ΕΞΙΣΩΣΕΙΣ. 2.1 ΕΞΙΣΩΣΕΙΣ 1 ου ΒΑΘΜΟΥ. Η εξίσωση αx β 0

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΞΙΣΩΣΕΙΣ. 2.1 ΕΞΙΣΩΣΕΙΣ 1 ου ΒΑΘΜΟΥ. Η εξίσωση αx β 0"

Transcript

1 ΕΞΙΣΩΣΕΙΣ.1 ΕΞΙΣΩΣΕΙΣ 1 ου ΒΑΘΜΟΥ Η εξίσωση α 0 Στο Γυμνάσιο μάθαμε τον τρόπο επίλυσης των εξισώσεων της μορφής α 0 για συγκεκριμένους αριθμούς α,,με α 0 Γενικότερα τώρα, θα δούμε πώς με την οήθεια των ιδιοτήτων των πράξεων, επιλύουμε την παραπάνω εξίσωση, οποιοιδήποτε και αν είναι οι αριθμοί α., Έχουμε λοιπόν α 0 α α Διακρίνουμε τώρα τις περιπτώσεις: Αν α 0 τότε: α a Επομένως, αν α 0 η εξίσωση έχει ακριώς μία λύση, την Αν α 0, τότε η εξίσωση α γίνεται 0, η οποία:. a i) αν είναι 0 δεν έχει λύση και γι αυτό λέμε ότι είναι αδύνατη, ενώ ii) αν είναι 0 έχει τη μορφή 0 0 και αληθεύει για κάθε πραγματικό αριθμό δηλαδή είναι ταυτότητα. Η λύση της εξίσωσης α 0 και γενικά κάθε εξίσωσης λέγεται και ρίζα αυτής. Για παράδειγμα Για την εξίσωση 4( 5) 5 έχουμε:

2 56. ΕΞΙΣΩΣΕΙΣ 4( 5) Άρα, η εξίσωση έχει μοναδική λύση, την =5. Για την εξίσωση Έχουμε 0 που είναι αδύνατη. Για τη εξίσωση 4( 5) 0 έχουμε που είναι ταυτότητα. ΣΧΟΛΙΟ Όπως λέπουμε στα παραπάνω παραδείγματα, κάθε φορά καταλήγουμε σε εξίσωση της μορφής α 0, της οποίας οι συντελεστές α και είναι συγκεκριμένοι αριθμοί και μπορούμε αμέσως να δούμε ποια από τις προηγούμενες περιπτώσεις ισχύει. Δεν συμαίνει όμως το ίδιο, αν οι συντελεστές α και της εξίσωσης α 0 εκφράζονται με τη οήθεια γραμμάτων. Σε τέτοιες περιπτώσεις, τα γράμματα αυτά λέγονται παράμετροι, η εξίσωση λέγεται παραμετρική και η εργασία που κάνουμε για την εύρεση του πλήθους των ριζών της λέγεται διερεύνηση. Για παράδειγμα η εξίσωση λ 1 λ10, λ έχει παράμετρο το λ και γράφεται ισοδύναμα λ 1 λ10 λ 1 λ 1 λ1λ1 λ 1 Επομένως Αν λ1και λ 1, η εξίσωση έχει μοναδική λύση, την λ 1 1 λ1 λ1 λ1 Αν λ 1, η εξίσωση γίνεται 0 και είναι αδύνατη. Αν λ 1, η εξίσωση γίνεται 0 0 και είναι ταυτότητα.

3 . 1 Εξισώσεις 1ου αθμού 57 ΕΦΑΡΜΟΓΗ Ένας ποδηλάτης πήγε από μια πόλη Α σε μία πόλη Β και επέστρεψε από τον ίδιο δρόμο. Στην μετάαση οδηγούσε με μέση ταχύτητα 5km/h και ξεκουράστηκε ενδιάμεσα 1 ώρα. Στην επιστροφή οδηγούσε με μέση ταχύτητα 0 km/h και δεν έκανε καμία στάση. Αν ο συνολικός χρόνος του ταξιδιού ήταν 10 ώρες, να υπολογιστεί το μήκος της διαδρομής ΑΒ. ΛΥΣΗ Αν km είναι η απόσταση ΑΒ, τότε ο ποδηλάτης χρειάστηκε 5 ώρες για να πάει από το Α στο Β και ώρες για να επιστρέψει. Αφού ξεκουράστηκε και 1 ώρα, 0 ο συνολικός χρόνος του ταξιδιού ήταν Επειδή ο χρόνος αυτός είναι 10 ώρες έχουμε την εξίσωση: Λύνουμε την εξίσωση και έχουμε: Άρα το μήκος της διαδρομής είναι 100 km. Εξισώσεις που ανάγονται σε εξισώσεις 1ου αθμού Στην συνέχεια θα δούμε, με τη οήθεια παραδειγμάτων, πώς μπορούμε να επιλύσουμε εξισώσεις οι οποίες δεν είναι μεν εξισώσεις 1 ου αθμού, αλλά, με κατάλληλη διαδικασία, ανάγονται σε εξισώσεις 1ου αθμού. ΠΑΡΑΔΕΙΓΜΑ 1 ο Να λυθεί η εξίσωση ΛΥΣΗ Η εξίσωση αυτή ορίζεται για κάθε 1. Με αυτόν τον περιορισμό έχουμε:

4 58. ΕΞΙΣΩΣΕΙΣ , αφού 1. Επομένως η εξίσωση έχει μοναδική λύση, την 0. ΠΑΡΑΔΕΙΓΜΑ ο Να λυθεί η εξίσωση 1 ΛΥΣΗ Από τις ιδιότητες των απολύτων τιμών έχουμε: 1 1 ή 1 Όμως: ( ) 1. Επομένως η εξίσωση έχει δυο λύσεις, τους αριθμούς 4 και. ΣΧΟΛΙΟ Με τον ίδιο τρόπο λύνουμε κάθε εξίσωση της μορφής f ( ) g( ). ΠΑΡΑΔΕΙΓΜΑ ο Να λυθεί η εξίσωση ΛΥΣΗ Επειδή το πρώτο μέλος της εξίσωσης είναι μη αρνητικό, για να έχει λύση η εξίσωση αυτή πρέπει και το δεύτερο μέλος της να είναι μη αρνητικό. Δηλαδή, πρέπει: 0 (1) Με αυτόν τον περιορισμό, λόγω των ιδιοτήτων των απόλυτων τιμών, έχουμε:

5 . 1 Εξισώσεις 1ου αθμού 59 ή ή 1 ή 55 1 ή 1 Από τις παραπάνω λύσεις δεκτή είναι μόνο η 1, διότι μόνο αυτή ικανοποιεί τον περιορισμό (1). ΣΧΟΛΙΟ Με τον ίδιο τρόπο λύνουμε εξισώσεις της μορφής f ( ) g( ). ΑΣΚΗΣΕΙΣ Α ΟΜΑΔΑΣ 1. Να λύσετε τις εξισώσεις i) iii) ii) iv). Να λύσετε τις εξισώσεις i) ii) , 1,5 1,5 8, Να λύσετε τις εξισώσεις για τις διάφορες τιμές της παραμέτρου λ. i) λ 1 λ 1 ii) λ λ iii) λ λ 1 λ 1 iv) 1 λ λ λ λ 4. Στο διπλανό ορθογώνιο τραπέζιο να ρεθεί η θέση του σημείου Μ στην ΑΔ ώστε για τα εμαδά Ε ( ΜΔΓ), Ε ( ΜΑΒ) και Ε ( Μ ΒΓ) 1 ισχύει: i) Ε1 Ε Ε ii) Ε1 Ε 5. Από κεφάλαιο 4000 ένα μέρος του κατατέθηκε σε μια τράπεζα προς 5% και το υπόλοιπο σε μια άλλη τράπεζα προς %. Ύστερα από 1 χρόνο εισπράχθηκαν συνολικά 175 τόκοι. Ποιο ποσό τοκίστηκε προς 5% και ποιο προς %; να

6 60. ΕΞΙΣΩΣΕΙΣ 6. Να επιλυθούν οι παρακάτω τύποι ως προς την αναφερόμενη μεταλητή: i) v v0 αt, α 0 ως προς το t ii) (ως προς το R 1 ). R R R 1 7. Να λύσετε τις εξισώσεις i) ii) Να λύσετε τις εξισώσεις i) 1 0 ii) Να λύσετε τις εξισώσεις i) ii) Να λύσετε τις εξισώσεις i) 0 ii) Να λύσετε τις εξισώσεις 1 i) 1 1 ii) Να λύσετε τις εξισώσεις i) ii) 1 iii) 4 iv) Να ρείτε τρεις διαδοχικούς ακέραιους τέτοιους ώστε το άθροισμα τους να ισούται με το γινόμενο τους. 14. Να λύσετε τις εξισώσεις i) 5 ii) 4 1 iii) 1 iv) 1.

