ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ"

Transcript

1 ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ Επιµέλεια: Ι. Σπηλιώτης,. Λεπίπας, Π. Αγγελόπουλος Άσκηση.3 σελ. 4 α) εύκολο β) Αφού C F θα είαι σ( C) σ( F) και λόφω του α) θα είαι σ( C) F. Για τη απόδειξη του ατίθετου εγκλισµού θεωρούµε τη κλάση E { F: Ω σ( C)} Για τη κλάση υποσυόλω E παρατηρούµε ότι C E διότι για τυχό C ισχύει Ω C σ( C ) Επίσης η κλάση E είαι σ-άλγεβρα υποσυόλω του Ω διότι :. ) Ω σ(c σ ( C) είαι σ-άλγεβρα υποσυόλω του Ω. \ Ω σ( C). Οµως ( Ω\ ) Ω Ω \ Ω και άρα Ω Ω σ C ) Ω Ω αφού η ) Α E τότε κατά το ορισµό της E είαι Ω σ( C ) και συεπώς Ω ( \ ) ( ) ) Α {, } E τότε Ω σ ( C ) και άρα ( Ω) σ( C) Συεπώς ( ) Ω σ( C ), δηλαδή, E. Ωστε η Ε είαι σ-άλγεβρα και περιέχει τη C και συεπώς περιέχει και σ ( C) F. Α τώρα Ω, F είαι τυχό στοιχείο της F τότε Eδηλαδή Ω σ( C ), δηλαδή F σ( C) γ) εύκολο Άσκηση 3. σελ. 3 Έστω D έα σύστηµα Dy. Θα δείξουµε ότι ικαοποιούται οι ()-(v) της άσκησης. Οι () και () από το ορισµό. Για τη () αρκεί α παρατηρήσουµε ότι... και αφού δύο οποιαδήποτε σύολα της έωσης... έχου τοµή το κεό συµπεραίουµε ότι D. Αποµέει η (v). Πράγµατι θέτουµε..., \,3 3 \, Από τη () συµπεραίουµε ότι D. Επίσης τα σύολα είαι ξέα αά δύο και ισχύει άρα κατά το ορισµό D. Ατίστροφα έστω ότι η κλάση D ικαοποιεί τις ()-(v) της άσκησης. Θα δείξουµε ότι ικαοποιούται οι (),(),() του ορισµού του συστήµατος Dy. Αρκεί α γίει για τη (). Έστω { : } D µε. Θέτουµε, και γεικά έχουµε(εύκολα µε επαγωγή) ότι τη (v) ότι D. Όµως.. Από τη () της άσκησης D και αφού + θα έχουµε από

2 Άσκηση 3.4 σελ. 3 α) Α το µέτρο P έχει τη ιδιότητα (3.3) συµπεραίουµε ότι Ρ (Ε)Ρ(Ε) για κάθε Ε P. Όµως η κλάση P είαι ηµιδακτύλιος και σ ( P ). Αρκεί α επικαλεστούµε τη πρόταση 3.3 σελ.. β) Για τυχό Ι(α,β] P ' θεωρούµε τη κλάση φ { Α : P( I) P () P ()} Θα δείξουµε ότι η κλάση φ είαι έα σύστηµα Dy υποσυόλω του. Πράγµατι (, + ] κα άρα P( I) P(( (, + ] ) I) P( (, + ] I) P( (, + ]) I) P ((, + ]) P (I) P (I) P ((, + ]) P (I) P ( ) άρα φ. Α τώρα Α, Β φ µε τότε βέβαια P( I) P ()P (I) άρα P( I) P ()P (I) P( I) P( I) P()P(I) P()P(I) και συεπώς P( I \ I) P ( \ ) P (I). Όµως I\ I (\) I (εύκολο) Τελικά \ φ. Έστω τώρα {, } φ µε Από τη P( I) P ()P (I) συµπεραίουµε ότι και αφού τα I είαι ξέα αά δύο P( ( I)) P (I) P ( ). Όµως Τελικά ( I) ( ) I (επαληθεύστε) P(( ) I) P ( )P (I) άρα (3.3) P( I) P ( )P (I) φ. Ώστε φ είαι σύστηµα Dy και προφαώς λόγω της (3.3) περιέχει τα σύολα της P άρα φ d( P ) σ ( P ). Αφού η κλάση φ περιέχει τη έχουµε αποδείξει ότι P( I) P ()P (I). () Για τυχό Α θεωρούµε τη κλάση ε { Β : P( ) P( )P() } Όπως προηγουµέως αποδεικύεται ότι η ε είαι σύστηµα Dy υποσυόλω του που λόγω της () περιέχει P και άρα ε d( P ) δηλαδή ε (µάλιστα ) Και άρα έχουµε αποδείξει ότι: P( ) P()P() Β. Άσκηση 4. σελ. 4 Επαγωγικά στο κ Για κ είαι προφαές από το ορισµό του ηµιδακτυλίου. Έστω τώρα ότι ισχύει για κ λδηλ. \ λ Α Β (*)

3 Τότε λ+ λ+ λ λ λ λ+ λ+ (*) ( ) λ+ ( λ+ ) ( \ λ+). \ Α ( Α ) Α ( Α ) (\ ) κάθε έα από τα \λ + υποσυόλω από το ηµιδακτύλιο και άρα ( \ ) ξέα µεταξύ τους αφού Άσκηση 4.3 σελ. 5 Θέτουµε \ λ+ Από το ορισµό του ηµιδακτυλίου (,,..,) γράφεται ως έωση ξέω µεταξύ τους λ + \ λ +,,, είαι ξέα.. Από υπόθεση Α F. Σύµφωα µε τη άσκηση 4. (*) όπου,,..., ξέα µεταξύ τους και συεπώς Γ όπου Γ,,, Α ( ). Από υπόθεση επίσης τα σύολα,,..., είαι ξέα µεταξύ τους και από τη (*) προκύπτει ότι (,..., αφού η ) ( ) και συεπώς τα σύολα,,..., είαι ξέα µεταξύ τους άρα P( ) P( ) + P() είαι απλώς προσθετική από υπόθεση. Από τη τελευταία συµπεραίουµε ότι P( ) P( ) για κάθε και άρα P( ) P(). P Από τη εκφώηση έχουµε ήδη τη ατίθετη αισότητα και τελικά τη ζητούµεη ισότητα. Άσκηση 4.5 σελ. 6 Θέτουµε Α Τότε Α ( \ ) ( ) και συεπώς Όµως ( \ ) (επαληθεύστε) και η ακολουθία \ είαι P() P( \ ) + P( ) (*) φθίουσα και συεπώς κατά τη εκφώηση l P( \ ) Επίσης l P( ) P( ) και συεπώς από τη (*) παίρουµε ότι

4 P() P( ) Άσκηση 4.8 σελ. 9 Θέτουµε φ σ ( F N ). Θα δείξουµε ότι F φ. Έστω τυχό Ε F µε το ορισµό της F το E Nµε Α F και Ν N και άρα Α, Ν F N. Συεπώς Α Ν σ (F N) φ. είξαµε λ οιπό ότι F σ ( F N) F. Άσκηση 5. σελ. 9. Τότε σύµφωα φ. Επε ιδή από το ορισµό της F βλέπουµε άµ εσα ότι F, N F συµπεραίουµ ε ότι F N F και άρα Εύκολα διαπιστώεται ότι { } (,) και επειδή η ακολουθία (, ] είαι φθίουσα έχουµε P({}) l P(, ] l P(F() F( )) F() l F( ) F() F( ) Άσκηση 6. σελ. 6 Εύκολα διαπιστώουµε ότι οι κλάσεις C { Ω},..., C { Ω} Θεωρούµε τις παρακάτω κλάσεις υποσυόλω ε { : C { Ω} για,,,} είαι αεξάρτητες. ε { : C { Ω} + για +,,,} Τότε οι κλάσεις ε, ε είαι κλειστές ως προς τη πεπερασµέη τοµή δηλ. α Α,Β ε τότε Α Β ε (ι,). Επίσης είαι αεξάρτητες όπως διαπιστώεται αµέσως και άρα σ ( ε), σ( ε) είαι αεξάρτητες κατά τη πρόταση 6.. Όµως ε C... C, ε C+... C και ε F και ε F. Άρα σ ( ε ) F, σ( ε ) F. Γείκευση Έστω C, Ι αεξάρτητες κλάσεις κλειστές για πεπερασµέες τοµές και Ι σύολο δεικτώ για το οποίο γωρίζουµε ότι Ι J λ όπου J λ, λ Λ είαι ξέα µεταξύ τους (Λ άλλο σύολο δεικτώ). Θέτουµε F σ ( C ), λ Λ. Τότε οι σ-άλγεβρες F λ, λ Λ είαι αεξάρτητες. (Υπόδειξη : Θέτουµε ε { Λ : Λ λ K λ λ Λ Jλ C { Ω}, Κ πεπερασµέο υποσύολο του } Τότε οι ε λ, λ Λ είαι αεξάρτητες και κλειστές για πεπερασµέες τοµές. Άσκηση 6.4 σελ.3 J λ

