωγίσιμη, θα διατηρεί σταθερό πρόσημο στο [, ] και επειδή f() θα είναι f() επομένως f γνησίως αύξουσα στο [, ] και θα έχει σύνολο τιμών το f() [f(), f()] [, ] Σελίδα 4 από 6
ΕΚΠ. ΕΤΟΥΣ -4 β) Η εφαπτομένη στο σημείο της (,f()) θα έχει εξίσωση y f() f()( ) άρα σύμφωνα με την υπόθεση y y γ) Η f συνεχής στο [,] και παραγωγίσιμη στο (,) άρα ισχύουν οι προϋποθέσεις του Θεωρήματος Μέσης τιμής για την f, άρα υπάρχει f() f() (, ) ώστε f() f() Η f είναι συνεχής στο [, ] και παραγωγίσιμη στο (, ) άρα ισχύουν οι προϋποθέσεις του Θεωρήματος Μέσης τιμής για την f, άρα υπάρχει f() f() (, ) ώστε f() γιατί δ) i) Για (, ), στα διαστήματα [, ], [, ] από Θεώρημα Μέσης τιμής υπάρχουν (, ), (, ) ώστε f() f() f() f() f() και f() και επειδή και f γνησίως φθίνουσα αφού f() θα ισχύει f() f() f() f() f() f() ii) Από f() f() f() f(), (, ) ισοδύναμα f() f() ( )f()( )( f())...f() ( ) και επειδή f(), f() τελικά f() ( ), [, ] ε) Αρκεί η εξίσωση f() να έχει μοναδική ρίζα, γι' αυτό θεωρούμε την g() f(), [, ] που είναι συνεχής σε αυτό με g() f() και g() f() οπότε g()g() και από θεώρημα Bolzano υπάρχει (, ) ώστε g() που είναι και μοναδικό, αφού g παραγωγίσιμη με g() f() άρα γνησίως αύξουσα στο [, ]. Σελίδα 5 από 6
ΕΚΠ. ΕΤΟΥΣ -4 στ) Σε καθένα από τα διαστήματα [, ], [, ] η g είναι παραγωγίσιμη (άθροισμα παραγωγίσιμων) άρα και συνεχής, συνεπώς ισχύει το Θεώρημα Μέσης Τιμής για την g άρα υπάρχουν (, ),( ) g() g() ώστε g() και g() g() g() δηλαδή και g() οπότε g() g() g() g() g() g()g() g()g() g() g() (f() )(f() ) (f() ) f() f()f() f() f() f() f() f()f() f() Από το Μαθηματικό Τμήμα των Φροντιστηρίων Πουκαμισάς Ηρακλείου συνεργάστηκαν: Γ.Ανδρουλιδάκης, Μ.Βυνιχάκης, Α.Δουλγεράκης, Η.Μαργαρίτη, Μ.Μπαρμπούνη, Α.Τσιλιφώνης. Σελίδα 6 από 6