7 . 1 Εξισώσεις 1ου αθμού Να λύσετε τις εξισώσεις 4 4 i), ii) Να λύσετε τις εξισώσεις i) 4 ii) 1 1 Β ΟΜΑΔΑΣ 1. Να αποδείξετε ότι οι εξισώσεις: i) α αα ii) α α έχουν πάντα λύση, οποιοιδήποτε και αν είναι οι πραγματικοί αριθμοί α.,. Ποιοί περιορισμοί πρέπει να ισχύουν για τα α,, ώστε να έχει λύση η εξίσωση 1; α. Πόσο καθαρό οινόπνευμα πρέπει να προσθέσει ένας φαρμακοποιός σε 00ml διάλυμα οινοπνεύματος περιεκτικότητας 15%, για να πάρει διάλυμα οινοπνεύματος περιεκτικότητας %; 4. Ένα αυτοκίνητο Α κινείται με 100km/h. Ένα δεύτερο αυτοκίνητο Β που κινείται με 10km/h προσπερνάει το Α. Σε πόσα λεπτά τα δυο αυτοκίνητα θα απέχουν 1km; 5. Να λύσετε την εξίσωση α α α για όλες τις τιμές του α. 6. Να λύσετε την εξίσωση Να λύσετε την εξίσωση Να λύσετε την εξίσωση 1 5.

8 . Η ΕΞΙΣΩΣΗ v α Έστω η εξίσωση 8. Όπως αναφέραμε στον ορισμό της ν-οστής ρίζας μη αρνητικού αριθμού, η εξίσωση 8 έχει ακριώς μια θετική λύση, την 8. Η εξίσωση αυτή δεν έχει μη αρνητικές λύσεις, γιατί, για κάθε 0 ισχύει 0. Επομένως η εξίσωση 8 έχει ακριώς μια λύση, την 8. Γενικότερα: Η εξίσωση v ακριώς μια λύση την v α. Έστω η εξίσωση α, με α 0 και ν περιττό φυσικό αριθμό, έχει Όπως και προηγουμένως η εξίσωση αυτή έχει ακριώς μια θετική λύση την Η εξίσωση αυτή όμως έχει ως λύση και την , αφού Επομένως η εξίσωση την Γενικότερα: 4 16 έχει ακριώς δύο λύσεις, την 4 16 και Η εξίσωση v ακριώς δύο λύσεις τις v α και α, με α 0 και ν άρτιο φυσικό αριθμό, έχει v α. Έστω η εξίσωση 8 Έχουμε διαδοχικά: Επομένως η εξίσωση αυτή έχει ακριώς μια λύση, την 8 Γενικότερα: Η εξίσωση v ακριώς μια λύση την v a. α, με α 0 και ν περιττό φυσικό αριθμό, έχει Έστω η εξίσωση είναι αδύνατη. Γενικότερα: 4 4. Επειδή για κάθε ισχύει 4 0, η εξίσωση Η εξίσωση αδύνατη. v α, με α 0 και ν άρτιο φυσικό αριθμό, είναι

9 . Η εξίσωση ν =α 6 Από τα παραπάνω συμπεράσματα και από το γεγονός ότι η εξίσωση v v α, με ν, έχει προφανή λύση την α, προκύπτει ότι: v Αν ο ν περιττός, τότε η εξίσωση v α έχει μοναδική λύση, την α v v Αν ο ν άρτιος, τότε η εξίσωση α έχει δύο λύσεις, τις 1 α και α. ΕΦΑΡΜΟΓΗ Να λυθεί η εξίσωση ΛΥΣΗ ή 8 0 ή 8 ΑΣΚΗΣΕΙΣ Α ΟΜΑΔΑΣ 1. Να λύσετε τις εξισώσεις i) 15 0 ii). Να λύσετε τις εξισώσεις i) 15 0 ii). Να λύσετε τις εξισώσεις i) 64 0 ii) 4. Να λύσετε τις εξισώσεις 5 i) 8 0 ii) iii) iii) iii) 4 0 iii) Ένα ορθογώνιο παραλληλεπίπεδο έχει όγκο 81m και διαστάσεις, και. Να ρείτε τις διαστάσεις του παραλληλεπιπέδου. 6. Να λύσετε τις εξισώσεις i) 1 64 ii) 4 iii)

10 . ΕΞΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Η εξίσωση α γ α 0, 0 Η λύση πολλών προλημάτων της Γεωμετρίας, της Φυσικής καθώς και άλλων επιστημών ανάγεται στην επίλυση μιας εξίσωσης της μορφής: α γ0, με α 0 (1) η οποία λέγεται εξίσωση δευτέρου αθμού. 1 Για παράδειγμα, έστω ο τύπος S v0t γt, όπου S το διάστημα που διανύει κινητό σε χρόνο t, με αρχική ταχύτητα v 0 και επιτάχυνση γ. Αν θεωρή- σουμε ως άγνωστο τον χρόνο t, τότε προκύπτει η εξίσωση: γt v ts, η οποία είναι εξίσωση δευτέρου αθμού. Στη συνέχεια θα επιλύσουμε την εξίσωση δευτέρου αθμού στη γενική της μορφή με τη μέθοδο της «συμπλήρωσης του τετραγώνου». Έχουμε: γ 0 0 [αφoύ 0 ] α α γ α α γ α α α γ α γ α 4α α 4α 4αγ α 4α Αν θέσουμε Δ 4αγ, τότε η τελευταία εξίσωση γίνεται: Δ α 4α Διακρίνουμε τώρα τις εξής περιπτώσεις: Αν Δ 0, τότε έχουμε: Δ Δ ή α α α α ()

11 . Εξισώσεις ου αθμού 65 δηλαδή Δ Δ ή α α Επομένως η εξίσωση (), άρα και η ισοδύναμή της (1), έχει δύο λύσεις άνισες τις: Δ Δ 1 και α α Για συντομία οι λύσεις αυτές γράφονται 1, Δ. α Αν Δ 0, τότε η εξίσωση () γράφεται: 0 0 α α α =0 ή =0 α α ή α α Στην περίπτωση αυτή λέμε ότι η εξίσωση έχει διπλή ρίζα την. α Αν Δ 0, τότε η εξίσωση (), άρα και η ισοδύναμή της (1), δεν έχει πραγματικές ρίζες, δηλαδή είναι αδύνατη στο. Η αλγερική παράσταση αγ, από την τιμή της οποίας εξαρτάται το Δ 4 0, 0, ονομάζεται διακρί- πλήθος των ριζών της εξίσωσης νουσα αυτής. α γ α Τα παραπάνω συμπεράσματα συνοψίζονται στον ακόλουθο πίνακα: Δ 4 αγ Η εξίσωση α γ α 0, 0 Δ 0 Έχει δύο ρίζες άνισες τις 1, α Δ 0 Έχει μια διπλή ρίζα τη α Δ Δ 0 Είναι αδύνατη στο. Για παράδειγμα

12 66. ΕΞΙΣΩΣΕΙΣ Η εξίσωση 1 0 έχει ρίζες τις 1 1 και. Η εξίσωση Δ 411 0, οπότε έχει δυο 44 0 έχει Δ , οπότε έχει μια δι- 4 πλή ρίζα την. 1 Η παραπάνω εξίσωση λύνεται σύντομα ως εξής: 440 ( ) 0 (διπλή ρίζα). Η εξίσωση 4 0 έχει πραγματικές ρίζες. έχει Δ 44 0, οπότε δεν Στην περίπτωση που η εξίσωση α γ α 1,, έχουμε: Δ Δ 1 και α α α α 0, 0 έχει πραγματικές ρίζες Δ 4αγ Δ Δ 4αγ γ 1 α α 4α 4α 4α α Αν με S συμολίσουμε το άθροισμα 1 και με P το γινόμενο 1, τότε έχουμε τους τύπους: S και α που είναι γνωστοί ως τύποι του Vieta. γ P α Η εξίσωση α γ 0, με την οήθεια των τύπων του Vieta, μετασχηματίζεται ως εξής: γ α γ 0 0 α α SP0 Η τελευταία μορφή της εξίσωσης α γ 0 μας δίνει τη δυνατότητα να την κατασκευάσουμε, όταν γνωρίζουμε το άθροισμα και το γινόμενο των ριζών της. Για παράδειγμα η εξίσωση με άθροισμα ριζών και γινόμενο είναι η 0