5 Έχουµε P( ) και P ( ) < άρα P( ) και P ( ) > Από τη τελευταία έχουµ ε ότι l l P ( ) και άρα P Συεπώς l P( ) και λόγω αεξαρτησίας l ( ) l l P( ) () Εξ άλλου µε l sup P ( ) P ( ) P( ) lp( ) ll P( ) ll P ( ) l le Οπότε λαµβάοτας υπόψι τη σχέση () έχουµε P ( ) l P( ) l P( ) ll e Άσκηση 6.5 σελ.3 Έχουµε l P ( ) και P ( \ + ) < τώρα διαδοχικά l P(lsup ) P( ) l P( ) ll P( ) l όµως ( \ ) ( \ )... ( \ ) και συεπώς l l χρησιµοποιώτας τη αισότητα oole και τη ιδιότητα P ( \ ) P ( ) P ( ) P(lsup ) ll[ P ( ) + P ( ) P ( ) + P ( ) P ( ) l... +P( l) P ( l l )] επαληθεύστε ότι το ετός τω αγκυλώ άθροισµα γράφεται P ( \ ) + P ( \ ) P ( \ ) + P ( ) και συεπώς l l l l P(lsup ) ll( P ( \ ) + P ( )) l( P ( \ ) + l P ( )) + l + l l l( P ( \ )) αφού + P ( \ ) < + Άσκηση.4 σελ.34 l l Θέτουµε {( x,..., x ) : x a} τότε και συεπώς η συάρτηση

6 ( x,..., x ) I ( x,..., x ) είαι συάρτηση orel. ( x,..., x ) Με τη σειρά της η συάρτηση I ( ) είαι τυχαία µεταβλητή ως σύθεση της τ.µ. ( x,..., x ) και της συάρτησης orel I (βλέπε πρόταση.4 ) Επειδή Y * I ( ) (επαληθεύστε το) συµπεραίουµε ότι η Y είαι τ.µ. Άσκηση.5 σελ.34 Θέτουµε C { :, Τ ο τυχό στοιχείο E P + είαι της µορφής E ( a, b]... ( a, b] ( a+, b+ ]... ( a+, b+ ] όπου ( a, b]... ( a, b ] και ( a+, b+ ]... ( a+, b+ ] άρα E C δηλαδή P + C σ( P + ) σ( C) + } εξ άλλου το τυχό στοιχείο C γράφεται ( ) ( ) θεωρούµ g : + ε τώρα τη µ ε τύπο gx (,..., x, x,..., x ) ( x,..., x ) και + τη h : µε τύπο hx (,...,,,..., + + x x+ x+ ) ( x+,..., x+ ) δηλαδή τις + προβολές του στο και ατίστοιχα. Τότε εύκολα διαπιστώεται ότι g ( ) και h ( ) και επειδή οι συαρτήσεις g,h είαι συεχείς θα + είαι και orel δηλαδή g ( ), h ( ) και συεπώς + g ( ) h ( ) C + και άρα σ ( C) Άσκηση.5 σελ.39 κ Y P-σ.β. σηµαίει ότι υπάρχει N αι ( ω) Υ( ω), ω Ω \ N α τώρα τεθεί N N τότε N F και F µε PN ( ) + PN ( ) PN ( ) δηλαδή PN ( ) και βέβαια ισχύ ει ( ω ) Y( ω ), ω Ω \ N άρα sup ( ω) Y( ω), ω Ω \ N Άσκηση : Έστω { : } ακολουθία εδεχοµέω µε l P ( ). Α Χ τυχαία µεταβλ ητή µε E[ ]< δείξτε ότι l dp. Απόδειξη : (εις άτοπο απαγωγή) Αρκεί α δείξουµε ότι ( ε > )( δε ( ) > ): < ε, ότα P( ) < δε ( ) Έστω ότι δε ισχύει τότε ( ε > )( δ > ): µε P ( ) < και < ε, ( ) θέτουµε και άρα P

7 Τώρα θέτουµε τότε I I και άρα I I στο Ω και µε βάση το παρακάτω θε ώρηµα έπεται ότι I I Ω Ω Συεπώς I dp l I dp l dp l( dp+ dp) Ω Ω l f Από τη µία dp I dp dp. Ω + I dp > ε και από τη άλλη επειδή P() > Ω - άτοπο. Θεώρηµα : Έστω, ακολουθία τ.µ. τέτοια ώστε ) l P-σχεδό πατού ) Υπάρχει τ.µ. Υολοκληρώσιµη ως προς P τέτοια ώστε για κάθε α ισχύει Y P-σχεδό πατού. Τότε η τ.µ. Χ είαι ολοκληρώσιµη ως προς P και µάλιστα l dp dp. Άσκηση : Έστω {, } ακολουθία τ.µ. είξτε ότι σβ.. P(lsu p{ > ε}), ε > (). Απόδειξη : Από Αρχιµήδειο ιδιότητα ε >, : < ε τότε { > ε} { > } l sup{ > ε} lsup{ > } Και άρα α η () ισχύει για κάθε ε της µορφής θα ισχύει και για κάθε ε γεικά. Το ατίστροφο είαι προφαές ώστε P(lsup{ > ε}), ε > P(lsup{ > }), P(lsup{ > }), P( { > }), P( { }), () επειδή η ακολουθία { } είαι φθίουσα συµπεραίουµε ότι P( ) l P( ) αλλά και ατίστροφα α

8 P( ) τότε P) (, αφού.ώστε τελικά η () ισοδυαµεί µε P( { } ) P(l ). Άσκηση : Έστω { : } ακολουθία αεξάρτητω τ.µ. µε P ( ) και P ( ). είξτε ότι P αλλά δε ισχύει σβ... Απόδειξη : P( > ε) P( > ε) P( ) l P( > ε ) ότι / θα δειχθεί µε εις άτοπο απαγωγή. Έστω ότι ισχύει τότε σύµφωα µε προηγούµ εη άσκηση θα πρέπει P(lsup{ > ε }). Από τη άλλη επειδή τα εδεχόµεα { > ε}, σβ..,,... είαι αεξάρτητα έπεται ότι P( > ε ) P( ) orel-catell θα έχ ω P(lsup{ > ε}) -άτοπο P οπότε από το δεύτερο λήµµα Άσκηση : Α οι τ.µ. { E [ ] µ, Var[ ] σ τότε µ. Απόδειξη : : } είαι ισόοµες και αεξάρτητες µ ε S L S S µ Ε[ µ ] Ε[ ] Ε [ S µ ] { Var[ S µ ] + ( E[ S µ ]) } Όµως ES [ µ ] E [ ] µ µ µ και Var[ S µ ] Var[ µ µ ] Var[ µ ] Var[ µ ] σ λόγω αεξαρτησίας S σ S [ µ ] σ [ S L Τελικά Ε lε µ ] Άσκηση : Έστω ακολουθία τ.µ. { : } και S δείξτε ότι L S L α τότε Λύση :

9 L E[ ] έχουµε διαδοχ ικά S E[( ) ] E E( ) E ( + ) ( E( ) E( +,,, + ( ( ) ( )) ( ) E E E )) S Συεπώς E( ) E( ) Όµως l E ( ) και από γωστό λήµµα της αάλυσης l E ( ) Άσκηση : Έστω { : } αεξάρτητες, ισόοµες µε καταοµή οµοιόµ ορφη στο (,). Θέτουµε Y {,..., }, Z ( ax{,..., }). είξτε ότι D D Y Y, Z Z όπου Υ,Ζ τ.µ. µε εκθετική καταοµή. Λύση : Z ( ax{,..., }),,, Οι τ.µ.,..., έχου τη ίδια καταοµή, οµοιόµορφη στο (,), και συεπώς έχου α.σ.κ., x < F( x) x, x<, x Η καταοµή της τ.µ. T ax{,..., } είαι Όσο αφορά τη καταοµή της τ.µ. PT ( x) P(ax{,..., } x) P( x,,..., ) P( { x}) και λόγω αεξαρτησίας έπεται ότι P( T x) P({ x}) F( x) [ F( x)] x F( x) P( Z x) P( ( T) x) P( T ) x x PT ( ) PT ( < ) Z έχουµε

