6. Geometrické charakteristiky rovinných plôch

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "6. Geometrické charakteristiky rovinných plôch"

Transcript

1 6. Geometické chaakteistik ovinných lôch Pi iešení kútenia a ohbu nosníkov sa stetávame s veličinami, ktoé chaakteizujú ovinné loch iečnch ezov, na ktoých všetujeme naätie. ú to statický moment a kvadatické moment. V tejto kaitole budeme ojednávať o ich vlastnostiach a ebeieme si sôsob ich výočtu. 6. tatický moment ovinných lôch Uvažujme všeobecný ovinný obazec odľa ob.6. s lochou. tatický moment k osi- označujeme, statický moment k osi- označujeme. tatické moment sú definované omocou vzťahov: ( ) ( ) d d (6.) Ob. 6. Ob. 6. Rozme statického momentu v sústave I je m. Podľa oloh osí vzhľadom k loche môže bť statický moment kladný, záoný alebo nulový. Pi aalelnom osunutí osí sa statický moment zmení, čo si ukážeme v nasledujúcom. Uvažujme dve vzťažné sústav (, ) a (, ). Z ob.6. je zejmé, že latí: Po dosadení do (6.) dostaneme: + a + b ( ) ( ) ( + b) ( + a) d d alebo:,, + b + a (6.) Tieto vzťah môžeme vjadiť takto: tatický moment ovinnej loch vzhľadom k ľubovoľnej osi je ovný statickému momentu vzhľadom k ovnobežnej osi zväčšenému o súčin loch a vzdialenosti osí. 58

2 Os, ku ktoej je statický moment ovný nule sa nazýva centálna os. Ak oložíme vo vzťahoch (6.),, dostaneme e centálne osi v sústave (, ):,, T T (6.) e zejmé, že sú to iamk ovnobežné s osami,. Bod, v ktoom sa centálne osi etínajú sa nazýva ťažisko. eho súadnice sú: T, T. Vzhľadom k ľubovoľnej osi echádzajúcej ťažiskom je teda statický moment nulový. Píklad 6. Vočítame lochu, statický moment a súadnicu T ťažiska aabolických výsečí na ob.6.. Ich vužitie je otebné e niektoé metód výočtu ohbových defomácií nosníkov. Ob. 6. a.) Paabolická výseč na ob.6.a je vmedzená aabolou: h l iamkou l a osou. Pe lochu výseče dostávame : tatický moment k osi : h d h l d l l h d d h l d l Ťažisko má súadnicu : T l b.) Paabolická výseč na ob.6.b je vmedzená aabolou: h l a osami,. ej locha má veľkosť: l d h d h l l l 59

3 tatický moment k osi : Ťažisko má súadnicu: T l d h h l d l l 8 6. Kvadatické moment ovinných lôch Uvažujme ovinnú lochu s lošným obsahom. Zvoľme si osi, v ovine loch ieezu odľa ob.6.. Potom môžeme definovať tzv. kvadatické moment ovinnej loch: to je osový a olán moment zotvačnosti a deviačný moment. Osový (aiáln) moment zotvačnosti ovinnej loch k osi a k osi je definovaný vzťahmi (6.) a je vžd kladný: ( ) ( ) d d (6.). Polán moment zotvačnosti ovinnej loch (ob.6.) definujeme vzťahom: d (6.5) ( ) Petože + otom: + (6.6). Deviačný moment ovinnej loch definujeme vzťahom (6.7). Môže bť kladný, záoný alebo nulový. Závisí to od oloh osí vzhľadom k loche. Ak je jedna z osí osou súmenosti loch, latí: D D. Rozme jednotk kvadatických momentov ovinnej loch v sústave I je (m ). D D d (6.7) ( ). Polome zotvačnosti i, i ovinnej loch odovedajúci osovým momentom zotvačnosti, definujeme vzťahmi: i i Odtiaľ: i i (6.8) Píklad 6. Vočítajte všetk kvadatické moment a) obdĺžnika o ozmeoch stán b, h b) kuhu s olomeom vzhľadom k osiam súmenosti. Taktiež vočítame olome zotvačnosti. 6

4 Riešenie: a) Obdĺžnik (ob.6.): Ob. 6. Osový moment zotvačnosti vzhľadom k osi odľa (6.) je: + h + h b b h d b d (6.9) h h Osový moment zotvačnosti k osi odľa (6.) vočítame analogick: + b + b h b h d h d (6.) b Polán moment zotvačnosti odľa (6.6) je: b h + ( b + h ) (6.) Deviačný moment odľa (6.7) je: + b / + h / D D d d d ( ) b / h / b Tento výsledok je v súlade s tvdením, že deviačný moment k osiam,, z ktoých asoň jedna je osou súmenosti, je nulový. Polome zotvačnosti odľa (6.8) sú: i b h h b h i b 6

5 6 b) Kuh (ob.6.5 a 6.6): Ob. 6.5 Ob. 6.6 Najv vočítame olán moment zotvačnosti odľa vzťahu (6.5) viď ob.6.5. Ako element loch je tu vhodné zvoliť elementáne medzikužie o loche d d. Potom: d d (6.) kde: d. je ieme kuhu. Pe osový moment zotvačnosti bude vzhľadom k smetii latiť. Potom vzhľadom na (6.6) dostaneme: 6 d (6.) Pe výočet deviačného momentu si z kuhu vbeieme element loch d.dϕ.d (ob.6.6). eho oloha je všeobecne učená súadnicami.cos ϕ,.sin ϕ. Potom odľa (6.7) ostune dostaneme: cos 8 d sin d d cos sin d D D ϕ ϕ ϕ ϕ ϕ ϕ (6.) Petože sme deviačný moment kuhu očítali vzhľadom k osiam súmenosti, dostali sme nulu. Polome zotvačnosti kuhu odľa (6.8) je: i i