13 . Εξισώσεις ου αθμού 67 ΕΦΑΡΜΟΓΕΣ 1 η Να λυθεί η εξίσωση ΛΥΣΗ Η διακρίvoυσα είναι Δ Επομένως η εξίσωση έχει δύο ρίζες τις 1, η Ένας ράχος ρίσκεται στην κορυφή της χαράδρας ενός ποταμού, η οποία έχει άθος 00m. Πόσος χρόνος απαιτείται μέχρι τη στιγμή, που ο ράχος θα αγγίξει το νερό του ποταμού, αν ο ράχος i) πέσει από την κορυφή; ii) εκσφενδονιστεί κατακόρυφα προς τα κάτω με ταχύτητα 50 m/sec; Δίδεται ότι g 10 m/sec. ΛΥΣΗ i) Είναι γνωστό από την Φυσική ότι το διάστημα S που διανύει ένα σώμα στην 1 ελεύθερη πτώση σε χρόνο t sec είναι: S gt m Επειδή S 00m και g 10, έχουμε: sec t t t 60 t 60 t 7,75 Η αρνητική ρίζα δεν είναι αποδεκτή, διότι ο χρόνος στο συγκεκριμένο πρόλημα δεν μπορεί να είναι αρνητικός. Άρα t 7,75sec. ii) Όταν το σώμα έχει αρχική ταχύτητα v 0, το διάστημα που διανύει σε χρόνο t 1 sec είναι S v0t γ t. m Επειδή v0 50 και t 0 θα έχουμε: sec t t t 50 t 00 0 t 10t , 4 t 4, sec. Άρα, ο ζητούμενος χρόνος είναι περίπου 4, sec.

14 68. ΕΞΙΣΩΣΕΙΣ ΣΧΟΛΙΟ Κατά την επίλυση ενός προλήματος, όπως είδαμε και παραπάνω, δεν πρέπει να ξεχνάμε να ελέγχουμε, αν οι λύσεις που ρήκαμε είναι εύλογες. Εξισώσεις που ανάγονται σε εξισώσεις ου αθμού Στη συνέχεια θα δούμε, με τη οήθεια παραδειγμάτων, πώς μπορούμε να επιλύσουμε εξισώσεις οι οποίες δεν είναι μεν ου αθμού, αλλά, με κατάλληλη διαδικασία, ανάγονται σε εξισώσεις ου αθμού. ΠΑΡΑΔΕΙΓΜΑ 1 ο : Να λυθεί η εξίσωση 0. ΛΥΣΗ Επειδή Αν θέσουμε, η εξίσωση γράφεται: 0 ω, τότε η εξίσωση γίνεται ω ω 0. Η εξίσωση αυτή έχει ρίζες τις ω1 και ω 1. Από αυτές δεκτή είναι μόνο η θετική, αφού ω 0. Επομένως, που σημαίνει ή. ΠΑΡΑΔΕΙΓΜΑ ο : Να λυθεί η εξίσωση: ΛΥΣΗ Για να ορίζεται η εξίσωση πρέπει 1 0 και 0, δηλαδή 0και 1. Με αυτούς τους περιορισμούς του έχουμε:

15 . Εξισώσεις ου αθμού 69 Η τελευταία εξίσωση έχει ρίζες 1 1 και. Από αυτές, λόγω του περιορισμού, δεκτή είναι μόνο η. ΠΑΡΑΔΕΙΓΜΑ ο : Να λυθεί η εξίσωση: (1) ΛΥΣΗ Αν θέσουμε Η εξίσωση y η εξίσωση γίνεται: y 7y 4 0 y y () έχει ρίζες τις y1 4 και y Επειδή y 0, δεκτή είναι μόνο η y1 4. Επομένως, οι ρίζες της (1) είναι οι ρίζες της εξίσωσης και. 1 4, δηλαδή οι ΣΧΟΛΙΟ Η μέθοδος που ακολουθήσαμε στο παραπάνω παράδειγμα εφαρμόζεται και για την επίλυση κάθε εξίσωσης της μορφής: 4 α γ0, με α 0 Οι εξισώσεις της μορφής αυτής ονομάζονται διτετράγωνες εξισώσεις. ΑΣΚΗΣΕΙΣ Α ΟΜΑΔΑΣ 1. Να λύσετε τις εξισώσεις: i) 5 0 ii) 69 0 iii) Να λύσετε τις εξισώσεις: i) 1, 69 0 ii) 0,5 0 iii) Να αποδείξετε ότι οι παρακάτω εξισώσεις έχουν πραγματικές ρίζες: λ λ 0, λ 0 α α 0, α 0. i) ii) 4. Να ρείτε τις τιμές του μ για τις οποίες η εξίσωση μ μ μ 0, 0 έχει διπλή ρίζα.

16 70. ΕΞΙΣΩΣΕΙΣ 5. Αν α, να δείξετε ότι είναι αδύνατη στο η εξίσωση α α 0. Να εξετάσετε την περίπτωση που είναι α. 6. Να ρείτε την εξίσωση ου αθμού που έχει ρίζες τους αριθμούς i) και. ii) 1 και 1 iii) 5 6 και Να ρείτε δυο αριθμούς, εφόσον υπάρχουν, που να έχουν i) Άθροισμα και γινόμενο 15. ii) άθροισμα 9 και γινόμενο Να λύσετε τις εξισώσεις i) ii) Να λύσετε την εξίσωση α,. α a, για τις διάφορες τιμές των 10. Να ρείτε τις πλευρές ενός ορθογωνίου με περίμετρο 68cm και διαγώνιο 6cm. 11. Να λύσετε τις εξισώσεις i) ii) 5 0 iii) Να λύσετε την εξίσωση Να λύσετε την εξίσωση Να λύσετε τις εξισώσεις 1 1 i) 1 6 ii) Να λύσετε τις εξισώσεις 4 i) ii) iii)

17 . Εξισώσεις ου αθμού 71 Β ΟΜΑΔΑΣ 1. Δίνεται η εξίσωση 4 α α α α 10, με 0. i) Να δείξετε ότι η διακρίνουσα της εξίσωσης είναι Δ 4α. ii) α 1 α 1 Να δείξετε ότι οι ρίζες της εξίσωσης είναι οι και. α a. Δίνεται η εξίσωση i) Να δείξετε ότι η διακρίνουσα της εξίσωσης είναι Δ 1 ii) Να δείξετε ότι οι ρίζες της εξίσωσης είναι οι και.. Να ρείτε τις τιμές του α για τις οποίες η εξίσωση α α α έχει διπλή ρίζα Αν ο αριθμός ρ είναι η ρίζα της εξίσωσης α γ 0, με αγ 0, να δείξετε ότι ο αριθμός 1 ρ είναι η ρίζα της εξίσωσης γ α Να λύσετε τις εξισώσεις: 1 1 i) α, α 0 α ii) α α, α α α, Δίνεται η εξίσωση λ 8 0 i) Να δείξετε ότι η εξίσωση έχει πραγματικές ρίζες για κάθε λ. ii) Αν η μια ρίζα της εξίσωσης ισούται με το τετράγωνο της άλλης, τότε να ρεθούν οι ρίζες και η τιμή του λ. 7. Να εξετάσετε αν υπάρχουν διαδοχικοί ακέραιοι που να είναι μήκη πλευρών ορθογωνίου τριγώνου. 8. Η σημαία. του διπλανού σχήματος έχει διαστάσεις 4m και m αντιστοίχως. Να ρείτε πλάτος d του σταυρού, αν γνωρίζουμε ότι το εμαδόν του είναι ίσο με το εμαδόν του υπόλοιπου μέρους της σημαίας.