10 x και συεπώς F ( ) [ ( )] x F, x x ή ισοδύαµα F ( x) ( ), < x, x Για τυχό x > υπάρχει τέτοιο ώστε < x, οπότε F ( x ) ( x ) x, και βέβαια l F ( x) e. x Για τυχό x l F ( x ). Ώστε l F ( x) e, x ηλα δή Z Z ε () Άσκηση : Έστω ακολουθία τ.µ. { : } µε τιµές στο. είξτε ότι υπάρχει ακολουθία > : Λύση : ( ε > )( M( ε) > ): P( > M) < ε άρα για ε υπάρχει M : P( > ) <, άρα P( > ) <, P ( > ) < < εφαρµόζω το λήµµα orel-caell για τα σύολα { > } κι έχω P up{ (ls > }) P( { > }) Θέτω Ω { }. Τότε P ( Ω ) και για τυχό ω Ω ( ω) τέτοιο ώστε υπάρχει ω { }, δηλαδή ω { },. Ώστε για τυχό ( ω) ω Ω α θέτω αφού P ( Ω ) Άσκηση Έστω πείραµα τύχης µε δύο ισοπίθαα δυατά αποτελέσµατα επιτυχία αποτυχία. Το πείραµα επααλαµβάεται επ άπειρο. Ποια η πιθαότητα α συατώται επ άπειρο διαδοχές επιτυχιώ τουλάχιστο διπλάσιες σε πλήθος από το πλήθος τω δοκιµώ που προηγούται;

11 Λύση Θεωρείστε το δ.χ. Ω {,} όπως στο παράδειγµα 6.3 σελ. 8 εφοδιασµέο µε το µέτρο πιθαότητας P για το οποίο ισχύει P( x... x {,}) Q( )...Q( ), {,} + όπου Q το µέτρο πιθαότητας στο {,} το οριζόµεο από τις σχέσεις Q({})Q({}). To εδεχόµεο της εκφώησης είαι Αlsup Τότε Ρ( ) ( ) + 3(-) όπου {ω(ω,ω,...): ω, ω,...,ω }, - {,}x{}x...x{}x {,} και συεπώς κ 3- - ( ) Από τ η τελευταία συάγουµε ότι Άσκηση P( ) < και άρα P() Έστω p η πιθαότητα επιτυχούς έκβ ασης της προσπάθειας α τεθεί σε λειτουργία έα σύστηµα κατά τη -οστή απόπειρα και Χ ο αριθµός αποπειρώ µέχρι τη πρώτη επιτυχή απόπειρα. Υποθέτοτας ότι p < α) Να δοθεί ο κατάλληλος δ.χ. και α ορισθεί η τ.µ. Χ β) Υπολογίστε τη P(< ) και τη καταοµή της τ.µ. Χ γ) ώστε µια απλή ικαή συθήκη ώστε P( < ) δ) Υπολογίστε επακριβώς τη P( < ) ότα : ) p p,< p< ) p, και p ) p, και p Λύση α) Ω {,} και P οριζόµεο από τη P( P( x x...x x {,}) P ( )...P ( ) + στο {,} από τη P ({}) P,P ({}) P για {,} και P οριζόµεο Για τυχό ω( ω, ω,...) ορίζουµε:

12 f{ : ω } α { : ω } Χω ( ) α ω(,,...) β) P( < ) P( ) P(,,...). Οµως {(,...)} µε { ω ( ω, ω,...) : ω,..., ω } {}x {}x...x{}x Συεπώς Η καταοµή της τ.µ. Χ είαι : P( ) ( P ) γ) P( <) ότα και µόο ότα + {,} P( < ) P( ) lp( ) l ( P ) ( P ) P( ) P({}x...x{}x{}x {,}) + ) P( < ) αφού P ( P )P ( P ) επειδή P e P συµπεραίουµε ότι η συθήκη P συεπάγεται ότι δ) ( P ) ) P( < ) αφού P ( )( + ) P( < ) ( ) l l ) ( ) ( + ) l

ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΜΕ ΟΛΟΚΛΗΡΩΜΑΤΑ

ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΜΕ ΟΛΟΚΛΗΡΩΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΜΕ ΟΛΟΚΛΗΡΩΜΑΤΑ ΣΧΟΛΙΑ : Είαι γωστό ότι για µια συεχή συάρτηση σε έα διάστηµα, το ολοκλήρωµα F ορίζει έα πραγµατικό αριθµό όπου o είαι έα οποιοδήποτε σηµείο του και α έα αυθαίρετο

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΜΕΤΑΜΟΡΦΩΣΗΣ 2014 ΒΑΣΙΚΗ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

ΛΥΚΕΙΟ ΜΕΤΑΜΟΡΦΩΣΗΣ 2014 ΒΑΣΙΚΗ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ 1. Τι λέγεται δειγματικός χώρος εός πειράματος τύχης. Το σύολο τω δυατώ αποτελεσμάτω λέγεται δειγματικός χώρος (sample space) και συμολίζεται συήθως με το γράμμα Ω. Α δηλαδή ω 1,ω 2,...,ω κ είαι τα δυατά

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΕΚΦΩΝΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α.. Να αποδείξετε ότι η παράγωγος της συάρτησης f ( ), για κάθε R. Α.. Α.. (

Διαβάστε περισσότερα

Μάθηµα 7 ο ΚΑΝΟΝΙΚΟΙ ΠΙΝΑΚΕΣ AA A A

Μάθηµα 7 ο ΚΑΝΟΝΙΚΟΙ ΠΙΝΑΚΕΣ AA A A Αάλυση Πιάκω και Εφαρµογές Σελίδα από 0 Μάθηµα 7 ο ΚΑΝΟΝΙΚΟΙ ΠΙΝΑΚΕΣ Θεωρία : Γραµµική Άλγεβρα : Από τη σχέση (54) µέχρι τέλος του εδαφίου, σελ 5, Πρόταση 6, σελ 45, Πρόταση 66 (θεώρηµα Schur), σελ 54

Διαβάστε περισσότερα

ΟΡΙΑ. 0 : Παραγοντοποιώ αριθµητή και παρονοµαστή και διώχνω τους παράγοντες x, x 0 που προκύπτουν.

ΟΡΙΑ. 0 : Παραγοντοποιώ αριθµητή και παρονοµαστή και διώχνω τους παράγοντες x, x 0 που προκύπτουν. ΟΡΙΑ Πηλίκα πολυωυµικώ µε µορφή 0 0 : Παραγοτοποιώ αριθµητή και παροοµαστή και διώχω τους παράγοτες, 0 που προκύπτου Περιπτώσεις µε ρίζες µορφής 0 0 Περιπτώσεις στις οποίες χρειάζεται α πολλαπλασιάσω µε

Διαβάστε περισσότερα

5 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 41.

5 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 41. ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 5 η ΕΚΑ Α 4. Έστω Ω { ω, ω, ω, ω 4 } ο δειγµατικός χώρος εός πειράµατος τύχης και τα εδεχόµεα Α {ω, ω }, Β {ω, ω 4 } + Α είαι P(A B) και Ρ( Β Α ), όπου θετικός ακέραιος τότε + 4 Να αποδείξετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ ο. Τι οοµάζεται συάρτηση ; Είαι µια διαδικασία µε τη οποία κάθε στοιχείο εός συόλου Α ατιστοιχίζεται σε έα ακριβώς στοιχείο κάποιου άλλου συόλου Β.. Ποιες είαι οι κυριότερες γραφικές παραστάσεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΘΕΜΑ 1ο Α. Aς υποθέσουµε ότι x 1,x,,x k είαι οι τιµές µιας µεταβλητής Χ, που αφορά τα άτοµα εός δείγµατος µεγέθους, όπου

Διαβάστε περισσότερα

xf(y) + yf(x) = (x + y)f(x)f(y)

xf(y) + yf(x) = (x + y)f(x)f(y) ΕΥΡΕΣΗ ΤΥΠΟΥ ΣΥΝΑΡΤΗΣΗΣ Επιμέλεια: Καρράς Ιωάης Μαθηματικός Φίλος μὲ δή, ὡς ἔοικε, τούτῳ τῷ λόγῳ ὁ ἀγαθὸς ἔσται, ἐχθρὸς δὲ ὁ ποηρός. gxkarras@gmail.com 1. Να βρεθού όλες οι συαρτήσεις f : R R για τις οποίες

Διαβάστε περισσότερα

x [ ] T ( ) Μάθηµα 6 ο ΙΑΓΩΝΟΠΟΙΗΣΗ ΠΙΝΑΚΑ Λυµένες Ασκήσεις * * * * * * Θεωρία : Γραµµική Άλγεβρα : εδάφιο 5, σελ

x [ ] T ( ) Μάθηµα 6 ο ΙΑΓΩΝΟΠΟΙΗΣΗ ΠΙΝΑΚΑ Λυµένες Ασκήσεις * * * * * * Θεωρία : Γραµµική Άλγεβρα : εδάφιο 5, σελ Γραµµική Άλγεβρα ΙΙ Σελίδα από 4 Μάθηµα 6 ο ΙΑΓΩΝΟΠΟΙΗΣΗ ΠΙΝΑΚΑ Θεωρία : Γραµµική Άλγεβρα : εδάφιο 5, σελ 5-5 Ασκήσεις :, 4, 6, 8, 9,, σελ 59 Λυµέες Ασκήσεις Άσκηση 6 ο πίακας είαι η µοαδική ιδιοτιµή του,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Α. Aς υποθέσουµε ότι 1,,, k είαι οι τιµές µιας µεταβλητής Χ, που αφορά Β.1. τα άτοµα εός δείγµατος µεγέθους,