6 6. Kvadatické moment ovinných lôch i tansfomácii súadníc a) Rovnobežne osunuté osi, teineove vet Pi ovnobežnom (aalelnom) osunutí osí, do oloh, (ob.6.7) latí: + a + b Ob. 6.7 Vzhľadom k osunutým osiam, bude mať osový moment zotvačnosti veľkosť : d ( + b) d ( + b + b ) d ( ) ( ) ( ) (6.5) + b + b kde: - je statický moment. Podobne e moment k osi dostaneme: d ( + a) d + a + a ( ) + a ( ) + a ( ) d Pe deviačný moment vzhľadom k osiam, latí: D d ( + a) ( + b) d + b + a + a b D ( ) + b + a + a b d (6.6) (6.7) Ak budú osi, centálne (t.j. ak budú echádzať ťažiskom), bude latiť. Potom sa vzťah (6.5) až (6.7) zjednodušia na tva: D D + b + a + a b (6.8) 6

7 Vo vzťahoch (6.8) sú,, D kvadatické moment k centálnm osiam, tzv. centálne kvadatické moment. Pe olán moment zotvačnosti v tomto íade vzhľadom na (6.6) dostaneme: + + ( a + b ) + R (6.9) kde: R - je vzdialenosť začiatku, (ob.6.7). V našom íade bod leží v ťažisku a je centáln olán moment zotvačnosti. Výsledk (6.8) a (6.9) sú matematickým záisom tzv. teineových viet:. Osový moment zotvačnosti ovinného obazca k danej osi sa ovná osovému momentu zotvačnosti vzhľadom k ovnobežnej centálnej osi, zväčšenému o súčin loch a štvoca vzdialeností oboch osí.. Polán moment zotvačnosti ovinného obazca vzhľadom k danému bodu je ovný olánemu momentu zotvačnosti vzhľadom k ťažisku, zväčšenému o súčin loch a štvoca vzdialeností ťažiska od daného bodu.. Deviačný moment ovinného obazca k daným osiam je ovný deviačnému momentu k ovnobežným centálnm osiam, zväčšenému o súčin loch a štvoca vzdialeností ovnobežných osí. Píklad 6. Vočítajte všetk kvadatické moment kuhu vo vzťažnej sústave (, ) odľa ob.6.8. Kvadatické moment v sústave (, ), ktoých začiatok echádza ťažiskom oznáme. Kvadatické moment vzhľadom k osiam (, ) môžeme vočítať oužitím teineových viet. Ťažisko kuhu má v sústave (, ) súadnice a, b. Ob. 6.8 b) Pootočené osi Všetíme, ako sa zmenia kvadatické moment ovinného obazca i ootočení súadnicových osí, o uhol α do oloh, (ob.6.9). Najv musíme oznať, ako sa v ootočenej sústave zmenia súadnice elementu loch d. Nové súadnice dostaneme emietnutím lomenej čia OAB (ob.6.9) do súadnicových osí,. 6

8 Platí: (6.) Ob. 6.9 Podľa definície bude mať osový moment zotvačnosti ovinného obazca k osiam, veľkosť: ( ) d cos α + ( sinα + cosα) d ( cos α + sin α sinα cosα) ( ) sin α D ( ) sinα cosα d ( ) d ( ) ( cosα + sinα) d sin α + cos α + D sinα cosα ičom sme tieto moment vjadili omocou momentov (6.) a (6.7) k ôvodným osiam,. Keďže latí: sin α ( cos α ) cos α ( + cos α ) sinα cosα sinα môžeme vzťah e a uaviť do tvau: cos α D cos α + D sin α sin α (6.) Analogickým sôsobom e deviačný moment k osiam, dostaneme : D d ( cosα + sinα ) ( sinα + cosα ) d Po úave: D ( ) sinα cosα + D ( cos α sin α ) ( ) ( ) sinα + D cos α (6.) Vzťah (6.) a (6.) sú dôležité e výočet kvadatických momentov k ľubovoľne oientovaným osiam. 65

9 Píklad 6. Vočítajte kvadatické moment štvoca k osiam, ľubovoľne oientovaným vzhľadom k osiam, (ob.6.). Riešenie: Kvadatické moment vzhľadom k osiam,, ktoé sú kolmé na stan a echádzajú ťažiskom sú dané vzťahmi (6.9) až (6.), e bha bude latiť: Ob. 6. Kvadatické moment k osiam, dostaneme zo vzťahov (6.) a (6.). Petože v našom íade je a D latí e všetk α : a a D 6 U štvoca sú teda kvadatické moment nezávislé na jeho natočení. 6. Hlavné osi zotvačnosti a hlavné moment zotvačnosti, Culmannova kužnica Kvadatické moment,, D odľa vzťahov (6.) a (6.) sú všeobecne funkciou uhlu α. e možné nájsť taký uhol α, e ktoý je D. Moment zotvačnosti,, e tento íad označíme, a nazveme ich hlavné moment zotvačnosti. ú to teda moment zotvačnosti k dvom kolmým osiam, tzv. hlavným osiam, ku ktoým je deviačný moment nulový. Z ovníc (6.) a (6.) latí: + + cosα D sinα (6.) + cosα + D sinα (6.) sinα + D cosα (6.5) Ak oznáme kvadatické moment,, D, môžeme zo vzťahov (6.),(6.) učiť veľkosť hlavných momentov zotvačnosti a z ovnice (6.5) olohu hlavných osí. D tgα (6.6) Ak sčítame ovnice (6.),(6.) dostaneme dôležitý vzťah: + + konšt. (6.7) Teda súčet momentov zotvačnosti k dvom ľubovoľným vzájomne kolmým osiam je konštantný a nezávislý na uhle α. Podľa vzťahu (6.6) je táto konštanta ovná olánemu momentu zotvačnosti k bodu, ktoý je iesečníkom uvažovaných osí. 66