18 7. ΕΞΙΣΩΣΕΙΣ 9. Μια κατασκευαστική εταιρεία διαθέτει δυο μηχανήματα Α και Β. Το μηχάνημα Β χρειάζεται 1 ώρες περισσότερο από ότι το μηχάνημα Α για να τελειώσει ένα συγκεκριμένο έργο. Ο χρόνος που απαιτείται για να τελειώσει το έργο, αν χρησιμοποιηθούν και τα δυο μηχανήματα μαζί είναι 8 ώρες. Να ρείτε το χρόνο που θα χρειαζόταν το κάθε μηχάνημα για να τελειώσει το έργο αυτό αν εργαζόταν μόνο του Είναι γνωστό ότι μια ρίζα της εξίσωσης 10 α 0 είναι ο αριθμός 1. Να ρείτε το α και να λύσετε την εξίσωση. ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ου ΚΕΦΑΛΑΙΟΥ I. Σε καθεμιά από τις παρακάτω περιπτώσεις να κυκλώσετε το γράμμα Α, αν ο ισχυρισμός είναι αληθής για όλους τους πραγματικούς αριθμούς α, και γ. Διαφορετικά να κυκλώσετε το γράμμα Ψ. 1. Η εξίσωση ( α 1) αα ( 1) έχει μοναδική λύση την α. Α Ψ. H εξίσωση 0. H εξίσωση 0 4. H εξίσωση 0 1 είναι αδύνατη. Α Ψ 1 έχει δύο πραγματικές ρίζες. Α Ψ 1 έχει δύο πραγματικές ρίζες. Α Ψ 5. Η εξίσωση έχει μοναδική λύση. Α Ψ 6. Η εξίσωση έχει μοναδική λύση. Α Ψ 7. Αν οι συντελεστές α και γ της εξίσωσης α γ 0 είναι ετερόσημοι, τότε η εξίσωση έχει δύο ρίζες άνισες. 8. Αν δύο εξισώσεις ου αθμού έχουν τις ίδιες ρίζες, τότε οι συντελεστές των ίσων δυνάμεων του των εξισώσεων αυτών είναι ίσοι. Α Α Ψ Ψ 9. Η εξίσωση άνισες. 0 έχει δύο ρίζες πραγματικές και α α Α Ψ

19 . Εξισώσεις ου αθμού Η εξίσωση 4α 4α 0, με α 0, έχει δύο ρίζες πραγματικές και άνισες. Α Ψ α α 0, με α 0, δεν έχει πραγματι- 11. Η εξίσωση κές ρίζες. Α Ψ 1. Η εξίσωση α α 0 δεν έχει πραγματικές ρίζες. Α Ψ 1. Η εξίσωση α 10 α και αντίστροφες πραγματικές ρίζες. 1, με α 0, 1 έχει δύο άνισες Α Ψ 14. Οι εξισώσεις ίδιες λύσεις. 0 1 και 0 έχουν τις Α Ψ Οι εξισώσεις 5 1 έχουν τις ίδιες λύσεις. και ( 1) 5( 1) Α Ψ 16. Υπάρχουν πραγματικοί αριθμοί και y που να έχουν άθροισμα S 10 και γινόμενο P Υπάρχουν πραγματικοί αριθμοί και y που να έχουν άθροισμα S 10 και γινόμενο P 5. Α Α Ψ Ψ 18. Υπάρχουν πραγματικοί αριθμοί και y που να έχουν άθροισμα S και γινόμενο P. Α Ψ II. Να εντοπίσετε το λάθος στους παρακάτω συλλογισμούς: 1. Η εξίσωση (1)( ) ( )( ) γράφεται ισοδύναμα: (1)( ) ( )( ) Όμως και ο αριθμός επαληθεύει τη δοθείσα εξίσωση.. Η εξίσωση 1 γράφεται ισοδύναμα: 1 1 ή 1 1 ή 1. Όμως καμία από τις τιμές αυτές του δεν επαληθεύει τη δοθείσα εξίσωση.

20 74. ΕΞΙΣΩΣΕΙΣ ΙΣΤΟΡΙΚΟ ΣΗΜΕΙΩΜΑ Από τα αρχαία χρόνια οι μαθηματικοί χρησιμοποίησαν διάφορες τεχνικές για να λύσουν μια εξίσωση ου αθμού. Οι αρχαίοι Έλληνες χρησιμοποίησαν γεωμετρικές μεθόδους, ίσως λόγω των δυσκολιών που είχαν με τους άρρητους αριθμούς, αλλά και λόγω πρακτικών δυσκολιών που προέκυπταν από τα ελληνικά ψηφία. Οι Ινδοί και οι Άραες χρησιμοποίησαν μια μέθοδο όμοια με τη σημερινή διαδικασία «συμπλήρωσης τετραγώνου», περιγράφοντας όμως λεκτικά τον τρόπο εύρεσης των λύσεων. Αυτοί θεωρούσαν ως διαφορετικού τύπου κάθε μία από τις εξισώσεις p q, p q, p q. Σήμερα όμως γράφουμε τις εξισώσεις αυτές με τη γενική μορφή α γ 0 Ο σύγχρονος συμολισμός άρχισε να εμφανίζεται περί το 1500 µ.χ, και οι δυνατότητες χρησιμοποίησης αρνητικών ριζών και ακόμα μιγαδικών ριζών προτάθηκαν από τους Cardano και Girard. Η γεωμετρική παράσταση των αρνητικών ριζών από τον Descartes και των μιγαδικών αριθμών από τούς Wessel, Argand και Gauss έκαμε τους αριθμούς αυτούς περισσότερο αποδεκτούς ως ρίζες μιας δευτεροάθμιας εξίσωσης. Όμως η ποικιλία των επιλύσεων που αναπτύχθηκε τα αρχαία χρόνια μας ενέπνευσε να αναπτύξουμε μερικούς τρόπους εξαγωγής του τύπου 4αγ 1, α που δίνει τις ρίζες της γενικής εξίσωσης ου αθμού α γ 0, α 0. Στη συνέχεια παρουσιάζουμε τρεις μεθόδους επίλυσης μίας εξίσωσης ου αθμού. Μέθοδος των Ινδών Η επίλυση αυτή που επινοήθηκε στην Ινδία, αποδίδεται στον Sridhara (105 μ.χ. περίπου). Έχουμε διαδοχικά: α γ 0 α γ Πολλαπλασιάζουμε και τα δύο μέλη της εξίσωσης με 4α και ύστερα προσθέτουμε το και στα δύο μέλη, για να προκύψει ένα «τέλειο» τετράγωνο στο αριστερό μέλος. Δηλαδή

21 . Εξισώσεις ου αθμού 75 4α 4α 4αγ 4α 4α 4αγ α 4αγ α 4 αγ, εφόσον 4αγ 0. 4αγ Έτσι προκύπτει ότι: α Σχόλιο: Η απλότητα της μεθόδου των Ινδών χαρακτηρίζεται από το γεγονός ότι το κλάσμα δεν εμφανίζεται. παρά μόνο στο τελευταίο ήμα. Μέθοδος του Vieta Η εξίσωση ου αθμού α γ 0, α 0 μπορεί να λυθεί ευκολότερα, αν δεν περιέχει τον πρωτοάθμιο όρο, πράγμα που μπορεί εύκολα να επιτευχθεί με την αντικατάσταση y (1) α Τότε η εξίσωση γίνεται: α y y γ 0 η οποία όταν απλοποιηθεί α α γίνεται: 4αγ αy 0. 4α 4αγ Οι ρίζες της εξίσωσης αυτής είναι y εφόσον 4αγ 0 α Για να ρούμε τις ρίζες της αρχικής εξίσωσης αντικαθιστούμε την παραπάνω τιμή του y στην (1) και έχουμε: Οπότε 4αγ y α α α 4αγ. α Σχόλιο: Η μέθοδος αυτή του Vieta είναι ενδιαφέρουσα, γιατί είναι ο προάγγελος της τεχνικής για την επίλυση της γενικής τριτοάθμιας καθώς και της διτετράγωνης εξίσωσης. Για παράδειγμα, το πρώτο ήμα στην επίλυση της εξίσωσης α γ δ 0, είναι η αντικατάσταση y που απαλ- α λάσσει την εξίσωση από το δευτεροάθμιο όρο.