Διαβάστε περισσότερα

5.3 ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟ ΟΣ

5.3 ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟ ΟΣ 5. ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟ ΟΣ ΘΕΩΡΙΑ. Ορισµός Μια ακολουθία λέγεται γεωµετρική πρόοδος, α και µόο α κάθε όρος της προκύπτει από το προηγούµεό του µε πολλαπλασιασµό επί το ίδιο πάτοτε µη µηδεικό αριθµό.. Μαθηµατική

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ. Για να βρούµε την δύναµη i (όπου κ ακέραιος), διαιρούµε το κ µε το 4 και σύµφωνα µε την ταυτότητα της διαίρεσης ισχύει κ=4ρ+υ όπου ρ Ζ

ΑΛΓΕΒΡΑ. Για να βρούµε την δύναµη i (όπου κ ακέραιος), διαιρούµε το κ µε το 4 και σύµφωνα µε την ταυτότητα της διαίρεσης ισχύει κ=4ρ+υ όπου ρ Ζ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ ο ΜΙΓΑΔΙΚΟΙ - ΜΕΘΟΔΟΛΟΓΙΑ κ Για α βρούµε τη δύαµη i (όπου κ ακέραιος), διαιρούµε το κ µε το 4 και σύµφωα µε τη ταυτότητα της διαίρεσης ισχύει κ=4ρ+υ όπου ρ Ζ και υ = 0,,, οπότε i κ 4ρ+

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Γενικής Παιδείας Γ Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Γενικής Παιδείας Γ Λυκείου Επααληπτικό Διαγώισμα Μαθηματικώ Γεικής Παιδείας Γ Λυκείου Θέμα A Α.α) Τι οομάζουμε συάρτηση και τι οομάζουμε πραγματική συάρτηση πραγματικής μεταβλητής; β) Τι λέγεται τιμή μιας συάρτησης f στο χ ; γ)

Διαβάστε περισσότερα

Μάθηµα 5 ο NΟΡΜΑ ΠΙΝΑΚΑ

Μάθηµα 5 ο NΟΡΜΑ ΠΙΝΑΚΑ Αάλυση Πιάκω και Εφαρµογές Σελίδα από 3 Μάθηµα 5 ο NΟΡΜΑ ΠΙΝΑΚΑ Για κάθε αριθµό, η -όρµα του διαύσµατος [ ] = συµβολίζεται και ισούται µε το θετικό αριθµό = = (5) Αποδεικύοται για τη -όρµα οι παρακάτω

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικώ της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 Τετάρτη, 3 Μα ου 0 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α Α. Α οι συαρτήσεις f, g είαι παραγωγίσιμες στο

Διαβάστε περισσότερα

(c f (x)) = c f (x), για κάθε x R

(c f (x)) = c f (x), για κάθε x R ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 04 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α. Α η συάρτηση f είαι

Διαβάστε περισσότερα

Λυµένες Ασκήσεις * * *

Λυµένες Ασκήσεις * * * Αάλυση Πιάκω και Εφαρµογές Σελίδα 1 από 6 Μάθηµα 9 ο ΓΙΝΟΜΕΝΟ KRONECKER Θεωρία : Γραµµική Άλγεβρα : εδάφιο 6, σελ 15 Λυµέες Ασκήσεις Άσκηση 91 Α AB, είαι πίακες τύπου µ µ και ατίστοιχα, υπολογίσατε τη

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 04 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΗΜΑ BOLZANO. και επιπλέον. Αν μία συνάρτηση f είναι ορισμένη σε ένα κλειστό διάστημα [α,β] η f είναι συνεχής στο [α,β]

ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΗΜΑ BOLZANO. και επιπλέον. Αν μία συνάρτηση f είναι ορισμένη σε ένα κλειστό διάστημα [α,β] η f είναι συνεχής στο [α,β] ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ - ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ - ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Του Κώστα Βακαλόπουλου ΑΣΚΗΣΗ (ΣΤΑΤΙΣΤΙΚΗ) Το εύρος (R) τω παρατηρούμεω υψώ τω 00 πελατώ εός γυμαστηρίου είαι cm. A) Να ομαδοποιήσετε τα δεδομέα

Διαβάστε περισσότερα

Πανελλαδικες Εξετασεις Γ Λυκειου Μαθηµατικα Γενικης Παιδειας

Πανελλαδικες Εξετασεις Γ Λυκειου Μαθηµατικα Γενικης Παιδειας ΘΕΜΑ Α. Παελλαδικες Εξετασεις Γ Λυκειου Μαθηµατικα Γεικης Παιδειας Θέµατα-Εδεικτικές Λύσεις Νικόλαος. Κατσίπης 17 Μαϊου 2010 Α1. Εστω t 1, t 2,..., t οι παρατηρήσεις µιας ποσοτικής µεταβλητής X εός δείγµατος

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΙΙ. αντιστοιχίζεται ο αριθµός Χω= ω+ ω δηλαδή ορίζεται η συνάρτηση Χ : Ω µε Χω,ω ω ω Α 3, 2, 2,3, 4,1, 1, 4

ΚΕΦΑΛΑΙΟ ΙΙ. αντιστοιχίζεται ο αριθµός Χω= ω+ ω δηλαδή ορίζεται η συνάρτηση Χ : Ω µε Χω,ω ω ω Α 3, 2, 2,3, 4,1, 1, 4 ΚΕΦΑΛΑΙΟ ΙΙ. Η έννοια της τυχαίας µεταβλητής Συχνά αυτό το οποίο παρατηρούµε σε ένα πείραµα τύχης δεν είναι το όποιο αποτέλεσµα ω Ω αλλά µια µαθηµατική ποσότητα Χ εξαρτώµενη από το αποτέλεσµα ω Ω. Ας εξετάσουµε

Διαβάστε περισσότερα

4. Δεσμευμένη Πιθανότητα - Ανεξαρτησία Ενδεχομένων

4. Δεσμευμένη Πιθανότητα - Ανεξαρτησία Ενδεχομένων Δεσμευμέη Πιθαότητα Αεξαρτησία Εδεχομέω 4 Δεσμευμέη Πιθαότητα - Αεξαρτησία Εδεχομέω 4 Γιατί δεσμευμέη πιθαότητα Το όημα της δεσμευμέης πιθαότητας Η πιθαότητα, ως έα μέτρο του βαθμού βεβαιότητας που έχουμε

Διαβάστε περισσότερα

Μάθηµα 4 ο ΟΡΘΟΓΩΝΙΟΙ ΠΙΝΑΚΕΣ. Λυµένες Ασκήσεις * * * Θεωρία : Γραµµική Άλγεβρα : εδάφιο 7, σελ Ασκήσεις : 1, 2, 3, σελ. 107.

Μάθηµα 4 ο ΟΡΘΟΓΩΝΙΟΙ ΠΙΝΑΚΕΣ. Λυµένες Ασκήσεις * * * Θεωρία : Γραµµική Άλγεβρα : εδάφιο 7, σελ Ασκήσεις : 1, 2, 3, σελ. 107. Γραµµική Άλγεβρα ΙΙ Σελίδα από 8 Μάθηµα 4 ο ΟΡΘΟΓΩΝΙΟΙ ΠΙΝΑΚΕΣ Θεωρία : Γραµµική Άλγεβρα : εδάφιο 7, σελ 05 Ασκήσεις :,, 3, σελ 07 Λυµέες Ασκήσεις Άσκηση 4 Α ο πίακας R είαι ορθογώιος, αποδείατε ότι I

Διαβάστε περισσότερα

(πολλδ β) = πολλδ + ( 1) ν β ΕΥΣΤΡΑΤΙΟΣ ΚΩΣΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΘΟ ΙΚΟ ΙΑΙΡΕΤΟΤΗΤΑ

(πολλδ β) = πολλδ + ( 1) ν β ΕΥΣΤΡΑΤΙΟΣ ΚΩΣΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΘΟ ΙΚΟ ΙΑΙΡΕΤΟΤΗΤΑ ΙΑΙΡΕΤΟΤΗΤΑ Ορισµός: Λέµε ότι ο ακέραιος β 0διαιρεί το ακέραιο α και γράφουµε β/α, ότα η διαίρεση του α µε το β είαι τέλεια, δηλαδή υπάρχει κ Z τέτοιος ώστε α = κ β. Συµβολίζουµε ότι α = πολβ. Α ο β δε

Διαβάστε περισσότερα

β± β 4αγ 2 x1,2 x 0.