10 Ak vnásobíme vzťah (6.), (6.), dostaneme o algebaických úavách s ihliadnutím na vzťah (6.5) dôležitý výaz: (6.8) D Pe vé deivácie výazov (6.),(6.) odľa α dostávame: d ( ) sinα D cos α dα d ( ) sinα + D cos α dα Vzhľadom ku vzťahu (6.5) e tieto deivácie vchádza d /dα, d /dα. Hlavné moment zotvačnosti, nadobúdajú teda etémne hodnot momentov zotvačnosti. Petože d /dα <, d /dα >, je ma, min. Hlavné moment zotvačnosti, ako funkciu kvadatických momentov,, D (teda už nie ako funkciu uhlu α) môžeme vočítať z ovníc (6.7) a (6.8). Vlúčením jedného z hlavných momentov ( alebo ) dostávame kvadatické ovnice: + + D ( ) ( + ) + D Ide teda o ovnaké ovnice e,, ktoé majú ovnaké iešenie: + +, ± D + Vzhľadom k edchádzajúcemu iešeniu a úvahe o etémnch hodnotách jednotlivých hlavných momentov zotvačnosti a latí: ma min D + D (6.9) Vzťah (6.9) a (6.6) sú analogické vzťahom e výočet veľkosti a smeu hlavných naätí. Táto skutočnosť vedie k možnosti iešenia veľkosti hlavných momentov zotvačnosti a smeu hlavných osí zotvačnosti gafick, analogickým sôsobom ako u hlavných naätí. Namiesto Mohovej kužnice zostojíme tzv. Culmannovu kužnicu (Mohova kužnica zotvačnosti). Culmannova kužnica (ob.6.) je úlne analogická Mohovej kužnici (ob..6). V dôsledku záoného znamienka na avej stane vzťahu (6.6), vnášame kladnú veľkosť deviačného momentu D v smee záonej osi. Ináč je ostu gafického iešenia úloh ovnaký ako u naätí. V íklade na ob.6. je deviačný moment D kladný a uhol α záoný. 67

11 Ob. 6. Dôležitým bodom obazca je ťažisko. Hlavné osi echádzajúce ťažiskom sa nazývajú hlavné centálne osi a íslušné hlavné moment hlavné centálne moment zotvačnosti. Píklad 6.5 Učte hlavné centálne moment zotvačnosti a olohu hlavných centálnch osí ieezu ofilu L 5 (ob.6.).. Učenie oloh ťažiska: Pofil ozdelíme na dva obdĺžnik o lochách: tatické moment k osiam, : Ob

12 Riešenie: úadnice ťažiska T zloženého obazca v sústave, : 7 5 e cm,cm e cm, 7cm úadnice ťažiska obdĺžnika loch v centálnej sústave, : d a e, cm, 7cm b + d + b e, 7 cm, 79cm úadnice ťažiska obdĺžnika loch v centálnej sústave, : a 5 a e, cm,9cm d b e, 7 cm,cm. Učenie centálnch kvadatických momentov k osiam, : Moment zotvačnosti k centálnm osiam, učíme ako súčet momentov zotvačnosti jednotlivých obdĺžnikov, s vužitím teineovej vet: ( b d ) d a d + b + + b ( ) 5 +, ( b d ) d d a + a + + a ( ) 5 +, ,9 5 cm (,) 5 cm,5 cm, cm Deviačný moment k centálnm osiam, učíme analogick. Petože deviačný moment obdĺžnika vzhľadom k jeho ťažisku je nulový, bude odľa teineovej vet latiť: D a b + a b [(, 7), 799 +,9 (,) 5] cm, cm. Učenie hlavných centálnch momentov zotvačnosti a hlavných centálnch osí: Úlohu iešime gafick omocou Culmannovej kužnice (ob.6.). Pe výočet oužijeme vzťah (6.6) a (6.9), ičom : 9,7 cm a 5,8 cm. Uhol α. Kontola odľa (6.7): + ( 9 7, + 5,8 ) cm + (,5 +, ) cm 65,5 cm 69

13 Ob Metód učovania kvadatických momentov a) Integáciou v uzavetom tvae Pe jednoduché geometické obazce je možné učiť kvadatické moment iamo integáciou z definičných vzťahov (6.) a (6.5). Pe aktické oteb sú vzťah e výočet kvadatických momentov jednoduchých geometických obazcov uvádzané v ôznch íučkách (savidla sa jedná o moment zotvačnosti vzhľadom k osiam echádzajúcim ťažiskom obazca). b) Rozkladom na jednoduché obazce Ak je možné ozložiť lochu ieezu na časti, ktoých moment zotvačnosti oznáme, môžeme oužiť vetu : n i i (6.) Moment zotvačnosti zloženého obazca k učitej osi sa ovná súčtu momentov zotvačnosti jeho častí k tej istej osi. Podľa vet (6.) ostuujeme tak, že učíme moment zotvačnosti jednotlivých jednoduchých obazcov vzhľadom k soločnej osi a sčítame ich. chématick je to znázonené na ob.6.. 7

14 Ob. 6. Pi zložitých tvaoch (na. ofilov loatiek tubín, vtule a od.), ktoých tva nie je daný analtickou závislosťou, nie je možná integácia v uzavetom tvae. V takomto íade je možné vkonať ibližný výočet momentov zotvačnosti tak, že lochu ieezu ozdelíme na dostatočne úzke obdĺžnik. vužitím teineovej vet otom vočítame moment zotvačnosti ieezu ako súčet momentov zotvačnosti jednotlivých obdĺžnikov. Píklad 6.6 Učte moment zotvačnosti k osi ieezov odľa ob.6.5. Ob. 6.5 Riešenie: Moment zotvačnosti k osi všetkých ieezov na ob.6.5 je ovnaký, etože jednotlivé element lôch u všetkých obazcov sú od osi ozložené ovnako. Výsledný moment zotvačnosti sa ovná ozdielu momentov zotvačnosti obdĺžnika o stanách b, h a obdĺžnika o stanách b, h : ( b h b h ) c) Použitím tabuliek e technické ofil Pe bežne oužívané technické valcované ofil (I, U, L, T,...) sú moment zotvačnosti vzhľadom k osiam,, ktoé echádzajú ťažiskom ieezov, uvedené v tabuľkách. Za os sa volí os ovnobežná so základňou ofilu. U smetických ofilov (I, U, T) sú tieto osi hlavnými centálnmi osami zotvačnosti. Okem momentov zotvačnosti, sa taktiež uvádzajú hlavné centálne moment zotvačnosti,. Tieto tabuľk sú obsahom íslušných noiem valcovaných tčí. Píklad 6.7 Vočítajte moment zotvačnosti k osi zloženého ieezu nosníka, ktoý vznikne zvaením tče ieezu I a dvoch tčí ieezu U odľa ob