22 76. ΕΞΙΣΩΣΕΙΣ Μέθοδος του Harriot Ο μαθηματικός Thomas Harriot ( ) εφάρμοσε τη μέθοδο της παραγοντοποίησης, για να ρει τις λύσεις μιας εξίσωσης ου αθμού, στο μεγάλο έργο του για την άλγερα «Artis Analytical Prais». Η τεχνική του είναι η εξής περίπου: Υποθέτουμε ότι 1 και είναι οι ρίζες της δευτεροάθμιας εξίσωσης α γ 0, α 0 (1). Σχηματίζουμε τώρα μία εξίσωση με ρίζες 1 και. Αυτή είναι η 1 0 ή,ισοδύναμα, η () Με διαίρεση των μελών της (1) με α 0, ρίσκουμε: γ 0 α α () Επειδή οι εξισώσεις () και () είναι ίδιες, οι αντίστοιχοι συντελεστές πρέπει να είναι ίσοι. Επομένως: γ 1 και 1 (4) α α σε συνδυασμό με την (4) δίνει Η ταυτότητα 4αγ 1, [εφόσον 4αγ 0] (5) α Λύνοντας το σύστημα των εξισώσεων (4) και (5) έχουμε: 4αγ 4αγ 1 και α α Σχόλιο: Είναι αρκετό να θεωρήσουμε μόνο τη θετική τετραγωνική ρίζα της (5). Η αρνητική ρίζα απλώς εναλλάσσει τη διάταξη των 1 και.

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

ΑΝΙΣΩΣΕΙΣ. 3.1 ΑΝΙΣΩΣΕΙΣ 1 ου ΒΑΘΜΟΥ. Οι ανισώσεις: αx + β > 0 και αx + β < 0

ΑΝΙΣΩΣΕΙΣ. 3.1 ΑΝΙΣΩΣΕΙΣ 1 ου ΒΑΘΜΟΥ. Οι ανισώσεις: αx + β > 0 και αx + β < 0 3 ΝΙΣΩΣΕΙΣ 31 ΝΙΣΩΣΕΙΣ 1 ου ΒΘΜΟΥ Οι ανισώσεις: α + β > 0 και α + β < 0 Γνωρίσαμε στο Γυμνάσιο τη διαδικασία επίλυσης μιας ανίσωσης της μορφής α β 0 ή της μορφής α β 0, με α και β συγκεκριμένους αριθμούς

Διαβάστε περισσότερα

3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ

3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ ΚΕΦΑΛΑΙΟ : ΕΞΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ : ΑΠΛΗ ΜΟΡΦΗ Κάθε εξίσωση που έχει ή μπορεί να πάρει τη μορφή : α+β=0 ή α=-β () λέγεται εξίσωση ου βαθμού (ή πρωτοβάθμια εξίσωση), με άγνωστο το, ενώ

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» 1 2.1 ΟΙ ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ιδιότητες των πράξεων Στους πραγματικούς αριθμούς ορίστηκαν οι πράξεις της πρόσθεσης και του πολλαπλασιασμού και με την οήθειά τους η αφαίρεση και η διαίρεση. Για

Διαβάστε περισσότερα

3. Να δειχτει οτι α α. Ποτε ισχυει το ισον;

3. Να δειχτει οτι α α. Ποτε ισχυει το ισον; EΞΙΣΩΣΕΙΣ Ε ξ ι σ ω σ η ο υ β α θ μ ο υ 3. Να δειχτει οτι α + 0 0α. Ποτε ισχυει το ισον; Εστω η εξισωση: α+β=0 () Λυση η ριζα. της Aν εξισωσης α, β θετικοι λεγεται, να συγκρινεται κάθε τιμη τους του πραγματικου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ Άσκηση 1 Δίνονται οι ανισώσεις: 3x και 2 x α) Να βρείτε τις λύσεις τους (Μονάδες 10) β) Να βρείτε το σύνολο των κοινών τους λύσεων (Μονάδες 15) α) Έχουμε 3x 2x x 2

Διαβάστε περισσότερα

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας. Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

II. Να αντιστοιχίσετε καθένα από τους ισχυρισμούς της ομάδας Α με τον ισοδύναμό του ισχυρισμό της ομάδας Β.

II. Να αντιστοιχίσετε καθένα από τους ισχυρισμούς της ομάδας Α με τον ισοδύναμό του ισχυρισμό της ομάδας Β. Εισαγωγικό κεφάλαιο Ερωτήσεις κατανόησης (σελ. ) I. Σε κάθε μια από τις παρακάτω περιπτώσεις να κυκλώσετε το γράμμα Α, αν ο ισχυρισμός είναι αληθής για όλους τους πραγματικούς αριθμούς α και β. Διαφορετικά

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΟΥ ΒΑΘΜΟΥ Α. Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων 1. ΕΡΩΤΗΣΗ Ποια εξίσωση λέγεται εξίσωση ου βαθμού

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

2.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

2.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 1.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΣΧΟΛΙΟ Για να λύσουµε ένα πρόβληµα, αφού το διαβάσουµε καλά, εντοπίζουµε τον άγνωστο και τον συµβολίζουµε µε µία µεταβλητή. Με βάση τα δεδοµένα του προβλήµατος καταστρώνουµε την

Διαβάστε περισσότερα

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει 8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού 97 98 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Να λυθεί η εξίσωση: 1 1 1 ( x+ )(x ) = x 3 3 9. Αν η εξίσωση (x - 3) λ + 3 = λ x έχει ρίζα τον αριθμό, να υπολογιστεί

Διαβάστε περισσότερα

2.3 Πολυωνυμικές Εξισώσεις

2.3 Πολυωνυμικές Εξισώσεις . Πολυωνυμικές Εξισώσεις η Μορφή Ασκήσεων: Ασκήσεις που μας ζητούν να λύσουμε μια πολυωνυμική εξίσωση.. Να λυθούν οι εξισώσεις: i. + + + 6 = 0 ii. 7 = iii. ( + ) + 7 = 0 iv. 8 + 56 = 0 i. + + + 6 = 0 (

Διαβάστε περισσότερα

Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων

Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων ΜΕΡΟΣ Α. ΕΞΙΣΩΣΕΙΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 69. ΕΞΙΣΩΣΕΙΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ Ορισμός Ονομάζουμε εξίσωση ου βαθμού με έναν άγνωστο κάθε ισότητα που έχει την μορφή α +β+ γ = 0 με α 0 (ο είναι ο άγνωστος της εξίσωσης,

Διαβάστε περισσότερα

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ 14 4 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ Ας υποθέσουμε ότι θέλουμε να βρούμε το πηλίκο και το υπόλοιπο της διαίρεσης του με τον Σύμφωνα με το γνωστό αλγόριθμο της διαίρεσης, το πηλίκο θα είναι ένας ακέραιος κ, τέτοιος,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο. Πίνακας διερεύνησης της εξίσωσης Εξίσωση: αx 2 +βx+γ=0 (α 0) (Ε) Έχει ΥΟ ρίζες άνισες που δίνονται από τους τύπους x 1,2 =

ΚΕΦΑΛΑΙΟ 4 ο. Πίνακας διερεύνησης της εξίσωσης Εξίσωση: αx 2 +βx+γ=0 (α 0) (Ε) Έχει ΥΟ ρίζες άνισες που δίνονται από τους τύπους x 1,2 = ΕΞΙΩΕΙ-ΑΝΙΩΕΙ ου ΒΑΘΜΟΥ - 38 - ΚΕΦΑΑΙΟ 4 ΚΕΦΑΑΙΟ 4 ο Εξισώσεις - Ανισώσεις β βαθµού 5.1. Μορφή και διερεύνηση της εξίσωσης β βαθµού Άθροισµα και γινόµενο των ριζών της Κάθε εξίσωση β βαθµού πριν τη λύσουµε,

Διαβάστε περισσότερα

Εξισώσεις 2 ου βαθμού

Εξισώσεις 2 ου βαθμού Εξισώσεις 2 ου βαθμού Εξισώσεις 2 ου βαθμού Η εξίσωση της μορφής αχ 2 + βχ + γ = 0, α 0 λύνεται σύμφωνα με τον παρακάτω πίνακα. Δ = β 2 4αγ Η εξίσωση αχ 2 + βχ + γ = 0, α 0 αν Δ>0 αν Δ=0 αν Δ