β± β 4αγ 2 x1,2 x 0. Ορισµοί, ισότητα, µέτρο, άθροισµα µιγαδικώ αριθµώ Μιγαδικό επίπεδο Γεωµετρική παράσταση του αθροίσµατος µιγαδικώ αριθµώ ax 3 + β x + γ x+ δ = 0 Η προσπάθεια επιλύσεως εξισώσεω 3 ου βαθµού ( ) και δευτεροβαθµίω

Διαβάστε περισσότερα

Κι όµως, τα Ρολόγια «κτυπούν» και Εξισώσεις: Η Άλγεβρα των εικτών του Ρολογιού

Κι όµως, τα Ρολόγια «κτυπούν» και Εξισώσεις: Η Άλγεβρα των εικτών του Ρολογιού Κι όµως, τα Ρολόγια «κτυπού» και Εξισώσεις: Η Άλγεβρα τω εικτώ του Ρολογιού Εισαγωγικά ηµήτρης Ι. Μπουάκης Σχ. Σύµβουλος Μαθηµατικώ Σε ορισµέα βιβλία Αριθµητικής, αλλά κυρίως Άλγεβρας Β Γυµασίου και Α

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΗΜΑΤΑ ΠΡΟΤΑΣΕΙΣ µε ΑΠΟ ΕΙΞΕΙΣ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ µε ΑΠΑΝΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΤΟΥ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΚΑΙ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Αιστάι 3 Αµφιάλη 4389-43

Διαβάστε περισσότερα

ΚΑΤΑΣΚΕΥΑΣΙΜΟΤΗΤΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΓΙΑΝΝΗΣ ΞΕΙ ΑΚΗΣ

ΚΑΤΑΣΚΕΥΑΣΙΜΟΤΗΤΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΓΙΑΝΝΗΣ ΞΕΙ ΑΚΗΣ ΚΑΤΑΣΚΕΥΑΣΙΜΟΤΗΤΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΓΙΑΝΝΗΣ ΞΕΙ ΑΚΗΣ ΘΕΩΡΗΜΑ : Ααγκαία συθήκη για α κατασκευάζεται µε καόα και διαβήτη έα καοικό πολύγωο είαι το πλήθος τω πλευρώ του α είαι της µορφής ( + )...( + ) όπου

Διαβάστε περισσότερα

Α2. Πότε μια συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της; Μονάδες 4

Α2. Πότε μια συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της; Μονάδες 4 (http://edu.klmaka.gr) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. (Πρόοδοι) ΠΡΟΟΔΟΙ

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. (Πρόοδοι) ΠΡΟΟΔΟΙ ΠΡΟΟΔΟΙ Οι πρόοδοι αποτελού µια ειδική κατηγορία τω ακολουθιώ και είαι τριώ ειδώ : αριθµητικές, αρµοικές και γεωµετρικές. ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΟΟΔΟΙ (ΘΕΩΡΙΑ) Ορισµός Μια ακολουθία αριθµώ α, α,, α, α +, θα λέµε

Διαβάστε περισσότερα

1. [0,+ , >0, ) 2. , >0, x ( )

1.  [0,+   ,      >0,   ) 2. ,    >0,  x   ( ) Σελίδα 1 από 5 ΝΙΟΣΤΕΣ ΡΙΖΕΣ ΤΑ ΣΥΜΒΟΛΑ α, α ΣΧΕΤΙΚΑ ΘΕΜΑΤΑ του Ατώη Κυριακόπουλου 1 ΡΙΖΕΣ ΣΤΟ ΣΥΝΟΛΟ R = [, ) Θεώρηµα και ορισµός οθέτος, εός πραγµατικού αριθµού α και εός φυσικού αριθµού >, υπάρχει έας

Διαβάστε περισσότερα

78 Ερωτήσεις Θεωρίας Στα Μαθηματικά Γενικής Παιδείας

78 Ερωτήσεις Θεωρίας Στα Μαθηματικά Γενικής Παιδείας Στα Μαθηματιά Γειής Παιδείας Tι οομάζουμε συάρτηση Tι οομάζουμε παραγματιή συάρτηση πραγματιής μεταβλητής Μια διαδιασία με τη οποία άθε στοιχείο εός συόλου Α πεδίο ορισμού ατιστοιχίζεται σε έα αριβώς στοιχείο

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 0 ΙΟΥΝΙΟΥ 014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

ονοµάζεται γεωµετρική πολλαπλότητα αυτής. Τα ιδιοδιανύσµατα αυτά είναι βάση του διανυσµατικού υποχώρου E ( λ 0 ), που ονοµάζεται ιδιόχωρος

ονοµάζεται γεωµετρική πολλαπλότητα αυτής. Τα ιδιοδιανύσµατα αυτά είναι βάση του διανυσµατικού υποχώρου E ( λ 0 ), που ονοµάζεται ιδιόχωρος Γραµµική Άγεβρα ΙΙ Σείδα από 5 Μάθηµα 5 ο Ι ΙΟΤΙΜΕΣ ΚΑΙ Ι ΙΟ ΙΑΝΥΣΜΑΤΑ ΠΙΝΑΚΑ Θεωρία : Γραµµική Άγεβρα : εδάφιο, σε 33 (όχι Πρόταση 63) εδάφιο, σε 4, Πρόταση 65, (χωρίς απόδειξη) και Πρόταση 66 εδάφιο

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

1. Το σύνολο των μιγαδικών αριθμών

1. Το σύνολο των μιγαδικών αριθμών Το σύολο τω μιγαδικώ αριθμώ Γωρίζουμε ότι η εξίσωση δε έχει λύση στο σύολο τω πραγματικώ αριθμώ Για α ξεπεράσουμε αυτή τη αδυαμία «μεγαλώσαμε» το σύολο και δημιουργήσαμε το σύολο, έτσι, ώστε α έχει τις

Διαβάστε περισσότερα

Όταν πραγματοποιείται το Α πραγματοποιείται και το Β.

Όταν πραγματοποιείται το Α πραγματοποιείται και το Β. Βασικές έοιες και τύποι πιθαοτήτω Πείραμα τύχης - Η έοια του τυχαίου Δειγματικός χώρος Ω εός πειράματος τύχης (πεπερασμέος, απείρως αριθμήσιμος, συεχής) Εδεχόμεα Α, Β, (απλά, σύθετα) Βέβαιο εδεχόμεο Αδύατο

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ ΕΠΝΛΗΠΤΙΚΕΣ ΣΚΗΣΕΙΣ ΛΓΕΡΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΘΟΥΣ ΠΙΘΝΟΤΗΤΕΣ 1. Για οποιαδήποτε εδεχόμεα, εός δειγματικού χώρου Ω ισχύει η σχέση PA B= PA+ PB. ( ) ( ) ( ). Ισχύει ότι PA ( B) + PA ( B) = PA ( ) + PB ( )

Διαβάστε περισσότερα

i) Αν ο φυσικός αριθμός n δεν είναι τετράγωνο ακεραίου, τότε ο n είναι άρρητος.

i) Αν ο φυσικός αριθμός n δεν είναι τετράγωνο ακεραίου, τότε ο n είναι άρρητος. Πρόλογος 3 Πρόλογος Τ ο βιβλίο αυτό απευθύεται σε κάθε συάδελφο Μαθηματικό, αλλά κυρίως σε κάθε έο συάδελφο που πρόκειται α συμμετάσχει στο διαγωισμό του Α.Σ.Ε.Π. Επίσης, απευθύεται σε μαθητές με υψηλούς

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÊÏÑÕÖÁÉÏ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÊÏÑÕÖÁÉÏ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 04 Ε_.ΜλΑ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Ηµεροµηία: Κυριακή 7 Απριλίου 04 ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ Α. α) Λάθος (βλέπε σελίδα 4 του σχολικού βιβλίου, Το σωστό

Διαβάστε περισσότερα

Ακολουθίες Αριθµητική Γεωµετρική Πρόοδος

Ακολουθίες Αριθµητική Γεωµετρική Πρόοδος Ακολουθίες Αριθµητική Γεωµετρική Πρόοδος Μία συάρτηση α µε πεδίο ορισµού το Ν * λέγεται ακολουθία και συµβολίζεται µε (α ) δηλ. a : N * R : α = α( ) Ο α 1 λέγεται πρώτος όρος της ακολουθίας, ο α δεύτερος

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. ευτέρα, 17 Μα ου 2010 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ. Οµάδα Μαθηµατικών της Ώθησης. Επιµέλεια:

ΑΠΑΝΤΗΣΕΙΣ. ευτέρα, 17 Μα ου 2010 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ. Οµάδα Μαθηµατικών της Ώθησης. Επιµέλεια: ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 00 ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικώ της Ώθησης ευτέρα, 7 Μα ου 00 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 00 ευτέρα, 7 Μα ου 00 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ

Διαβάστε περισσότερα

Τι είναι εκτός ύλης. Σχολικό έτος

Τι είναι εκτός ύλης. Σχολικό έτος Τι είαι εκτός ύλης. Σχολικό έτος 06-07 ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε. Το Λεξιλόγιο της Λογικής...9 Ε. Σύολα...3 ΚΕΦΑΛΑΙΟ o: Πιθαότητες. Δειγματικός Χώρος - Εδεχόμεα...0. Έοια της Πιθαότητας...9 ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΜΕ ΥΠΑΡΧΕΙ ( ) τέµνει σε άπειρα σηµεία την πλάγια ασύµπτωτή της; 9. Υπάρχει συνάρτηση που να µην είναι η σταθερή η οποία έχει άπειρες

ΕΡΩΤΗΣΕΙΣ ΜΕ ΥΠΑΡΧΕΙ ( ) τέµνει σε άπειρα σηµεία την πλάγια ασύµπτωτή της; 9. Υπάρχει συνάρτηση που να µην είναι η σταθερή η οποία έχει άπειρες ΕΡΩΤΗΣΕΙΣ ΜΕ ΥΠΑΡΧΕΙ. Υάρχει συάρτηση f : R R : f ( ) + f( ) =, για άθε. Υάρχει συάρτηση f ορισµέη αι συεχής [,+ ), η οοία δε αρουσιάζει αρότατο στο 3. ίεται συάρτηση f τέτοια ώστε f f = +, R. Υάρχει συάρτηση

Διαβάστε περισσότερα

Α. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ ΠΡΑΞΕΙΣ ΤΟΥΣ

Α. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ ΠΡΑΞΕΙΣ ΤΟΥΣ ΜΑΘΗΜΑ Κεφάλαιο o : Αλγεβρικές Παραστάσεις Υποεότητα.: Πράξεις µε πραγµατικούς αριθµούς (Επααλήψεις- Συµπληρώσεις) Θεµατικές Εότητες:. Οι πραγµατικοί αριθµοί και οι πράξεις τους.. υάµεις πραγµατικώ αριθµώ..

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 05 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο R, να αποδείξετε ότι: f + g ' = f ' + g ', R Μονάδες 7 Α. Πότε λέµε ότι µια συνάρτηση

Διαβάστε περισσότερα

ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ

ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ Ρωτήσαμε 50 μαθητές μιας τάξης για το αριθμό τω αδελφώ τους Οι απατήσεις που πήραμε είαι: 0,,,,4,5 Α v, v, v, v4, v5, v 6 είαι οι ατίστοιχες συχότητες τους

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν

ΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 7 MAΪΟΥ 00 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ

Διαβάστε περισσότερα

Στατιστική. μονάδα και ισχύει: i. ν ν. = ή ως ποσοστό % οπότε % = i fi

Στατιστική. μονάδα και ισχύει: i. ν ν. = ή ως ποσοστό % οπότε % = i fi Στατιστική "Υπάρχου τα μικρά ψέματα, τα μεγάλα ψέματα και οι στατιστικές" Μαρκ Τουαί Σε κάθε πρόβλημα της Στατιστικής υπάρχει έας «πληθυσμός» Ω τα στοιχεία του οποίου (άτομα) εξετάζοται ως προς έα χαρακτηριστικό

Διαβάστε περισσότερα

Ι δ ι ο τ η τ ε ς Π ρ ο σ θ ε σ η ς - Π ο λ λ α π λ α σ ι α σ μ ο υ ΙΔΙΟΤΗΤΑ ΠΡΟΣΘΕΣΗ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Ι δ ι ο τ η τ ε ς Π ρ ο σ θ ε σ η ς - Π ο λ λ α π λ α σ ι α σ μ ο υ ΙΔΙΟΤΗΤΑ ΠΡΟΣΘΕΣΗ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1 Π ρ α γ μ α τ ι κ ο ι Α ρ ι θ μ ο ι : Υ π ο σ υ ο λ α του Το συολο τω φυσικω 3. αριθμω: Να δειχτει οτι = α {0,1,,3, } + 110 0α. Ποτε ισχυει το ισο; Το συολο τω. A ακεραιω α, β θετικοι

Διαβάστε περισσότερα

lim lim Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ Ορισµός Μία συνάρτηση f είναι παραγωγίσιµη σε ένα σηµείο x του πεδίου ορισµού της, όταν υπάρχει στο R, το

lim lim Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ Ορισµός Μία συνάρτηση f είναι παραγωγίσιµη σε ένα σηµείο x του πεδίου ορισµού της, όταν υπάρχει στο R, το ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΠΑΡΑΓΡΑΦΟΣ Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ Ορισµός Μία συάρτηση είαι παραγωγίσιµη σε έα σηµείο του πεδίου ορισµού της, ότα υπάρχει στο R, το lim ( ( Το όριο αυτό οοµάζεται παράγωγος της στο και

Διαβάστε περισσότερα

ΜΑΘΗΜΑ Η έννοια του µιγαδικού αριθµού Πράξεις

ΜΑΘΗΜΑ Η έννοια του µιγαδικού αριθµού Πράξεις ΜΑΘΗΜΑ.. Η έοια του µιγαδικού αριθµού Πράξεις Θεωρία - Σχόλια - Μέθοδοι - Ασκήσεις α + βi - i α + βi i (β - αi ) ΘΕΩΡΙΑ. Ύπαρξη του i εχόµαστε ότι υπάρχει αριθµός i, µε τη ιδιότητα φαταστική µοάδα. i,

Διαβάστε περισσότερα

Μάθημα: Γεωργικός Πειραματισμός-Βιομετρία (Κωδ. 2860) 2. Τυχαίες μεταβλητές-βασικές κατανομές

Μάθημα: Γεωργικός Πειραματισμός-Βιομετρία (Κωδ. 2860) 2. Τυχαίες μεταβλητές-βασικές κατανομές Μάθημα: Γεωργικός Πειραματισμός-Βιομετρία (Κωδ 860) Τυχαίες μεταβλητές-βασικές καταομές Σύτομη αασκόπηση βασικώ εοιώ, προτάσεω και τύπω Ο κλασικός ορισμός της πιθαότητας (Laplace, 181) Ο στατιστικός ορισμός

Διαβάστε περισσότερα

www.fr-anodos.gr (, )

www.fr-anodos.gr (, ) ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ. Το lim f ( ) έχει όηµα σε γειτοικά σηµεία µε το δηλαδή ότα ( a, ) (, β ) a. Δε µε εδιαφέρει α το ίδιο το αήκει η όχι στο πεδίο ορισµού της f αλλά µε εδιαφέρει α υπάρχου στο πεδίο ορισµού

Διαβάστε περισσότερα

4.1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ

4.1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ 1.1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ ΘΕΩΡΙΑ 1. Αρχή της Μαθηµατιής Επαγωγής Έστω ισχυρισµός Ρ(), όπου θετιός αέραιος. Α (i) Ρ αληθής αι (ii) Ρ() Ρ( + 1) για άθε, τότε Ρ() αληθής για άθε.. Αισότητα Bernoulli (1 +α

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές»

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Το σύνολο των πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας) α)

Διαβάστε περισσότερα

φ = 2ω = = 2 2(ν 2) + 4 = 2 + 4

φ = 2ω = = 2 2(ν 2) + 4 = 2 + 4 Γιατί οι μέλισσες κάου εξαγωικές τις κηρήθρες τους ; Χριστία Δασκαλάκη Α.Μ. 99 Ημερομηία παράδοσης 9-10-014 Θεωρούμε έα καοικό -γωο και σημειώουμε μια γωία του καθώς και τις γωίες του ισοσκελούς τριγώου

Διαβάστε περισσότερα

2.3 ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΙΑΣΠΟΡΑΣ. 1. Μέση τιµή x = Σταθµικός Μέσος x = 3. ιάµεσος (δ) ενός δείγµατος ν παρατηρήσεων, οι οποίες έχουν διαταχθεί σε

2.3 ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΙΑΣΠΟΡΑΣ. 1. Μέση τιµή x = Σταθµικός Μέσος x = 3. ιάµεσος (δ) ενός δείγµατος ν παρατηρήσεων, οι οποίες έχουν διαταχθεί σε .3 ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΙΑΣΠΟΡΑΣ ΘΕΩΡΙΑ. Μέση τιµή x = x = x = + + + t t... t = x + x +... + x + +... + x κ κ = f x κ t κ κ = κ κ x = κ x. Σταθµικός Μέσος x = xw + x w +... + x w w + w +... + w = x w w όπου

Διαβάστε περισσότερα

c f(x) = c f (x), για κάθε x R

c f(x) = c f (x), για κάθε x R ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΙΓΑΔΙΚΩΝ. 1. Τι ονομάζουμε σύνολο Μιγαδικών Αριθμών; Τι ονομάζουμε πραγματικό μέρος - φανταστικό μέρος ενός μιγαδικού αριθμού z = α + βi.