15 Riešenie: Moment zotvačnosti zloženého ieezu k osi je: kde: I - je moment zotvačnosti ieezu I, z tabuliek e veľkosť I je I cm. Pe moment zotvačnosti ieezu U vzhľadom k osi odľa teineovej vet latí: Ob. 6.6 kde: U je moment zotvačnosti ieezu U vzhľadom k osi, z tabuliek e U je U,cm. Ďalej e je vzdialenosť ťažiska U od osi, ičom latí: h e + d e + 7,,6 cm 9, cm Plocha ieezu U je U 7cm. Dostaneme: I + U 5 ( + e ) [ + (, + 9, 7) ] cm 5 cm 5, m U Na tomto íklade názone vidieť, aký veľký vlv na moment zotvačnosti majú loch, ktoé sú najvzdialenejšie od uvažovanej osi. V našom íade dva ieez U, ktoé majú soločne moment zotvačnosti vzhľadom k osi echádzajúcej ich ťažiskom U 86,cm, zväčšia moment zotvačnosti zloženého ieezu o 9cm. 7

Matematika 2. časť: Analytická geometria

Matematika 2. časť: Analytická geometria Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové

Διαβάστε περισσότερα

Matematika Funkcia viac premenných, Parciálne derivácie

Matematika Funkcia viac premenných, Parciálne derivácie Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x

Διαβάστε περισσότερα

Obvod a obsah štvoruholníka

Obvod a obsah štvoruholníka Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka

Διαβάστε περισσότερα

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov

Διαβάστε περισσότερα

7. FUNKCIE POJEM FUNKCIE

7. FUNKCIE POJEM FUNKCIE 7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje

Διαβάστε περισσότερα

Prechod z 2D do 3D. Martin Florek 3. marca 2009

Prechod z 2D do 3D. Martin Florek 3. marca 2009 Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica

Διαβάστε περισσότερα

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010. 14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12

Διαβάστε περισσότερα

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej . Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny

Διαβάστε περισσότερα

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x

Διαβάστε περισσότερα

Komplexné čísla, Diskrétna Fourierova transformácia 1

Komplexné čísla, Diskrétna Fourierova transformácia 1 Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené

Διαβάστε περισσότερα

Výpočet. grafický návrh

Výpočet. grafický návrh Výočet aaetov a afcký návh ostuu vtýčena odobných bodov echodníc a kužncových obúkov Píoha. Výočet aaetov a afcký návh ostuu vtýčena... Vtýčene kajnej echodnce č. Vstuné údaje: = 00 ; = 8 ; o = 8 S ohľado

Διαβάστε περισσότερα

Cvičenie č. 4,5 Limita funkcie

Cvičenie č. 4,5 Limita funkcie Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(

Διαβάστε περισσότερα

Tomáš Madaras Prvočísla

Tomáš Madaras Prvočísla Prvočísla Tomáš Madaras 2011 Definícia Nech a Z. Čísla 1, 1, a, a sa nazývajú triviálne delitele čísla a. Cele číslo a / {0, 1, 1} sa nazýva prvočíslo, ak má iba triviálne delitele; ak má aj iné delitele,

Διαβάστε περισσότερα

MATEMATIKA. (zbierka úloh) Matematika. 2. ročník. PaedDr. K. Petergáčová

MATEMATIKA. (zbierka úloh) Matematika. 2. ročník. PaedDr. K. Petergáčová (Té) MATEMATIKA (ziek úloh) Vzelávi olsť Peet Ročník, tie Mtetik pá s infoáii Mtetik očník Tetiký elok Vpovl PeD K Petegáčová Dátu Moené vzelávnie pe veoostnú spoločnosť/pojekt je spolufinnovný zo zojov

Διαβάστε περισσότερα

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami

Διαβάστε περισσότερα

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné

Διαβάστε περισσότερα

Ekvačná a kvantifikačná logika

Ekvačná a kvantifikačná logika a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných

Διαβάστε περισσότερα

12. Hrubostenné valcové nádoby a rotujúce kotúče

12. Hrubostenné valcové nádoby a rotujúce kotúče . Hubosenné valcové nádoby a oujúce koúče. Hubosenné valcové nádoby Valcové nádoby namáhané vnúoným alebo aj vonkajším lakom možno v užnosi a evnosi ovažovať za hubosenné, ak ome húbky seny valca k vnúonému

Διαβάστε περισσότερα

Hydromechanika II. Viskózna kvapalina Povrchové napätie Kapilárne javy. Doplnkové materiály k prednáškam z Fyziky I pre EF Dušan PUDIŠ (2013)

Hydromechanika II. Viskózna kvapalina Povrchové napätie Kapilárne javy. Doplnkové materiály k prednáškam z Fyziky I pre EF Dušan PUDIŠ (2013) Hyomechanika II Viskózna kvaaina Povchové naäie Kaiáne javy Donkové maeiáy k enáškam z yziky I e E Dušan PUDIŠ (013 Lamináne vs. Tubuenné úenie Pi úení eánej kvaainy ôsobia mezi voma susenými vsvami i