Διαβάστε περισσότερα

4.2 Η ΣΥΝΑΡΤΗΣΗ y = αx 2 + βx + γ µε α 0

4.2 Η ΣΥΝΑΡΤΗΣΗ y = αx 2 + βx + γ µε α 0 1. Η ΣΥΝΑΡΤΗΣΗ y = α + + γ µε α 0 ΘΕΩΡΙΑ 1. Τετραγωνική συνάρτηση : Ονοµάζεται κάθε συνάρτηση της µορφής y = α + + γ, α 0. Γραφική παράσταση της συνάρτησης y = α + + γ, α 0 Η γραφική παράσταση της συνάρτησης

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 1) Δίνεται η εξίσωση x 2-2(λ + 2) χ + 2λ 2-17 = 0. Να βρείτε το λ ώστε η εξίσωση να έχει μία ρίζα διπλή. Υπολογίστε τη ρίζα. Aσκήσεις στις εξισώσεις Β βαθμού Για να έχει η εξίσωση μία ρίζα διπλή πρέπει:

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΔΕΥΤΕΡΟΒΑΘΜΙΕΣ ΕΞΙΣΩΣΕΙΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΔΕΥΤΕΡΟΒΑΘΜΙΕΣ ΕΞΙΣΩΣΕΙΣ 1. Να λύσετε τις εξισώσεις ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΔΕΥΤΕΡΟΒΑΘΜΙΕΣ ΕΞΙΣΩΣΕΙΣ 3 50 3 5 0 0 ή 3 5 0 0 ή 3 5 0 ή 8 50 8 5 αδύνατη 3 60 3 6 6 3 3 4 510, α = 4, β = -5 και γ = 1 Δ = 4 5 4 4 15169 5 9 4 53 8 1 ή 4 410

Διαβάστε περισσότερα

β=0 Η εξίσωση (λ-2)χ=2λ-4 για λ=2 είναι αδύνατη. Σ Λ Αν η εξίσωση αχ+β=0 έχει δύο διαφορετικές λύσεις τότε είναι αόριστη. Σ Λ

β=0 Η εξίσωση (λ-2)χ=2λ-4 για λ=2 είναι αδύνατη. Σ Λ Αν η εξίσωση αχ+β=0 έχει δύο διαφορετικές λύσεις τότε είναι αόριστη. Σ Λ 3. ΕΞΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ 3. ΕΞΙΣΩΣΕΙΣ α 0 Η εξίσωση έχει μία μοναδική λύση την x= - αx+β=0 α=0 β 0 β=0 Η εξίσωση είναι αδύνατη, δηλαδή δεν έχει λύση. Η εξίσωση είναι αόριστη ή ταυτότητα, δηλαδή επαληθεύεται

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Κεφ. 1 - Συστήματα 1

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Κεφ. 1 - Συστήματα 1 ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Κεφ. 1 - Συστήματα 1 1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Η εξίσωση α + βy = γ 1. Υπάρχουν προβλήματα που η επίλυση τους οδηγεί σε μια γραμμική εξίσωση με δύο αγνώστους, y και η οποία είναι της μορφής

Διαβάστε περισσότερα

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.

Διαβάστε περισσότερα

Να υπολογίζουμε τη λύση ή ρίζα ενός πολυωνύμου της μορφής. Να υπολογίζουμε τη ν-οστή ρίζα ενός μη αρνητικού αριθμού.

Να υπολογίζουμε τη λύση ή ρίζα ενός πολυωνύμου της μορφής. Να υπολογίζουμε τη ν-οστή ρίζα ενός μη αρνητικού αριθμού. Ενότητα 3 Ρίζες Πραγματικών Αριθμών Στην ενότητα αυτή θα μάθουμε: Να υπολογίζουμε τη λύση ή ρίζα ενός πολυωνύμου της μορφής Ρ x x ν α. Να υπολογίζουμε τη ν-οστή ρίζα ενός μη αρνητικού αριθμού. Τις ιδιότητες

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

ςεδς ΘΕΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 3 0 ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ ΔΙΩΝΥΜΕΣ ΕΞΙΣΩΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός

ςεδς ΘΕΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 3 0 ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ ΔΙΩΝΥΜΕΣ ΕΞΙΣΩΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός 014 ςεδς ΘΕΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 0 ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ ΔΙΩΝΥΜΕΣ ΕΞΙΣΩΣΕΙΣ ΕΞΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παρόν φυλλάδιο είναι ένα τμήμα μιας προσωπικής

Διαβάστε περισσότερα

1.2 Εξισώσεις 1 ου Βαθμού

1.2 Εξισώσεις 1 ου Βαθμού 1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση

Διαβάστε περισσότερα

1) Μέθοδος επίλυσης οποιασδήποτε εξίσωσης Β Βαθμού. Έστω η δευτεροβάθμια εξίσωση : = 0 1. Μεταφέρουμε το σταθερό όρο στο δεύτερο μέλος δηλ.

1) Μέθοδος επίλυσης οποιασδήποτε εξίσωσης Β Βαθμού. Έστω η δευτεροβάθμια εξίσωση : = 0 1. Μεταφέρουμε το σταθερό όρο στο δεύτερο μέλος δηλ. 1 Εξισώσεις Β Βαθμού Εξίσωση 2 ου βαθμού μ έναν άγνωστο, είναι η εξίσωση με μορφή : αx²+βx+γ=0 με α, β, γ R και α 0. 1) Μέθοδος επίλυσης οποιασδήποτε εξίσωσης Β Βαθμού Έστω η δευτεροβάθμια εξίσωση : =

Διαβάστε περισσότερα

Το βιβλίο αυτό είναι γραμμένο με βάση την αναμορφωμένη έκδοση του σχολικού

Το βιβλίο αυτό είναι γραμμένο με βάση την αναμορφωμένη έκδοση του σχολικού www.ziti.gr Πρόλογος Το βιβλίο αυτό είναι γραμμένο με βάση την αναμορφωμένη έκδοση του σχολικού βιβλίου Άλγεβρας της Αʹ τάξης του Γενικού Λυκείου, που θα διδάσκεται από το σχολικό έτος 00-0. Είναι ένα

Διαβάστε περισσότερα

Α. ΔΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ

Α. ΔΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΜΕΡΟΣ Α.5 ΑΝΙΣΟΤΗΤΕΣ-ΑΝΙΣΩΣΕΙΣ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ 9. 5 ΑΝΙΣΟΤΗΤΕΣ- ΑΝΙΣΩΣΕΙΣ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ Α. ΔΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΟΡΙΣΜΟΙ Εάν έχουμε δύο πραγματικούς αριθμούς α και β τότε λέμε ότι ο α είναι μεγαλύτερος

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

Μαθηματικές Συναντήσεις

Μαθηματικές Συναντήσεις Μαθηματικές Συναντήσεις ΣΗΜΕΙΩΜΑ 1 / ΟΚΤΩΒΡΙΟΣ 16 Ενδεικτικά θέματα μαθηματικών για τις Α, Β και Γ τάξεις του Γενικού Λυκείου Του ΔΗΜΗΤΡΗ ΝΤΡΙΖΟΥ Σχολικού Συμούλου Μαθηματικών Τρικάλων και Καρδίτσας Τα

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα... Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

Η ΕΞΙΣΩΣΗ :α x+β=0. Μοναδική λύση. α=0 και β 0 Αδύνατη. α=0 και β=0 Αληθεύει για κάθε τιμή του x Ταυτότητα

Η ΕΞΙΣΩΣΗ :α x+β=0. Μοναδική λύση. α=0 και β 0 Αδύνατη. α=0 και β=0 Αληθεύει για κάθε τιμή του x Ταυτότητα Η ΕΞΙΣΩΣΗ :α x+= ου Η εξίσωση αx+ = είναι μια εξίσωση 1 αθμού. Όπου x ο άγνωστος της εξίσωσής μας, όπου α ο συντελεστής του πρωτοάθμιου όρου, όπου ο σταθερός όρος. Για να έχει νόημα η εξίσωση θα πρέπει:

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ 3ο κεφάλαιο: Εξισώσεις ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 2014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 2014 Περιεχόµενα 1

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ www.pitetragono.gr Σελίδα. ΔΥΝΑΜΕΙΣ : Ισχύουν οι

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Να γνωρίζει: α. την έννοια του μιγαδικού αριθμού και β. πότε δύο μιγαδικοί αριθμοί είναι ίσοι. Να μπορεί να βρίσκει: α. το άθροισμα,

Διαβάστε περισσότερα

Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές

Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές 0 Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Για να λύσουμε μια πολυωνυμική εξίσωση P(x) 0 (ή μια πολυωνυμική ανίσωση P(x)