ΘΕΩΡΙΑ ΜΙΓΑΔΙΚΩΝ. 1. Τι ονομάζουμε σύνολο Μιγαδικών Αριθμών; Τι ονομάζουμε πραγματικό μέρος - φανταστικό μέρος ενός μιγαδικού αριθμού z = α + βi. ΘΕΩΡΙΑ ΜΙΓΑΔΙΚΩΝ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. Τι οομάζουμε σύολο Μιγαδικώ Αριθμώ; Τι οομάζουμε πραγματικό μέρος - φαταστικό μέρος εός μιγαδικού αριθμού α + βi. Σύολο τω μιγαδικώ αριθμώ οομάζουμε έα υπερσύολο τω

Διαβάστε περισσότερα

Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ

Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ. Να βρείτε το πεδίο ορισµού των παρακάτω συναρτήσεων: ( = g( = + 4 h( = t( = 5 φ( = ln σ( = ln(ln p( = ln m( = λ R λ - λ - k( = ln 4 s( = ηµ. Να εξετάσετε αν για τις παραπάνω συναρτήσεις

Διαβάστε περισσότερα

Δεσμευμένη πιθανότητα και Ανεξαρτησία ενδεχομένων

Δεσμευμένη πιθανότητα και Ανεξαρτησία ενδεχομένων Δεσμευμέη πιθαότητα και Αεξαρτησία εδεχομέω 4 Γιατί δεσμευμέη πιθαότητα Το όημα της δεσμευμέης πιθαότητας 4 Ο πολλαπλασιαστικός τύπος 4 Το θεώρημα ολικής πιθαότητας 44 Το θεώρημα Bayes 45 Αεξαρτησία εδεχομέω

Διαβάστε περισσότερα

Η τεκµηρίωση του ορισµού της σύγκλισης ακολουθίας πραγµατικών ( αν) ν αντιπροσωπευτικά παραδείγµατα & αντιπαραδείγµατα.

Η τεκµηρίωση του ορισµού της σύγκλισης ακολουθίας πραγµατικών ( αν) ν αντιπροσωπευτικά παραδείγµατα & αντιπαραδείγµατα. Η τεκµηρίωση του ορισµού της σύγκλισης ακολουθίας πραγµατικώ ( α) µε ατιπροσωπευτικά παραδείγµατα & ατιπαραδείγµατα. Ιωάης Π. Πλατάρος, Μαθηµατικός, Καπετά Κρόµπα 37, Τ.Κ. 24 2 ΜΕΣΣΗΝΗ, ηλ./ταχ. Plataros@sch.gr

Διαβάστε περισσότερα

εδάφιο 3, σελ. 181 υπερβολή ή παραβολή. Η ταξινόµηση αυτή παρουσιάζεται στον 1 ο πίνακα, T

εδάφιο 3, σελ. 181 υπερβολή ή παραβολή. Η ταξινόµηση αυτή παρουσιάζεται στον 1 ο πίνακα, T Γραµµική Άλγεβρα ΙΙ Σελίδα από 8 Μάθηµα 9 ο ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ Θεωρία : Γραµµική Άλγεβρα : εδάφιο, σελ 7, εδάφιο, σελ 75, εδάφιο 3, σελ 8 Ασκήσεις :,, 3, 4, 5, 6, 7, 8, σελ 75,, 4, 8, σελ 8, II, IV, σελ

Διαβάστε περισσότερα

lim f (x) = +. ΣΗΜΕΙΩΣΕΙΣ Μη πεπερασμένο όριο στο x 0 R

lim f (x) = +. ΣΗΜΕΙΩΣΕΙΣ Μη πεπερασμένο όριο στο x 0 R ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ R - ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ - ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΑΚΟΛΟΥΘΙΑΣ [Κεφ..6: Μη Πεπερασμέο Όριο στο R - Κεφ..7: Όρια Συάρτησης

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 7 Φεβρουαρίου 03 Ασκηση. είξτε ότι

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΜΟΙ Ορισμός Συνδυασμός ν στοιχείων ανά κ είναι μια μη διατεταγμένη συλλογή κ στοιχείων από τα ν.

ΣΥΝΔΥΑΣΜΟΙ Ορισμός Συνδυασμός ν στοιχείων ανά κ είναι μια μη διατεταγμένη συλλογή κ στοιχείων από τα ν. 13/10/2010 ΣΥΝΔΥΑΣΜΟΙ Ορισμός Συδυασμός στοιχείω αά κ είαι μια μη διατεταγμέη συλλογή κ στοιχείω από τα. Παράδειγμα 1 Οι συδυασμοί τω τριώ γραμμάτω Α,Β,Γ αά έα είαι οι εξής τρεις: Α, Β, Γ. Οι συδυασμοί

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι Είδαµε στο κύριο θεώρηµα του προηγούµενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισµα απλών προτύπων. Εδώ θα χαρακτηρίσουµε όλους

Διαβάστε περισσότερα

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ] Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες-εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Συνδιασπορά - Συσχέτιση Τυχαίων Μεταβλητών Επιµέλεια : Κωνσταντίνα

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ

ΒΑΣΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ ΚΕΦΑΛΑΙΟ 4 ΒΑΣΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ. ΟΜΟΙΟΜΟΡΦΗ ΚΑΤΑΝΟΜΗ H απλούστερη συεχής καταοµή πιαότητας είαι η οµοιόµορφη η οποία εκχωρεί ίσες (οµοιόµορφες) πιαότητες στα στοιχειώδη δυατά αποτελέσµατα εός τυχαίου

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

5.5 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΟ C

5.5 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΟ C 5 55 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΟ C Εισαγωγή Η επίλυση τω εξισώσεω ου και 4ου βαθμού, η ααγκαστική επαφή με τους μιγαδικούς αριθμούς για τη έκφραση τω πραγματικώ ριζώ και η εξέλιξη του αλγεβρικού λογισμού

Διαβάστε περισσότερα

2. Πιθανότητα και Δεσμευμένη Πιθανότητα

2. Πιθανότητα και Δεσμευμένη Πιθανότητα Μάθημα: Στατιστική (Κωδ 105) Διδάσκω: Γιώργος Κ Παπαδόπουλος 2 Πιθαότητα και Δεσμευμέη Πιθαότητα Σύτομη αασκόπηση βασικώ εοιώ, προτάσεω και τύπω Πείραμα τύχης - Η έοια του τυχαίου Δειγματικός χώρος Ω εός

Διαβάστε περισσότερα

στους μιγαδικούς αριθμούς

στους μιγαδικούς αριθμούς Πράξεις στους μιγαδικούς αριθμούς Πρόσθεση μιγαδικώ αριθμώ Βασικές ασκήσεις Βασική θεωρία α) ) Πώς γίεται η πρόσθεση δύο μιγαδικώ αριθμώ; ) Ποια είαι η γεωμετρική ερμηεία του αθροίσματος δύο μιγαδικώ;

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ Α ΕΡΓΑΣΙΑΣ. ( 8 µον.) Η άσκηση αυτή αναφέρεται σε διαιρετότητα και ρίζες πολυωνύµων. a. Να λυθεί η εξίσωση

Διαβάστε περισσότερα

11.1 11.3. Ορισµός ιδιότητες εγγραφή καν. πολυγώνων σε κύκλο

11.1 11.3. Ορισµός ιδιότητες εγγραφή καν. πολυγώνων σε κύκλο 1 11.1 11. ρισµός ιδιότητες εγγραφή κα. πολυγώω σε κύκλο ΘΩΡΙ 1. Έα πολύγωο λέγεται καοικό, ότα έχει όλες τις πλευρές του ίσες και όλες τις γωίες του ίσες.. ύο καοικά πολύγωα µε το ίδιο αριθµό πλευρώ είαι

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΓΑ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A Α.. Α.. Α.. A.4. Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηία:

Διαβάστε περισσότερα

Παρουσίαση 1 ΜΕΤΡΑ ΘΕΣΗΣ

Παρουσίαση 1 ΜΕΤΡΑ ΘΕΣΗΣ Παρουσίαση ΜΕΤΡΑ ΘΕΣΗΣ Παρουσίαση.4 Μέτρα θέσης Στη συέχεια θα περιγράψουµε κάποια µέτρα, τα οοµαζόµεα µέτρα θέσης. Τα µέτρα θέσης µίας καταοµής, είαι κάποια αριθµητικά µεγέθη που δίου τη θέση του κέτρου

Διαβάστε περισσότερα

εξαρτάται από το θ και για αυτό γράφουµε την σ.π.π. στην εξής µορφή: ( θ, + ) θ θ n 2n (θ,+ ) 1, 0, x θ.