Διαβάστε περισσότερα

24. Základné spôsoby zobrazovania priestoru do roviny

24. Základné spôsoby zobrazovania priestoru do roviny 24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá

Διαβάστε περισσότερα

Margita Vajsáblová. ρ priemetňa, s smer premietania. Súradnicová sústava (O, x, y, z ) (O a, x a, y a, z a )

Margita Vajsáblová. ρ priemetňa, s smer premietania. Súradnicová sústava (O, x, y, z ) (O a, x a, y a, z a ) Mrgit Váblová Váblová, M: Dekriptívn geometri pre GK 101 Zákldné pom v onometrii Váblová, M: Dekriptívn geometri pre GK 102 Definíci 1: onometri e rovnobežné premietnie bodov Ε 3 polu prvouhlým úrdnicovým

Διαβάστε περισσότερα

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny

Διαβάστε περισσότερα

ZONES.SK Zóny pre každého študenta

ZONES.SK Zóny pre každého študenta ZONES.SK Zón pe každého študenta http://www.zones.sk /6 MO 8: TELESÁ MO 8: TELESÁ Hanol: majme piestoe oinu ρ, nej konený mnohouholník A A...A n nech A je od, ktoý neleží ρ eistuje páe jedno posunutie

Διαβάστε περισσότερα

23. Zhodné zobrazenia

23. Zhodné zobrazenia 23. Zhodné zobrazenia Zhodné zobrazenie sa nazýva zhodné ak pre každé dva vzorové body X,Y a ich obrazy X,Y platí: X,Y = X,Y {Vzdialenosť vzorov sa rovná vzdialenosti obrazov} Medzi zhodné zobrazenia patria:

Διαβάστε περισσότερα

1. písomná práca z matematiky Skupina A. 1. písomná práca z matematiky Skupina B

1. písomná práca z matematiky Skupina A. 1. písomná práca z matematiky Skupina B . písoá pác z tetik Skpi A. Zjedodšte výz : ) z 8 ) c). Doplňte, pltil ovosť : ) ). Vpočítjte : ) ) c). Vpočítjte : ) ( ) ) v v v c). Upvte výz ovete spávosť výsledk pe : 6. Zostojte tojholík ABC, k c

Διαβάστε περισσότερα

PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz

PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz KATEDRA APLIKOVANEJ MATEMATIKY A INFORMATIKY STROJNÍCKA FAKULTA TU KOŠICE PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY Pomôcka pre prípravný kurz 8 ZÁKLADNÉ ALGEBRAICKÉ VZORCE ) (a±b)

Διαβάστε περισσότερα

1. písomná práca z matematiky Skupina A

1. písomná práca z matematiky Skupina A 1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi

Διαβάστε περισσότερα

ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3

ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3 ZDNIE _ ÚLOH 3_Všeobecná rovinná silová sústv ZDNIE _ ÚLOH 3 ÚLOH 3.: Vypočítjte veľkosti rekcií vo väzbách nosník zťženého podľ obrázku 3.. Veľkosti známych síl, momentov dĺžkové rozmery sú uvedené v

Διαβάστε περισσότερα

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop 1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s

Διαβάστε περισσότερα

Súčtové vzorce. cos (α + β) = cos α.cos β sin α.sin β cos (α β) = cos α.cos β + sin α.sin β. tg (α β) = cotg (α β) =.

Súčtové vzorce. cos (α + β) = cos α.cos β sin α.sin β cos (α β) = cos α.cos β + sin α.sin β. tg (α β) = cotg (α β) =. Súčtové vzorce Súčtové vzorce sú goniometrické hodnoty súčtov a rozdielov dvoch uhlov Sem patria aj goniometrické hodnoty dvojnásobného a polovičného uhla a pridám aj súčet a rozdiel goniometrických funkcií

Διαβάστε περισσότερα

x x x2 n

x x x2 n Reálne symetrické matice Skalárny súčin v R n. Pripomeniem, že pre vektory u = u, u, u, v = v, v, v R platí. dĺžka vektora u je u = u + u + u,. ak sú oba vektory nenulové a zvierajú neorientovaný uhol

Διαβάστε περισσότερα

MIDTERM (A) riešenia a bodovanie

MIDTERM (A) riešenia a bodovanie MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude

Διαβάστε περισσότερα

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita 132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

Súradnicová sústava (karteziánska)

Súradnicová sústava (karteziánska) Súradnicová sústava (karteziánska) = sú to na seba kolmé priamky (osi) prechádzajúce jedným bodom, na všetkých osiach sú jednotky rovnakej dĺžky-karteziánska sústava zavedieme ju nasledovne 1. zvolíme

Διαβάστε περισσότερα

7 Derivácia funkcie. 7.1 Motivácia k derivácii

7 Derivácia funkcie. 7.1 Motivácia k derivácii Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických

Διαβάστε περισσότερα

Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008)

Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008) ermodynamika nútorná energia lynov,. veta termodynamická, Izochorický dej, Izotermický dej, Izobarický dej, diabatický dej, Práca lynu ri termodynamických rocesoch, arnotov cyklus, Entroia Dolnkové materiály

Διαβάστε περισσότερα

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu 6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis

Διαβάστε περισσότερα

URČENIE MOMENTU ZOTRVAČNOSTI FYZIKÁLNEHO KYVADLA

URČENIE MOMENTU ZOTRVAČNOSTI FYZIKÁLNEHO KYVADLA 54 URČENE MOMENTU ZOTRVAČNOST FYZKÁLNEHO KYVADLA Teoretický úvod: Fyzikálnym kyvadlom rozumieme teleso (napr. dosku, tyč), ktoré vykonáva periodický kmitavý pohyb okolo osi, ktorá neprechádza ťažiskom.

Διαβάστε περισσότερα

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18

Διαβάστε περισσότερα

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,

Διαβάστε περισσότερα

PRIEMER DROTU d = 0,4-6,3 mm

PRIEMER DROTU d = 0,4-6,3 mm PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda

Διαβάστε περισσότερα

Reálna funkcia reálnej premennej

Reálna funkcia reálnej premennej (ÚMV/MAN3a/10) RNDr. Ivan Mojsej, PhD ivan.mojsej@upjs.sk 18.10.2012 Úvod V každodennom živote, hlavne pri skúmaní prírodných javov, procesov sa stretávame so závislosťou veľkosti niektorých veličín od

Διαβάστε περισσότερα

Goniometrické funkcie

Goniometrické funkcie Goniometrické funkcie Oblúková miera Goniometrické funkcie sú funkcie, ktoré sa používajú pri meraní uhlov (Goniometria Meranie Uhla). Pri týchto funkciách sa uvažuje o veľkostiach uhlov udaných v oblúkovej

Διαβάστε περισσότερα

transformacija j y i x x promatramo dva koordinatna sustava S i S sa zajedničkim ishodištem z z Homogene funkcije Ortogonalne transformacije

transformacija j y i x x promatramo dva koordinatna sustava S i S sa zajedničkim ishodištem z z Homogene funkcije Ortogonalne transformacije promatramo dva oordnatna sustava S S sa zaednčm shodštem z z y y x x blo o vetor možemo raspsat u baz, A = A x + Ay + Az = ( A ) + ( A ) + ( A ) (1) sto vred za ednčne vetore sustava S = ( ) + ( ) + (

Διαβάστε περισσότερα

Zobrazenia v rovine. Každé zhodné zobrazenie v rovine je prosté a existuje k nemu inverzné zobrazenie.

Zobrazenia v rovine. Každé zhodné zobrazenie v rovine je prosté a existuje k nemu inverzné zobrazenie. Zobrazenia v rovine Zobrazením Z z množiny A do množiny B nazývame predpis, ktorý každému prvku x množiny A priraďuje práve jeden prvok y množiny B. Zobrazenie v rovine priraďuje každému bodu X danej roviny

Διαβάστε περισσότερα

Motivácia pojmu derivácia

Motivácia pojmu derivácia Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)

Διαβάστε περισσότερα

2 Základy vektorového počtu

2 Základy vektorového počtu 21 2 Základy vektorového počtu Fyzikálne veličíny sa dajú rozdeliť do dvoch skupín. Prvú skupinu fyzikálnych veličín tvoria tie, pre ktorých jednoznačné určenie postačí poznať veľkosť danej fyzikálnej

Διαβάστε περισσότερα

FUNKCIE. Funkcia základné pojmy. Graf funkcie

FUNKCIE. Funkcia základné pojmy. Graf funkcie FUNKCIE Funkcia základné pojm. Graf funkcie V prai sa často stretávame so skúmaním závislosti veľkosti niektorých veličín od veľkosti iných veličín, napríklad dĺžka kružnice l závisí od jej priemeru d

Διαβάστε περισσότερα

Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla

Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti príloha č. 7 k vyhláške č. 428/2010 Názov prevádzkovateľa verejného : Spravbytkomfort a.s. Prešov Adresa: IČO: Volgogradská 88, 080 01 Prešov 31718523

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

Deliteľnosť a znaky deliteľnosti

Deliteľnosť a znaky deliteľnosti Deliteľnosť a znaky deliteľnosti Medzi základné pojmy v aritmetike celých čísel patrí aj pojem deliteľnosť. Najprv si povieme, čo znamená, že celé číslo a delí celé číslo b a ako to zapisujeme. Nech a

Διαβάστε περισσότερα

1. Trojuholník - definícia

1. Trojuholník - definícia 1. Trojuholník - definícia Trojuholník ABC sa nazýva množina takých bodov, ktoré ležia súčasne v polrovinách ABC, BCA a CAB, kde body A, B, C sú body neležiace na jednej priamke.. Označenie základných

Διαβάστε περισσότερα

49. ročník Fyzikálnej olympiády

49. ročník Fyzikálnej olympiády 49. oční Fyziálnej olymiády šolsom ou 7/8 iešenie úloh. ola ategóie C. inigolf o Čá a Pi aliom ohybe nedochádza statám mechanicej enegie. účet ineticej a otenciálnej enegie zostáa onštantný. m ω m g h,

Διαβάστε περισσότερα

ELEKTRICKÉ POLE. Elektrický náboj je základná vlastnosť častíc, je viazaný na častice látky a vyjadruje stav elektricky nabitých telies.

ELEKTRICKÉ POLE. Elektrický náboj je základná vlastnosť častíc, je viazaný na častice látky a vyjadruje stav elektricky nabitých telies. ELEKTRICKÉ POLE 1. ELEKTRICKÝ NÁBOJ, COULOMBOV ZÁKON Skúmajme napr. trenie celuloidového pravítka látkou, hrebeň suché vlasy, mikrotén slabý prúd vody... Príčinou spomenutých javov je elektrický náboj,

Διαβάστε περισσότερα

12.5 VYTYOVANIE OBLÚKOV

12.5 VYTYOVANIE OBLÚKOV .5 VYTYOVANIE OBLÚKOV Smeovým vkam doavných ínových staveb sú smeové dotnce, echodnce (kajné a medzahé) a kužncové obúk. Vo väšne íadov sú v stavebnej a dané dve smeové dotnce, medz ktoé je otebné vož

Διαβάστε περισσότερα

1 Kinematika hmotného bodu

1 Kinematika hmotného bodu Kinemik hmnéh bdu - kinemik berá určením plôh bd ich mien če (kinemik phb ele piuje, neberá príčinmi phbu) - pri ereickm šúdiu mechnickéh phbu (prce, pri krm mení plh jednéh ele hľdm n iné ele) ád pjem

Διαβάστε περισσότερα

Grafy funkcií sínus a kosínus

Grafy funkcií sínus a kosínus Ma-Go-5-T List Graf funkcií sínus a kosínus RNDr. Marián Macko U: Pozoroval si nieked, ako sa správa vodná hladina na jazere, ak tam hodíš kameň? Ž: Vlní sa. U: Svojím tvarom v jednej vbranej línií pripomína

Διαβάστε περισσότερα

Goniometrické substitúcie

Goniometrické substitúcie Goniometrické substitúcie Marta Kossaczká S goniometrickými funkciami ste sa už určite stretli, pravdepodobne predovšetkým v geometrii. Ich použitie tam ale zďaleka nekončí. Nazačiatoksizhrňme,čoonichvieme.Funkciesínusakosínussadajúdefinovať

Διαβάστε περισσότερα

Riadenie elektrizačných sústav

Riadenie elektrizačných sústav Riaenie elektrizačných sústav Paralelné spínanie (fázovanie a kruhovanie) Pomienky paralelného spínania 1. Rovnaký sle fáz. 2. Rovnaká veľkosť efektívnych honôt napätí. 3. Rovnaká frekvencia. 4. Rovnaký

Διαβάστε περισσότερα

MATEMATICKÁ OLYMPIÁDA

MATEMATICKÁ OLYMPIÁDA S MATEMATICÁ OLYMPIÁDA skmo.sk 2008/2009 58. ročník Matematickej olympiády Riešenia úloh IMO. Nech n je kladné celé číslo a a,..., a k (k 2) sú navzájom rôzne celé čísla z množiny {,..., n} také, že n

Διαβάστε περισσότερα

STRIEDAVÝ PRÚD - PRÍKLADY

STRIEDAVÝ PRÚD - PRÍKLADY STRIEDAVÝ PRÚD - PRÍKLADY Príklad0: V sieti je frekvencia 50 Hz. Vypočítajte periódu. T = = = 0,02 s = 20 ms f 50 Hz Príklad02: Elektromotor sa otočí 50x za sekundu. Koľko otáčok má za minútu? 50 Hz =

Διαβάστε περισσότερα

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

Prvočísla a zložené čísla. a, b N: a b k N: b = a. k. Kritéria deliteľnosti v desiatkovej číselnej sústave:

Prvočísla a zložené čísla. a, b N: a b k N: b = a. k. Kritéria deliteľnosti v desiatkovej číselnej sústave: Prvočísla a zložené čísla Číslo a je deliteľom čísla b (číslo b je deliteľné číslom a alebo číslo b je násobkom čísla a ) ráve vtedy, ak existuje také rirodzené číslo k, že b = a. k (ak o delení čísla

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Teória pravdepodobnosti

Teória pravdepodobnosti 2. Podmienená pravdepodobnosť Katedra Matematických metód Fakulta Riadenia a Informatiky Žilinská Univerzita v Žiline 23. februára 2015 1 Pojem podmienenej pravdepodobnosti 2 Nezávislosť náhodných udalostí

Διαβάστε περισσότερα

Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita.

Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita. Teória prednáška č. 9 Deinícia parciálna deriácia nkcie podľa premennej Nech nkcia Ak eistje limita je deinoaná okolí bod [ ] lim. tak túto limit nazýame parciálno deriácio nkcie podľa premennej bode [

Διαβάστε περισσότερα

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2013/2014 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/27

Διαβάστε περισσότερα

Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich

Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich Tuesday 15 th January, 2013, 19:53 Základy tenzorového počtu M.Gintner Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich násobenie reálnym číslom tak, že platí:

Διαβάστε περισσότερα

Obvod a obsah rovinných útvarov

Obvod a obsah rovinných útvarov Obvod a obsah rovinných útvarov Z topologického hľadiska bod môže byť vnútorný, hraničný a vonkajší vzhľadom na nejaký rovinný útvar. D. Bod je vnútorný, ak môžeme nájsť taký polomer r, že kruh so stredom

Διαβάστε περισσότερα

stereometria - študuje geometrické útvary v priestore.

stereometria - študuje geometrické útvary v priestore. Geometria Geometria (z gréckych slov Geo = zem a metro = miera, t.j. zememeračstvo) je disciplína matematiky prvýkrát spopularizovaná medzi starovekými grékmi Tálesom (okolo 624-547 pred Kr.), ktorý sa

Διαβάστε περισσότερα

Ján Buša Štefan Schrötter

Ján Buša Štefan Schrötter Ján Buša Štefan Schrötter 1 KOMPLEXNÉ ČÍSLA 1 1.1 Pojem komplexného čísla Väčšine z nás je známe, že druhá mocnina ľubovoľného reálneho čísla nemôže byť záporná (ináč povedané: pre každé x R je x 0). Ako

Διαβάστε περισσότερα

Integrovanie racionálnych funkcií

Integrovanie racionálnych funkcií Integrovanie racionálnych funkcií Tomáš Madaras 2009-20 Z teórie funkcií už vieme, že každá racionálna funkcia (t.j. podiel dvoch polynomických funkcií) sa dá zapísať ako súčet polynomickej funkcie a funkcie

Διαβάστε περισσότερα

Matematický model robota s diferenciálnym kolesovým podvozkom

Matematický model robota s diferenciálnym kolesovým podvozkom Matematický model robota s diferenciálnym kolesovým podvozkom Demonštračný modul Úlohy. Zostavte matematický model robota s diferenciálnym kolesovým podvozkom 2. Vytvorte simulačný model robota v simulačnom

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

,Zohrievanie vody indukčným varičom bez pokrievky,

,Zohrievanie vody indukčným varičom bez pokrievky, Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014

Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014 Matematika 2 časť: Funkcia viac premenných Letný semester 2013/2014 RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Odporníky. 1. Príklad1. TESLA TR