Διαβάστε περισσότερα

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Μέθοδοι επίλυσης γραμμικού συστήματος χ Γραφική επίλυση Σχεδιάζουμε τις ευθείες που αντιπροσωπεύουν οι εξισώσεις του συστήματος. Αν: - οι δύο ευθείες τέμνονται, τότε το σύστημα έχει

Διαβάστε περισσότερα

Εξισώσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 26 σελίδες. εκδόσεις. Καλό πήξιμο

Εξισώσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 26 σελίδες. εκδόσεις. Καλό πήξιμο Εξισώσεις Κώστας Γλυκός A ΛΥΚΕΙΟΥ κεφάλαιο 3 445 ασκήσεις και τεχνικές σε 6 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 9 / 0 / 0 6 εκδόσεις Καλό

Διαβάστε περισσότερα

Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5

Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5 Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5 Α Σύνολα αριθμών Για τα σύνολα των αριθμών γνωρίζουμε ότι N Z Q R. ) Το N= { 0,,,,... } είναι το σύνολο των φυσικών αριθμών. ) Το Z = { 0, ±, ±, ±,... } είναι το σύνολο

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο Δειγματικός χώρος Ενδεχόμενα Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο Δειγματικός χώρος Ενδεχόμενα Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11 2. Σύνολα..............................................................

Διαβάστε περισσότερα

( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει

( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει μέρος πρώτο v v 1 v 1 Γενική μορφή πολυωνύμου: ( ) 1 1 Όροι του ( ) v v v P = a v + av 1 + av +... + a + a 1 + a, ν Ν, α ν R Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή. P : a, a, a,...,

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 0 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη

Διαβάστε περισσότερα

Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0.

Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0. ΜΕΡΟΣ Α. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ,α 0 337. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ ME α 0 Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής = α + β + γ με α 0. Η συνάρτηση = α +β+γ με α > 0 Η γραφική παράσταση της συνάρτησης

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ . ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Τα σύνολα των αριθμών είναι τα εξής : i. Φυσικοί αριθμοί : 0,,,,......,,,,0,,,,...

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ; ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

( ) ( ) ( ) 1. α 0. Η παράσταση. Τα αποτελέσµατα σχετικά µε τις ρίζες της εξίσωσης συνοψίζονται στον παρακάτω πίνακα: Αν = 0

( ) ( ) ( ) 1. α 0. Η παράσταση. Τα αποτελέσµατα σχετικά µε τις ρίζες της εξίσωσης συνοψίζονται στον παρακάτω πίνακα: Αν = 0 IΛΥΣΗ ΕΞΙΣΩΣΗΣ Β ΒΑΘΜΟΥ ΕΞΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ Εξίσωση β βαθµού λέγεται κάθε εξίσωση της µορφής α, β, γ R µε α Η παράσταση α = β 4αγ λέγεται διακρίνουσα της εξίσωσης Τα αποτελέσµατα σχετικά µε τις ρίζες της

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΛΥΣΗ ΤΗΣ ΕΞΙΣΩΣΗΣ α + β + γ = 0 α 0 Η ΕΝΝΟΙΑ ΤΗΣ ΙΑΚΡΙΝΟΥΣΑΣ 1. Να λυθούν οι παρακάτω εξισώσεις ως προς ή y: α) - 4 = 0 β) 3 = 4 γ) + - 15 = 0 δ) 5-18 -

Διαβάστε περισσότερα

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται δύναμη α ν με βάση τον πραγματικό αριθμό α και εκθέτη το φυσικό αριθμό >1; H δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα φυσικό αριθμό ν, συμβολίζεται

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις ευτέρου Βαθµού

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις ευτέρου Βαθµού ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις ευτέρου Βαθµού 108 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Να λυθεί η εξίσωση: 1 1 1 ( x+ )(x ) = x 3 3 9. Αν η εξίσωση (x - 3) λ + 3 = λ x έχει ρίζα τον αριθµό, να υπολογιστεί

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Ε.1 I. 1. α 2 = 9 α = 3 ψ p: α 2 = 9, q: α = 3 Σύνολο αλήθειας της p: Α = {-3,3}, Σύνολο αλήθειας της q: B = {3} A B 2. α 2 = α α = 1 ψ p: α 2 = α, q: α = 1 Σύνολο

Διαβάστε περισσότερα

2.4 ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

2.4 ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ . ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΘΕΩΡΙΑ. Κλασµατική εξίσωση : Ονοµάζουµε κλασµατική εξίσωση κάθε εξίσωση η οποία έχει τον άγνωστο σ έναν τουλάχιστον παρονοµαστή. ΣΧΟΛΙΟ ιαδικασία επίλυσης : i) Αναλύουµε τους παρονοµαστές

Διαβάστε περισσότερα

1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση:

1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση: ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ Ερωτήσεις συµπλήρωσης 1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση: Φυσική γλώσσα Μαθηµατική γλώσσα ύο αριθµοί x, y διαφέρουν κατά και έχουν γινόµενο x (x

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ 10 ΕΠΑΝΑΛΗΨΕΙΣ ΑΠΟ ΠΡΟΗΓΟΥΜΕΝΕΣ ΤΑΞΕΙΣ α ) Ταυτότητες 1. (a-β)(a+β)=a - b. (a ± b ) = a ± ab + b 3 3 3 3. (a ± b ) = a ± 3a b + 3ab

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους ( ) ( ) ( ) ( ) ( ) ( ) είναι πραγματικός, γ) Το 3 είναι άρρητος,

1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους ( ) ( ) ( ) ( ) ( ) ( ) είναι πραγματικός, γ) Το 3 είναι άρρητος, . ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Τηλ 0676-7 /0600 Α. Οι πραγματικοί αριθμοί και οι πράξεις τους. Να συμπληρωθούν τα κενά ώστε στην κατακόρυφη στήλη να προκύψει το έτος γέννησης σας : +....= 9.. = ( -

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΕΞΙΣΩΣΗΣ

4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΕΞΙΣΩΣΗΣ 1 4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΕΞΙΣΩΣΗΣ ΘΕΩΡΙΑ 1. Εξίσωση µε έναν άγνωστο: Ονοµάζουµε µία ισότητα η οποία περιέχει αριθµούς και ένα γράµµα που είναι ο άγνωστος της εξίσωσης.. Λύση ή ρίζα της εξίσωσης : Είναι ο αριθµός

Διαβάστε περισσότερα

2. 3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ

2. 3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ ΜΕΡΟΣ Α.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 193. 3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ Με την βοήθεια των εξισώσεων δευτέρου βαθμού λύνουμε πολλά προβλήματα της καθημερινής ζωής και διαφόρων επιστημών.

Διαβάστε περισσότερα

2. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 και του 100 αυξάνονται κατά 9 μονάδες, όταν αντιστραφούν τα ψηφία τους; Γ. Αν, Δ. Αν, τότε. τότε.

2. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 και του 100 αυξάνονται κατά 9 μονάδες, όταν αντιστραφούν τα ψηφία τους; Γ. Αν, Δ. Αν, τότε. τότε. 11η Κυπριακή Μαθηματική Ολυμπιάδα πρίλιος 010 Χρόνος: 60 λεπτά ΛΥΚΕΙΟΥ 1. Το τελευταίο ψηφίο του αριθμού 1 3 5 Ε 9 7. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 του 100 αυξάνονται κατά 9 μονάδες όταν αντιστραφούν

Διαβάστε περισσότερα

Πολυώνυµα - Πολυωνυµικές εξισώσεις

Πολυώνυµα - Πολυωνυµικές εξισώσεις 4 ΚΕΦΑΛΑΙΟ Πολυώνυµα - Πολυωνυµικές εξισώσεις Ορισµός πολυωνύµου Ονοµάζoυµε ΠΟΛΥΩΝΥΜΟ του κάθε παράσταση της µορφής α ν ν +α ν- ν- + +α +α 0, ν ΙΝ και α 0, α,, α ν-, α ν ΙR. Παρατηρήσεις α. Τα α ν ν, α

Διαβάστε περισσότερα

5.ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ

5.ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ 5.ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ Για να επιλύσουμε μία παραμετρική εξίσωση ακολουθούμε τα παρακάτω βήματα: i) Βγάζω παρενθέσεις ii) Κάνω απαλοιφή παρανομαστών iii) Χωρίζω γνωστούς από αγνώστους (άγνωστος είναι