εξαρτάται από το θ και για αυτό γράφουµε την σ.π.π. στην εξής µορφή: ( θ, + ) θ θ n 2n (θ,+ ) 1, 0, x θ. Άσκηση : Έστω Χ,,Χ τυχαίο δείγµα µεγέους από την κατανοµή µε σππ 3 p (,, >, > 0 α είξτε ότι η στατιστική συνάρτηση Τ( Χ : Χ ( m είναι επαρκής για την παράµετρο και πλήρης κ β Βρείτε ΑΕΕ του α Το στήριγµα

Διαβάστε περισσότερα

c f(x) = c f (x), για κάθε x R

c f(x) = c f (x), για κάθε x R (http://edu.klmaka.gr) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

Α. ΕΞΙΣΩΣΕΙΣ ΣΥΣΤΗΜΑΤΑ = Γ. β1 = β2

Α. ΕΞΙΣΩΣΕΙΣ ΣΥΣΤΗΜΑΤΑ = Γ. β1 = β2 Α. ΕΞΙΣΩΣΕΙΣ ΣΥΣΤΗΜΑΤΑ ΕΙΔΗ ΕΞΙΣΩΣΗΣ ( ΔΙΕΡΕΥΝΗΣΗ ΕΞΙΣΩΣΗΣ): i. αχ=β µε α 0 έχει µία λύση ii. 0χ=β µε β 0 αδύατη εξίσωση ( καµία λύση ) iii. 0χ=0 αόριστη εξίσωση ( άπειρες λύσεις ) ΕΙΔΗ ΣΥΣΤΗΜΑΤΟΣ (ΔΙΕΡΕΥΝΗΣΗ

Διαβάστε περισσότερα

είναι οι τιμές μιας μεταβλητής Χ, που αφορά τα άτομα ενός δείγματος μεγέθους v,. Συχνότητα (απόλυτη) νi

είναι οι τιμές μιας μεταβλητής Χ, που αφορά τα άτομα ενός δείγματος μεγέθους v,. Συχνότητα (απόλυτη) νi ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός λέγεται έα σύολο που θέλουμε α εξετάσουμε τα στοιχεία του ως προς έα ή περισσότερα χαρακτηριστικά τους Μεταβλητές λέγοται τα χαρακτηριστικά ως προς τα οποία εξετάζουμε

Διαβάστε περισσότερα

4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ

4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ 1 4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ ΘΕΩΡΙΑ 1. Θεώρηµα Αν α, β ακέραιοι µε β 0, τότε υπάρχουν µοναδικοί ακέραιοι κ και υ, έτσι ώστε α = κβ + υ µε 0 υ < β. 2. Τέλεια διαίρεση Αν το υπόλοιπο υ της Ευκλείδειας

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ - ΠΙΘΑΝΟΤΗΤΕΣ

ΑΣΚΗΣΕΙΣ - ΠΙΘΑΝΟΤΗΤΕΣ ΑΣΚΗΣΕΙΣ - ΠΙΘΑΝΟΤΗΤΕΣ Οµάδα η. Αν Ω={ω,ω,,ω 6 } είναι ο δ.χ ενός πειράµατος τύχης να βρείτε τις πιθανότητες Ρ(ω ),,Ρ(ω 6 ) αν είναι γνωστό ότι αυτές αποτελούν διαδοχικούς όρους αριθµητικής προόδου µε

Διαβάστε περισσότερα

3. Οριακά θεωρήµατα. Κεντρικό Οριακό Θεώρηµα (Κ.Ο.Θ.)

3. Οριακά θεωρήµατα. Κεντρικό Οριακό Θεώρηµα (Κ.Ο.Θ.) 3 Οριακά θεωρήµατα Κεντρικό Οριακό Θεώρηµα (ΚΟΘ) Ένα από τα πιο συνηθισµένα προβλήµατα που ανακύπτουν στη στατιστική είναι ο προσδιορισµός της κατανοµής ενός µεγάλου αθροίσµατος ανεξάρτητων τµ Έστω Χ Χ

Διαβάστε περισσότερα

ΑΣΕΠ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΚΛΑΔΟΣ: ΠΕ 03 Μαθηματικών

ΑΣΕΠ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΚΛΑΔΟΣ: ΠΕ 03 Μαθηματικών ΑΣΕΠ ΕΚΠΑΙΔΕΥΤΙΚΩΝ 9 ΚΛΑΔΟΣ: ΠΕ 3 Μαθηματικώ Ερώτημα Ο Εισαγωγή ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΕΡΩΤΗΜΑΤΑ ΕΙΔΙΚΗΣ ΔΙΔΑΚΤΙΚΗΣ. Το συγκεκριμέο ερώτημα θα μπορούσε α έχει ισοδύαμα τη μορφή: «Να προτείετε σχέδιο μαθήματος,

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ

ΒΑΣΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ ΒΑΣΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ 1. Α. Να βρεθού οι κ,λ R για τους οποίους είαι ίσα τα πολυώυµα ( λ + 1) x ( κ ) x λ + 1 (x) = και Q(x) = κx λx + κ Β. Να βρείτε τους πραγµατικούς αριθµούς α, β, γ R για τους

Διαβάστε περισσότερα

ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ( ) Να αποδείξετε ότι για κάθε θετικό ακέραιο ν ισχύει : ! + 2 2! + 3 3! + +ν ν! = (ν + 1)!

ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ( ) Να αποδείξετε ότι για κάθε θετικό ακέραιο ν ισχύει : ! + 2 2! + 3 3! + +ν ν! = (ν + 1)! ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ 1. Να αποδείξετε ότι για κάθε θετικό ακέραιο ισχύει : 1 + 1 1! +! +! + +! = ( + 1)!. Να αποδείξτε ότι 6 10 [ ( 1) ] = ( + 1) ( + ) ( + ) (), για κάθε θετικό ακέραιο.. Να αποδείξετε ότι

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. Αντίστροφη συνάρτηση. ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Συνάρτηση 1-1. Θεωρία Σχόλια Μέθοδοι Ασκήσεις

ΜΑΘΗΜΑ ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. Αντίστροφη συνάρτηση. ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Συνάρτηση 1-1. Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΜΑΘΗΜΑ 5. ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Συνάρτηση - Αντίστροφη συνάρτηση Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Ορισµός Συνάρτηση :Α R λέγεται συνάρτηση, όταν για οποιαδήποτε, Α µε ισχύει

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt014/nt014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

ΕΛΑΧΙΣΤΑ ΑΝΩ ΜΕΓΙΣΤΑ ΚΑΤΩ ΦΡΑΓΜΑΤΑ

ΕΛΑΧΙΣΤΑ ΑΝΩ ΜΕΓΙΣΤΑ ΚΑΤΩ ΦΡΑΓΜΑΤΑ ΕΛΑΧΙΣΤΑ ΑΝΩ ΜΕΓΙΣΤΑ ΚΑΤΩ ΦΡΑΓΜΑΤΑ Κασαπίδης Γεώργιος Μαθηµατικός Στο άρθρο αυτό µελετάµε την πιο χαρακτηριστική ιδιότητα του συνόλου R των πραγµατικών αριθµών. ΟΡΙΣΜΟΣ 1 Ένα σύνολο Α από πραγµατικούς

Διαβάστε περισσότερα

1.5 ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ

1.5 ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ ΜΕΡΟΣ Α.5 ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ 67.5 ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ ΟΡΙΣΜΟΣ Οομάζουμε ταυτότητα κάθε ισότητα που περιέχει μεταβλητές και επαληθεύεται για όλες τις τιμές τω μεταβλητώ αυτώ. Τετράγωο αθροίσματος

Διαβάστε περισσότερα

1. * Η ακολουθία είναι µια συνάρτηση µε πεδίο ορισµού το σύνολο Α. Q Β. Ζ* Γ. Ν. Ν* Ε. R

1. * Η ακολουθία είναι µια συνάρτηση µε πεδίο ορισµού το σύνολο Α. Q Β. Ζ* Γ. Ν. Ν* Ε. R Ερωτήσεις πολλαπλής επιλογής 1. * Η ακολουθία είαι µια συάρτηση µε πεδίο ορισµού το σύολο Α. Q Β. Ζ* Γ. Ν. Ν* Ε. R. * Η γραφική παράσταση µιας ακολουθίας είαι Α. Μια ευθεία γραµµή Β. Μια παραβολή Γ. Μια

Διαβάστε περισσότερα

4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31.

4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31. ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ η ΕΚΑ Α. Οι µηνιαίες αποδοχές, σε, ν υπαλλήλων είναι x, x,, x ν και αυτές αποτελούν οµοιογενές δείγµα µε µέση τιµή 000. Αν το 8% έχει µισθό Α, το 6% Β και οι υπόλοιποι Γ : Να βρείτε το

Διαβάστε περισσότερα

Μάθημα: Γεωργικός Πειραματισμός-Βιομετρία (Κωδ. 2860) 1. Περιγραφική Στατιστική

Μάθημα: Γεωργικός Πειραματισμός-Βιομετρία (Κωδ. 2860) 1. Περιγραφική Στατιστική Μάθημα: Γεωργικός Πειραματισμός-Βιομετρία (Κωδ. 860). Περιγραφική Στατιστική Σύτομη αασκόπηση βασικώ εοιώ, προτάσεω και τύπω Πείραμα τύχης - Η έοια του τυχαίου Δειγματικός χώρος Ω εός πειράματος τύχης

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 12 Ιανουαρίου 2017 Ασκηση 1. Εστω

Διαβάστε περισσότερα