Odporníky. 1. Príklad1. TESLA TR Odporníky Úloha cvičenia: 1.Zistite technické údaje odporníkov pomocou katalógov 2.Zistite menovitú hodnotu odporníkov označených farebným kódom Schématická značka: 1. Príklad1. TESLA TR 163 200 ±1% L

Διαβάστε περισσότερα

Podnikateľ 90 Mobilný telefón Cena 95 % 50 % 25 %

Podnikateľ 90 Mobilný telefón Cena 95 % 50 % 25 % Podnikateľ 90 Samsung S5230 Samsung C3530 Nokia C5 Samsung Shark Slider S3550 Samsung Xcover 271 T-Mobile Pulse Mini Sony Ericsson ZYLO Sony Ericsson Cedar LG GM360 Viewty Snap Nokia C3 Sony Ericsson ZYLO

Διαβάστε περισσότερα

Funkcie - základné pojmy

Funkcie - základné pojmy Funkcie - základné pojmy DEFINÍCIA FUNKCIE Nech A, B sú dve neprázdne číselné množiny. Ak každému prvku x A je priradený najviac jeden prvok y B, tak hovoríme, že je daná funkcia z množiny A do množiny

Διαβάστε περισσότερα

Vektorové a skalárne polia

Vektorové a skalárne polia Vetorové a salárne pola Ω E e prestorová oblasť - otvorená alebo uavretá súvslá podmnožna bodov prestoru E určených arteánsm súradncam usporadaným trocam reálnch čísel X [ ] R. Nech e salárna unca torá

Διαβάστε περισσότερα

Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus

Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus 1. prednáška Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus Matematickým základom kvantovej mechaniky je teória Hilbertových

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

Derivácia funkcie. Pravidlá derivovania výrazov obsahujúcich operácie. Derivácie elementárnych funkcií

Derivácia funkcie. Pravidlá derivovania výrazov obsahujúcich operácie. Derivácie elementárnych funkcií Derivácia funkcie Derivácia funkcie je jeden z najužitočnejších nástrojov, ktoré používame v matematike a jej aplikáciách v ďalších odboroch. Stručne zhrnieme základné informácie o deriváciách. Podrobnejšie

Διαβάστε περισσότερα

Východ a západ Slnka

Východ a západ Slnka Východ a západ Slnka Daniel Reitzner februára 27 Je všeobecne známe, že v našich zemepisných šírkach dĺžka dňa závisí od ročného obdobia Treba však o čosi viac pozornosti na to, aby si človek všimol, že

Διαβάστε περισσότερα

η = 1,0-(f ck -50)/200 pre 50 < f ck 90 MPa

η = 1,0-(f ck -50)/200 pre 50 < f ck 90 MPa 1.4.1. Návrh priečneho rezu a pozĺžnej výstuže prierezu ateriálové charakteristiky: - betón: napr. C 0/5 f ck [Pa]; f ctm [Pa]; fck f α [Pa]; γ cc C pričom: α cc 1,00; γ C 1,50; η 1,0 pre f ck 50 Pa η

Διαβάστε περισσότερα

Goniometrické nerovnice

Goniometrické nerovnice Ma-Go--T List Goniometrické nerovnice RNDr. Marián Macko U: Problematiku, ktorej sa budeme venovať, začneme úlohou. Máme určiť definičný obor funkcie f zadanej predpisom = sin. Máš predstavu, s čím táto

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Analytická geometria

Analytická geometria Analytická geometria Analytická geometria je oblasť matematiky, v ktorej sa študujú geometrické útvary a vzťahy medzi nimi pomocou ich analytických vyjadrení. Praktický význam analytického vyjadrenia je

Διαβάστε περισσότερα

DESKRIPTÍVNA GEOMETRIA

DESKRIPTÍVNA GEOMETRIA EKRIÍN GEERI meódy zobrzovni priesorových úvrov do roviny (premieni) mericé polohové vzťhy priesorových úvrov riešené v rovine bsh predmeu G Zobrzovcie meódy: olohové mericé úlohy: ongeov projeci Rezy

Διαβάστε περισσότερα

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi

Διαβάστε περισσότερα

6. Mocniny a odmocniny

6. Mocniny a odmocniny 6 Moci odoci Číslo zýve oceec (leo zákld oci), s zýv ociteľ (leo epoet) Číslo s zýv -tá oci čísl Moci s piodzeý epoeto pe ľuovoľé eále číslo pe kždé piodzeé číslo je v ožie eálch čísel defiová -tá oci

Διαβάστε περισσότερα

FUNKCIE N REÁLNYCH PREMENNÝCH

FUNKCIE N REÁLNYCH PREMENNÝCH FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE FUNKCIE N REÁLNYCH PREMENNÝCH RNDr. Kristína Rostás, PhD. PREDMET: Matematická analýza ) 2010/2011 1. DEFINÍCIA REÁLNEJ FUNKCIE

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

Smernicový tvar rovnice priamky

Smernicový tvar rovnice priamky VoAg1-T List 1 Smernicový tvar rovnice priamk RNDr.Viera Vodičková U: Medzi prevratné objav analtickej geometrie patrí to, že s priamkou nenarábame ako s geometrickým objektom, ale popisujeme ju rovnicou.

Διαβάστε περισσότερα

ΘΕΜΑ 1. Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες)

ΘΕΜΑ 1. Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες) ΘΕΜΑ ΔΕΔΟΜΕΝΑ: Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες) ΕΠΙΛΥΣΗ: Ο φορέας χωρίζεται στα τμήματα Α και Β. Το τμήμα Α είναι τριαρθρωτό τόξο. Απομονώνοντας το Α και

Διαβάστε περισσότερα

3. prednáška. Komplexné čísla

3. prednáška. Komplexné čísla 3. predáška Komplexé čísla Úvodé pozámky Vieme, že existujú také kvadratické rovice, ktoré emajú riešeie v obore reálych čísel. Študujme kvadratickú rovicu x x + 5 = 0 Použitím štadardej formule pre výpočet

Διαβάστε περισσότερα