Διαβάστε περισσότερα

τριώνυμο Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι:

τριώνυμο Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι: κεφάλαιο 4 Α τριώνυμο επίλυση της εξίσωσης δευτέρου βαθμού Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι: αx + βx + γ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β. ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

Εισαγωγή Το σύνολο αναφοράς και οι περιορισμοί

Εισαγωγή Το σύνολο αναφοράς και οι περιορισμοί ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΑΝΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΟΝΥΜΙΚΕΣ Εισαγωγή Το σύνολο αναφοράς και οι περιορισμοί Όταν έχουμε μία εξίσωση που περιέχει παρονομαστές ή ρίζες, πρέπει να βάζουμε περιορισμούς. Το νόημα

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο 1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο α) Αν χ 1, χ ρίζες της εξίσωσης αχ +βχ+γ=0, 0 να δείξετε ότι S 1 και P 1 Μον. 10 β) Έστω η συνάρτηση

Διαβάστε περισσότερα

Φ1: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ

Φ1: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Φ: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ 0-0 ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α - ΘΕΩΡΙΑ - ΣΩΣΤΟ-ΛΑΘΟΣ - ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ - ΑΝΤΙΣΤΟΙΧΗΣΗΣ - ΠΑΡΑΤΗΡΗΣΕΙΣ-ΜΕΘΟΔΟΛΟΓΙΑ ΘΕΜΑ Β - ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή ΣΥΝΑΡΤΗΣΗ y=α/ Η ΥΠΕΡΒΟΛΗ.5 Η ΣΥΝΑΡΤΗΣΗ y=α/-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή Δύο ποσά λέγονται αντιστρόφως ανάλογα, όταν η τιμή του ενός πολλαπλασιαστεί επί έναν αριθµό, τότε η τιµή του

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΜΑ Α Άσκηση, μιγαδικοί αριθμοί να αποδείξετε ότι: Αν = Έχουμε: = ( ) ( ) ( ) ( ) = = =. Το τελευταίο ισχύει, άρα ισχύει και η ισοδύναμη αρχική σχέση.

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ...

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ... ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ορισμός : Μία ακολουθία ονομάζεται αριθμητική πρόοδος, όταν ο κάθε όρος της, δημιουργείται από τον προηγούμενο με πρόσθεση του ίδιου πάντοτε αριθμού. Ο σταθερός αριθμός που προστίθεται

Διαβάστε περισσότερα

5.1.1 Η θεωρία και τι προσέχουμε

5.1.1 Η θεωρία και τι προσέχουμε Κεφάλαιο 5 Συνέχεια συνάρτησης σε διάστημα Συνέπειες του Θεωρήματος Bolzano 5.. Η θεωρία και τι προσέχουμε Τα κύρια χαρακτηριστικά μιας συνεχούς συνάρτησης f ορισμένης σε ένα διάστημα Δ, είναι: i. Η γραφική

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι

Διαβάστε περισσότερα

Όταν λύνοντας μια εξίσωση καταλήγουμε στην μορφή 0x=0,τότε λέμε ότι

Όταν λύνοντας μια εξίσωση καταλήγουμε στην μορφή 0x=0,τότε λέμε ότι ΜΕΡΟΣ Α. ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ 9. ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ Χρήσιμες ιδιότητες πράξεων Αν αβ τότε α+γβ+γ Αν αβ τότε α-γβ-γ Αν αβ τότε α γ α β γ β Αν αβ τότε γ γ με γ 0 Η έννοια της εξίσωσης Μια ισότητα, που αληθεύει

Διαβάστε περισσότερα

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο ρ πε α εμ των α ματ ών 2014 Γ Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 3 Θέμα Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Θεωρία ως και την 3. Ασκήσεις: -5 Θεωρία ως και την 3.3 Ασκήσεις: 6-8 Άσκηση Δίνεται η παράσταση: A= 3 5 +

Διαβάστε περισσότερα

4.1 ΑΝΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ

4.1 ΑΝΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ 4.1 ΑΝΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ 1 : ΑΠΛΗ ΜΟΡΦΗ Για να λύσω μια ανίσωση της μορφής : 0 ή 0 1 ος τρόπος : Λειτουργώ όπως και στις εξισώσεις πρώτου βαθμού, δηλαδή χωρίζω γνωστούς από αγνώστους, και

Διαβάστε περισσότερα

Η Θεωρία που πρέπει να θυμάσαι!!!... b a

Η Θεωρία που πρέπει να θυμάσαι!!!... b a Κεφ. εξισώσεις ανισώσεις εξάσκησηεπανάληψη Τhe Ds that make a champion: Devotion, Desire, Discipline Η Θεωρία που πρέπει να θυμάσαι!!!... Μορφές Εξισώσεων Λύση ή ρίζα εξίσωσης Εξίσωση ου βαθμού ax + b

Διαβάστε περισσότερα

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ 2: ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ. 2.3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 1ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ 2: ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ. 2.3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ..3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Παράδειγμα. Να βρείτε το μέτρο των μιγαδικών

Διαβάστε περισσότερα

Άλγεβρα Α Λυκείου. Αξίζει να τονίσω ότι οι περισσότερες από τις ασκήσεις αυτές προήλθαν από διάφορα εξωσχολικά βιβλία και ιστοσελίδες συναδέλφων.

Άλγεβρα Α Λυκείου. Αξίζει να τονίσω ότι οι περισσότερες από τις ασκήσεις αυτές προήλθαν από διάφορα εξωσχολικά βιβλία και ιστοσελίδες συναδέλφων. Άλγεβρα Α Λυκείου Το υλικό αυτό αποτελείται από μικρές θεωρητικές υποδείξεις και ασκήσεις και προβλήματα που έχω αξιοποιήσει στην τάξη μου για τη διδασκαλία της Άλγεβρας της Α Λυκείου (Ημερήσιο Γενικό

Διαβάστε περισσότερα

,, δηλαδή στο σημείο αυτό παρουσιάζει τη μέγιστη τιμή της αν α < 0 2α 4α και την ελάχιστη τιμή της αν α > 0. β Στο διάστημα,

,, δηλαδή στο σημείο αυτό παρουσιάζει τη μέγιστη τιμή της αν α < 0 2α 4α και την ελάχιστη τιμή της αν α > 0. β Στο διάστημα, Γενικής Παιδείας 1.4 Εφαρμογές των παραγώγων Το κριτήριο της πρώτης παραγώγου Στην Άλγεβρα της Α Λυκείου μελετήσαμε τη συνάρτηση f(x) = αx + βx + γ, α 0 και είδαμε ότι η γραφική της παράσταση είναι μία

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι ΚΕΦΑΛΑΙΟ 3 Ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ. Ποια είναι η μορφή ενός συστήματος δύο γραμμικών εξισώσεων, δύο αγνώστων; Να δοθεί παράδειγμα.

Διαβάστε περισσότερα

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας 07 3. Να αποδείξετε την ταυτότητα + + αβ βγ γα = Να αποδείξετε ότι για όλους τους α, β, γ ισχύει + + αβ + βγ + γα Πότε ισχύει ισότητα; = = + + =

Διαβάστε περισσότερα

Τετραγωνική ρίζα πραγματικού αριθμού

Τετραγωνική ρίζα πραγματικού αριθμού Τετραγωνική ρίζα του θετικού αριθμού α, ονομάζεται ο θετικός αριθμός χ, όταν χ = α. Ορίζουμε επίσης ότι: 0 0. Δηλαδή αν α, x > 0 και x, τότε x. Συνέπειες του ορισμού Για κάθε πραγματικό αριθμό x ισχύει:

Διαβάστε περισσότερα

με Τέλος πάντων, έστω ότι ξεκινάει ένα άλλο υποθετικό σενάριο που απλά δεν διευκρινίζεται. Για το i) θα έχουμε , 2

με Τέλος πάντων, έστω ότι ξεκινάει ένα άλλο υποθετικό σενάριο που απλά δεν διευκρινίζεται. Για το i) θα έχουμε , 2 Άσκηση 75 Σε έναν οργανισμό, αρχικά υπάρχουν 04800 βακτήρια. Μετά από 1 ώρα υπάρχουν 10400 βακτήρια, μετά από ώρες 5100 βακτήρια, και γενικά ο αριθμός των βακτηρίων υποδιπλασιάζεται κάθε μια ώρα. α) Πόσα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα