ΜΑΘΗΜΑ 9 Γενικές ασκήσεις µιγαδικών
|
|
- Ανθούσα Καλάρης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 ΜΑΘΗΜΑ 9 Γεικές ασκήσεις µιγαδικώ. Για το µιγαδικό δίεται ότι. Να βρείτε i) το ii) το σύολο τιµώ του i. i) ( )( ) [ ] Άρα ( )( ) ( )( ) () (). 0 ii) i i ( ) ( i) i ( ) ( i) ( ) i () i ( ) ( i) i () Από τις (), () συµπεραίουµε ότι i Εξατλούµε τη υπόθεση Εκφράζουµε το ζητούµεο i συαρτήσει του γωστού Εποµέως το σύολο τιµώ του i είαι το διάστηµα,
2 . Για τους µιγαδικούς,, δίεται ότι,,. Να αποδείξετε ότι i) 0 9 ii) i) Έστω 0, τότε. Θα έχουµε που είαι άτοπο. ii) Αρκεί α αποδείξουµε ότι 9, 9, Α για το C ισχύει α αποδείξετε ότι Έστω x yi i i x 0 yi yi i i yi i yi i i(y ) i(y ). 9.. i y i y i i. y y, που αρκεί α αποδειχθεί y x y
3 0 y y y y y και y 0 y και y 0 Άρα y y y (y ) y y. Έστω οι *, C ώστε 0 ( ) 0 0 ή * R.. Να αποδείξετε ότι Η υπόθεση Ότα 0 0 Ότα ( 0 0 ) ( 0 και η () 0 ( 0 0, η () ) () ) R 0 0 Να παρατηρήσουµε ότι ο αριθµός 0 µπορεί α είαι ο οποιοσδήποτε θετικός.. Για τους µιγαδικούς w, 0 δίεται ότι ( ) w ή w R και R. w i w (w i)( w i ) w i w. Να αποδείξετε ότι w (i ) (w i)( w i ) (w i) (w i) () Ότα w i 0, η () w i w i i i w w i( ) w w i i Im() i Im(w) i Im() Im(w) Im() 0 και Im(w) 0 R και w R Ότα w i 0 w i w i w
4 . Για τους µιγαδικούς w, δίεται ότι w w 9w 0 () ± iw i 9w 0 ( ) (iw ) 0 ( iw)( iw) 0 iw 0 ή iw 0 ± iw () ± iw w w 9w 0. Να αποδείξετε ότι w ± iw w w(± i ) w ± i w 9 w Άρα w w w w 7. Α για το C ισχύει, δείξτε ότι R. Υπόδειξη. Ύψωσε τα δύο µέλη στο τετράγωο, Πράξεις ααγωγή οµοίω όρω Οπότε 8. Για κάθε 0 *, w και αρχή τω αξόω. 0 ( ) 0 C N, α αποδείξετε ότι οι εικόες τω µιγαδικώ u ες πρώτα στο Μάθηµα τη άσκηση πρόταση 9 Είαι w ορίζου ευθεία που διέρχεται από τη και Αρκεί α ισχύει u λw, όπου λ R u u w R R
5 9. Α για το µιγαδικό ισχύει Άρα ( )( ) ( )( ) Re( ) Re( ) yi ( ) y ( ) που ισχύει, α αποδείξετε ότι ( ) 0. Αποδείξτε ότι, η εξίσωση... 0 έχει µόο πραγµατικές ρίζες () (συζυγής στα δύο µέλη)... 0 () () ()... 0 ( )( ) ( )( )... ( )( ) 0
6 ... 0 ( )... x 0 R 0 Η ποσότητα της παρέθεσης είαι θετική σα άθροισµα µέτρω.. λ Θεωρούµε τη εξίσωση α λ α... λ α λ µε άγωστο C, όπου οι λ, λ,..., λ είαι θετικοί, και οι α, α,..., α και λ είαι πραγµατικοί 0. Να αποδείξετε ότι η εξίσωση έχει όλες τις ρίζες της πραγµατικές. Πάµε µε απαγωγή σε άτοπο Έστω x yi µε y 0 µια καθαρά µιγαδική ρίζα της εξίσωσης () λ Τότε ο τη επαληθεύει α λ α... λ α λ () Α στη εξίσωση φαταστούµε τη απαλοιφή τω παραοµαστώ, προκύπτει εξίσωση µε πραγµατικούς συτελεστές. Οπότε ρίζα της εξίσωσης θα είαι και ο. λ Τότε ο τη επαληθεύει α λ α... λ α λ () λ λ () () α α λ λ α α... λ λ α α 0 α α λ ( α )( ) α λ α α α α α 0 λ ( )( ) α λ 0 λ ( ) α λ α 0 αφού η παρέθεση είαι θετική R που είαι άτοπο κατά τη () 0
7 7. Α * N και α,β R,α δείξετε ότι, η εξίσωση πραγµατικές, τότε και µόο τότε, ότα α β i αβ i i Ευθύ: (Η εξίσωση έχει ρίζες πραγµατικές. Θα αποδείξουµε ότι Έστω x µία πραγµατική ρίζα της εξίσωσης ix αβ i ix ix ix ix ix ix ix αβ i α β α β Είαι συζυγείς, άρα έχου ίσα µέτρα Ατίστροφο: (Ισχύει έχει ρίζες πραγµατικές) Έστω C µια ρίζα της εξίσωσης i αβ i i α β α β α β. Θα αποδείξουµε ότι η εξίσωση i i i i αβ i i i α β α β ) i i έχει ρίζες α β i αβ i i i i ( i)( i ) ( i)( i ) i i i i i i R Ότα δε µπορούµε α γράφουµε ισοδυαµίες, διακρίουµε το ευθύ από το ατίστροφο. Να λύσετε το σύστηµα Περιορισµός : w 0 w w w w w ( w) w () και οµοίως w w ( w ) w ( w ) w
8 8. w w w ( w) w 8 () () () : ( w) w w () () ( ) ( ), ± i ± () w (± ) ± ± 0 Άρα (, w) (, ) ή (, ) Με ατικατάσταση στο περιορισµό διαπιστώουµε ότι και οι δύο λύσεις είαι δεκτές.. Οι εικόες τω µιγαδικώ,, ορίζου τρίγωο P P P µε ορθόκετρο τη αρχή Ο. Να δειχτεί ότι. Το ορθόκετρο οδηγεί σε γεωµετρία άρα σε Έστω x y i, x y i, x y i συτεταγµέες ΟΡ Ρ Ρ. Ρ Ρ 0 x ( x x ) y ( y y ) 0 x x x x y y y y 0 x x y y x x y ΟΡ Για τη ισότητα αρκεί α αποδείξουµε Re( ) Re( ) Re( ) Re( ) κυκλικά x x y y x x y και x x y y x x y Αλλά ( x y i) ( x y i) ( x x y y ) ( )i οπότε Re( ) x x y y και οµοίως Re( ) x x y y y () y () y () Έτσι, αρκεί α αποδείξουµε ότι x x y y x x y y, που ισχύει από τη () Οµοίως αποδεικύεται ότι
9 9. Οι µιγαδικοί,, είαι διάφοροι µηδεός και διαφορετικοί µεταξύ τους. Θεωρούµε τους µιγαδικούς w, w, w. Α οι w, w είαι φαταστικοί α δειχθεί ότι και ο w είαι φαταστικός. Σ αυτή τη περίπτωση α δειχθεί ότι η αρχή τω αξόω είαι ορθόκετρο του τριγώου AAA, όπου A, A, A οι εικόες τω,,. w φαταστικός w w ( ) ( ) Οµοίως w φαταστικός Αρκεί α αποδείξουµε ότι w w που ισχύει από τις (), () αφού έχου κάποια µέλη τους ίσα. () () Η συέχεια είαι το ατίστροφο της άσκησης. ούλεψε µε το ίδιο τρόπο.. Έστω το σύολο S { : } C. i. Α, S α αποδείξετε ότι S και S ii. Να βρείτε όλους τους µιγαδικούς S, για τους οποίους ισχύει R i), S., άρα S ii) άρα S
10 0 S λ R λ( ) λ λ λ λ λ λ 0 ( λ) ( λ) ( λ) 0 () () ( λ) ( λ) ( λ) 0 ( λ) ( λ) ( λ) 0 ( λ) ( λ) ( λ) () () ( λ) Ότα λ 0, η () 0 () 0 () 0 0 απορρίπτεται αφού 0 Ότα λ 0 δηλαδή λ, η () ισχύει για κάθε C. Αλλά () 0 0 ( )( ) 0 0 ή 0 ή ή ή i ή i Έας πιο κλασσικός τρόπος για το (ii) R ( 0) 0 ( )( ) 0 0 ή ή 0 ή ή i ή i
11 7. Να βρεθεί ο µιγαδικός Θέτουµε Η w., ότα γίεται w. όχι ατίστροφα w w w w w Η γίεται w w (w )( w ) w w w w w w 0 w w w 0 w w 0 ± i άρα ± i 8. Έστω οι µιγαδικοί,, µε εικόες Α,Β,Γ ατίστοιχα, για τους οποίους ισχύει και i ( ) είαι ισόπλευρο. i ( ) αλλά i ( ). Να δειχθεί ότι το τρίγωο ΑΒΓ () (ΒΑ) (ΓΑ) Πάµε για i () i ( ) i i ( ) ( ) i i i i
12 αλλά i ( ) i ( ) i ( ) () (ΒΓ) (ΓΑ) i 9. i) Για τους, w C α αποδείξετε ότι ΟΚ.ΟΛ Re( ) εικόες τω, w στο µιγαδικό επίπεδο. ii) Έστω οι,, C µε και ( ) ( ) ( ) 0 () w, όπου K, Λ οι Να αποδείξετε ότι OA.OB OB.OΓ O Γ.OA 0, όπου A,Β,Γ οι εικόες τω,, στο µιγαδικό επίπεδο. i) Έστω x yi και w u vi ΟΚ.ΟΛ xu yv () w (x yi)( u vi) xu yv ( )i Re( w ) xu yv () (), () ΟΚ.ΟΛ Re( w ) ii) Αρκεί α δειχθεί ότι Re( ) Re( ) Re( ) 0 ή αρκεί Re( ) 0 δηλαδή αρκεί ο α είαι φαταστικός ή αρκεί ( ) ( ) ( ) ( ) ( ) 0 Σύδεση τω µιγαδικώ µε το εσωτερικό γιόµεο 0 που ισχύει από υπόθεση
13 0. Για τους µιγαδικούς,, δίεται ότι. i) Α Re( ) και κυκλικά, α υπολογίσετε το και κυκλικά ii) Να αποδείξετε ότι Re Re Re Θυµίζουµε τη ισοδυαµία : i) ( )( ) Re( ) Re( ) (). 8 άρα 8 ii) Από τη () έχουµε Re( ) 0 Re( ) 0 Re( ) Re Κυκλικά και προσθέτουµε κατά µέλη. Για τους µιγαδικούς, 0 και το πραγµατικό α ± δίεται ότι α α. Να αποδείξετε ότι α α α α ( α )( α ) ( α )( α ) α α α α α α α α α α 0 α ( ) ( ) ( ) ( α ) ()
14 Είαι () ( ) Τριγωική αισότητα ( ). ( ) ( ) () Α για τους µιγαδικούς, w ισχύει w, α αποδείξετε ότι w w Μεγάλης δυσκολίας Είαι () Είαι w w w w () () () w w () Από τη () και τη αποδεικτέα, αρκεί α αποδείξω ότι w αρκεί w w w w w w Αλλά w w 0 Οπότε αρκεί α αποδείξω 0 w w (A) 0 w w w 0 w ( w ) ( w ) 0 ( w ) ( w )
15 ιακρίουµε τις περιπτώσεις : ο ) Ότα w ισχύει η (Α) άρα και η αποδεικτέα ο ) Ότα w < Τρ. αισότητα : w ( ) ( w) w w w w < w <. w w. Για τους µιγαδικούς,,..., δίεται ότι... 0 και... Να αποδείξετε, ότι για κάθε C ισχύει... Μεγάλης δυσκολίας Θυµίζουµε τη ισοδυαµία : w w w..... Τριγωική αισότητα για προσθετέους ( )... ( ) (... ). 0.
ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να βρεθεί ο γεωμετρικός τόπος των εικόνων των μιγαδικών z για τους οποίους ισχύει:
ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i. ΙΔΙΟΤΗΤΕΣ
ΑΛΓΕΒΡΑ. Για να βρούµε την δύναµη i (όπου κ ακέραιος), διαιρούµε το κ µε το 4 και σύµφωνα µε την ταυτότητα της διαίρεσης ισχύει κ=4ρ+υ όπου ρ Ζ
ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ ο ΜΙΓΑΔΙΚΟΙ - ΜΕΘΟΔΟΛΟΓΙΑ κ Για α βρούµε τη δύαµη i (όπου κ ακέραιος), διαιρούµε το κ µε το 4 και σύµφωα µε τη ταυτότητα της διαίρεσης ισχύει κ=4ρ+υ όπου ρ Ζ και υ = 0,,, οπότε i κ 4ρ+
ΜΑΘΗΜΑ 8A 2.3 Ανισότητες
ΜΑΘΗΜΑ 8A. Ανισότητες Ασκήσεις Ανισοτήτων ΑΣΚΗΣΕΙΣ. Αν 4 i και w, να αποδείξετε ότι w iw w + ( iw ) w + iw w iw 6. Τριγωνική ανισότητα w + i 5 w + w (είναι w 5. +. 6 4 + 5). Για το µιγαδικό, αν ισχύει
ΑΣΚΗΣΕΙΣ ΣΤΟ ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ. όπου ν θετικός ακέραιος κ) z = 2 ( 3i 2. > να δείξετε ότι Re( )
ΑΣΚΗΣΕΙΣ ΣΤΟ ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Ασκήσεις στο ορισμό και τις ιδιότητες 0) Να βρείτε το μέτρο τω μιγαδικώ αριθμώ α) 3i = ε) ( ) 5 β) = 7 στ) γ) = 4 3i ζ) δ) = 4+ 3i η) = = i θ) 3 = + i 3 = i ( α βi)
ΜΑΘΗΜΑ Η έννοια του µιγαδικού αριθµού Πράξεις
ΜΑΘΗΜΑ.. Η έοια του µιγαδικού αριθµού Πράξεις Θεωρία - Σχόλια - Μέθοδοι - Ασκήσεις α + βi - i α + βi i (β - αi ) ΘΕΩΡΙΑ. Ύπαρξη του i εχόµαστε ότι υπάρχει αριθµός i, µε τη ιδιότητα φαταστική µοάδα. i,
Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Θεωρία - Μέθοδοι
Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχολογική Κατεύθυση Θεωρία - Μέθοδοι ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Μάθημα ο ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ Η εξίσωση x δε έχει λύση στο σύολο τω πραγματικώ αριθμώ, αφού
2.2 ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ R ΤΩΝ ΜΙΓΑΔΙΚΩΝ
ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ R ΤΩΝ ΜΙΓΑΔΙΚΩΝ Σύμφωα με το ορισμό του R, η πρόσθεση και ο πολλαπλασιασμός δύο μιγαδικώ αριθμώ γίοται όπως ακριβώς και οι ατίστοιχες πράξεις με διώυμα α + βx στο, όπου βέβαια ατί για
ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. Θεωρία Άλυτες Ασκήσεις Θέματα εξετάσεων
ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Θεωρία Άλυτες Ασκήσεις Θέματα εξετάσεω 1 Α. ΜΕΡΟΣ :ΘΕΩΡΙΑ ΤΟ ΣΥΝΟΛΟ C ΤΩΝ ΜΙΓΑΔΙΚΩΝ Γωρίζουμε ότι η δευτεροβάθμια εξίσωση με αρητική διακρίουσα δε έχει λύση στο σύολο R τω πραγματικώ
ΜΑΘΗΜΑ Πράξεις Συζυγής
ΜΑΘΗΜΑ. Πράξεις Συζυγής Ασκήσεις Εξισώσεις Από σχέση σε σχέση ΑΣΚΗΣΕΙΣ. Α, είαι οι ρίζες της εξίσωσης + i + = + i. 5 = 7 + i + 5 + 7 = 0 + = = = 7, α αποδείξετε ότι =, = 7 = 7 ( + ) + i = + i 5 7 5 = 6
ΜΙΓΑΔΙΚΟΙ 9o ΓΕΛ ΠΕΡΙΣΤΕΡΙΟΥ είναι τέλεια, να υπολογίσετε την τιμή της παράστασης: Α = (1 + i) v - (1 - i) v. 15. Αν z μιγαδικός και f (ν) = i
Να βρεθού οι πραγματικοί αριθμοί κ,λ για τους οποίους οι μιγαδικοί = 4 κ + λ + 7 κ και w = 7 (λ ) α είαι ίσοι Να βρεθού οι κ, λr ώστε ο = (8κ + κ) + 4λ + ( ) α είαι ίσος με το μηδέ Να βρείτε για ποιες
1. Το σύνολο των μιγαδικών αριθμών
Το σύολο τω μιγαδικώ αριθμώ Γωρίζουμε ότι η εξίσωση δε έχει λύση στο σύολο τω πραγματικώ αριθμώ Για α ξεπεράσουμε αυτή τη αδυαμία «μεγαλώσαμε» το σύολο και δημιουργήσαμε το σύολο, έτσι, ώστε α έχει τις
z = =5 ενώ z 1 z 2. (µε απόδειξη) z = z z I. z = z. z 1 z z όπου z 1 =x 1 +y 1 i και z 2 =x 2 +y 2 i σταθεροί z παριστάνει υπερβολή µε z 2
ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΟ ΜΕΤΡΟ. Εά τότε δε ισχύει πάτα. Πχ για τους µιγαδικούς +4i και 5i είαι 5 εώ.. 0 0. Για α αποδείξουµε ότι R µε τη βοήθεια του µέτρου αρκεί α αποδείξουµε ότι (µε απόδειξη. ηλαδή R. 4. Για
ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΘΟΔΟΛΟΓΙΑ
ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΟΡΙΣΜΟΙ ΠΡΑΞΕΙΣ ΣΥΖΥΓΕΙΣ ΜΕΤΡΟ ΜΕΘΟΔΟΛΟΓΙΑ ΜΕΘΟΔΟΣ Για α υπολογίσουμε δυάμεις με ακέραιο εκθέτη σε παράσταση με i χρησιμοποιούμε γωστές ταυτότητες και έχουμε υπόψη ότι: i. v v- = με ακέραιο
(πολλδ β) = πολλδ + ( 1) ν β ΕΥΣΤΡΑΤΙΟΣ ΚΩΣΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΘΟ ΙΚΟ ΙΑΙΡΕΤΟΤΗΤΑ
ΙΑΙΡΕΤΟΤΗΤΑ Ορισµός: Λέµε ότι ο ακέραιος β 0διαιρεί το ακέραιο α και γράφουµε β/α, ότα η διαίρεση του α µε το β είαι τέλεια, δηλαδή υπάρχει κ Z τέτοιος ώστε α = κ β. Συµβολίζουµε ότι α = πολβ. Α ο β δε
β± β 4αγ 2 x1,2 x 0.
Ορισµοί, ισότητα, µέτρο, άθροισµα µιγαδικώ αριθµώ Μιγαδικό επίπεδο Γεωµετρική παράσταση του αθροίσµατος µιγαδικώ αριθµώ ax 3 + β x + γ x+ δ = 0 Η προσπάθεια επιλύσεως εξισώσεω 3 ου βαθµού ( ) και δευτεροβαθµίω
Ορισµοί, ισότητα, µέτρο, άθροισµα µιγαδικών αριθµών. Μιγαδικό επίπεδο. Γεωµετρική παράσταση του αθροίσµατος µιγαδικών αριθµών.
Ορισµοί, ισότητα, µέτρο, άθροισµα µιγαδικώ αριθµώ Μιγαδικό επίπεδο Γεωµετρική παράσταση του αθροίσµατος µιγαδικώ αριθµώ Η προσπάθεια επιλύσεως εξισώσεω 3 ου βαθµού ( ax 3 βx γx δ 0) πραγµατικούς συτελεστές
5.3 ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟ ΟΣ
5. ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟ ΟΣ ΘΕΩΡΙΑ. Ορισµός Μια ακολουθία λέγεται γεωµετρική πρόοδος, α και µόο α κάθε όρος της προκύπτει από το προηγούµεό του µε πολλαπλασιασµό επί το ίδιο πάτοτε µη µηδεικό αριθµό.. Μαθηµατική
Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. (Πρόοδοι) ΠΡΟΟΔΟΙ
ΠΡΟΟΔΟΙ Οι πρόοδοι αποτελού µια ειδική κατηγορία τω ακολουθιώ και είαι τριώ ειδώ : αριθµητικές, αρµοικές και γεωµετρικές. ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΟΟΔΟΙ (ΘΕΩΡΙΑ) Ορισµός Μια ακολουθία αριθµώ α, α,, α, α +, θα λέµε
Κ ε φ α λ ά ( ) ( ) ηµθ + = ( )
ΑΣΚΗΣΗ ίνονται οι µιγαδικοί αριθµοί z + 0i για τους οποίους ισχύει: z 4 =. z i. Να δείξετε ότι z =. ii. Αν επιπλέον ισχύει Re( z) Im( z) iii. = να υπολογίσετε τους παραπάνω µιγαδικούς αριθµούς. Για τους
ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ( ) Να αποδείξετε ότι για κάθε θετικό ακέραιο ν ισχύει : ! + 2 2! + 3 3! + +ν ν! = (ν + 1)!
ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ 1. Να αποδείξετε ότι για κάθε θετικό ακέραιο ισχύει : 1 + 1 1! +! +! + +! = ( + 1)!. Να αποδείξτε ότι 6 10 [ ( 1) ] = ( + 1) ( + ) ( + ) (), για κάθε θετικό ακέραιο.. Να αποδείξετε ότι
Α. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ ΠΡΑΞΕΙΣ ΤΟΥΣ
ΜΑΘΗΜΑ Κεφάλαιο o : Αλγεβρικές Παραστάσεις Υποεότητα.: Πράξεις µε πραγµατικούς αριθµούς (Επααλήψεις- Συµπληρώσεις) Θεµατικές Εότητες:. Οι πραγµατικοί αριθµοί και οι πράξεις τους.. υάµεις πραγµατικώ αριθµώ..
5.5 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΟ C
5 55 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΟ C Εισαγωγή Η επίλυση τω εξισώσεω ου και 4ου βαθμού, η ααγκαστική επαφή με τους μιγαδικούς αριθμούς για τη έκφραση τω πραγματικώ ριζώ και η εξέλιξη του αλγεβρικού λογισμού
ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ. Εφαπτοµένη ευθεία
ΜΑΘΗΜΑ 5.. ΠΑΡΑΓΩΓΙΣΙΜΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ Εφαπτοµένη ευθεία Παράγωγος βασικών συναρτήσεων ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ Αθροίσµατος γινοµένου - πηλίκου Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Εξίσωση
στους μιγαδικούς αριθμούς
Πράξεις στους μιγαδικούς αριθμούς Πρόσθεση μιγαδικώ αριθμώ Βασικές ασκήσεις Βασική θεωρία α) ) Πώς γίεται η πρόσθεση δύο μιγαδικώ αριθμώ; ) Ποια είαι η γεωμετρική ερμηεία του αθροίσματος δύο μιγαδικώ;
Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου
Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης - - Γ Λυκείου ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Ορισμός Έστω ο μιγαδικός αριθμός x yi και M(x, y) η εικόνα του στο μιγαδικό επίπεδο Ορίζουμε ως μέτρο του την απόσταση
ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ
ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑ 7.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων. Να βρείτε το γεωµετρικό τόπο των µιγαδικών z, για τους οποίους οι εικόνες των µιγαδικών z, i, iz είναι συνευθειακά σηµεία. Έστω z = x + i,
ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
ΜΑΘΗΜΑ 4. ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονία συνάρτησης Ακρότατα συνάρτησης Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Ορισµός Συνάρτηση f λέγεται γνησίως αύξουσα σε διάστηµα, όταν για οποιαδήποτε,
ΘΕΜΑ (επαναληπτικές) α. Δίνονται Να περιγράψετε οι μιγαδικοί γεωμετρικά αριθμοί το, σύνολο, (Σ) των εικόνων των μιγαδικών αριθμών 3 με 3 3. πο
ΘΕΜΑΤΑ ΜΙΓΑΔΙΚΩΝ ΣΤΙΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (000-03) ΘΕΜΑ 000 α. Αν, είναι οι ρίζες της εξίσωσης + + = 0, να αποδείξετε ότι 0-0 =0. β. Αν είναι ρίζα της εξίσωσης του α. ερωτήματος, με φανταστικό μέρος
ΘΕΩΡΙΑ ΜΙΓΑΔΙΚΩΝ. 1. Τι ονομάζουμε σύνολο Μιγαδικών Αριθμών; Τι ονομάζουμε πραγματικό μέρος - φανταστικό μέρος ενός μιγαδικού αριθμού z = α + βi.
ΘΕΩΡΙΑ ΜΙΓΑΔΙΚΩΝ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. Τι οομάζουμε σύολο Μιγαδικώ Αριθμώ; Τι οομάζουμε πραγματικό μέρος - φαταστικό μέρος εός μιγαδικού αριθμού α + βi. Σύολο τω μιγαδικώ αριθμώ οομάζουμε έα υπερσύολο τω
Θέματα από τους μιγαδικούς
Σελίδα από 8 Θέματα από τους μιγαδικούς Θέμα ο Δίνονται τα σύνολα : A C/ και α) Να εκφράσετε γεωμετρικά το σύνολο Α BwC/w,A β) Να βρείτε τη μέγιστη τιμή της παράστασης K, με, A γ) Αν, Aμε,να βρείτε την
2.5 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΟ R
ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ 5 5 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΟ R Εισαγωγή Η επίλυση τω εξισώσεω ου και 4ου βαθμού, η ααγκαστική επαφή με τους μιγαδικούς αριθμούς για τη έκφραση τω πραγματικώ ριζώ και η εξέλιξη του αλγεβρικού
ΚΕΦΑΛΑΙΟ 2ο Μιγαδικοί Αριθμοί (Νο 1) ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ
ΚΕΦΑΛΑΙΟ ο Μιγαδικοί Αριθμοί (Νο ) ΛΥΚΕΙΟ Α Λ Γ Ε Β Ρ Α Ο Κ Ε Φ Α Λ Α Ι Ο ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Θετική Τεχνολογική Κατεύθυνση ασκήσεις (ΝΑ ΛΥΘΟΥΝ ΜΕΤΑ ΑΠΟ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΤΟΥ ΒΙΒΛΙΟΥ) ΕΝΝΟΙΑ
Ι δ ι ο τ η τ ε ς Π ρ ο σ θ ε σ η ς - Π ο λ λ α π λ α σ ι α σ μ ο υ ΙΔΙΟΤΗΤΑ ΠΡΟΣΘΕΣΗ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ
ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1 Π ρ α γ μ α τ ι κ ο ι Α ρ ι θ μ ο ι : Υ π ο σ υ ο λ α του Το συολο τω φυσικω 3. αριθμω: Να δειχτει οτι = α {0,1,,3, } + 110 0α. Ποτε ισχυει το ισο; Το συολο τω. A ακεραιω α, β θετικοι
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΙΓΑ ΙΚΟΙ. iz+α. (z 1)(z + 1) f ( ) = f (z). (1993-2ο- 1) (1994-2ο) (1999-2ο) ΑΘΑΝΑΣΙΑΔΗΣ ΚΩΣΤΑΣ
ΜΙΓΑ ΙΚΟΙ.. Αν +α w =, α R και α να αποδειχθεί ότι: +α α) Ο w είναι φανταστικός αριθµός, αν και µόνο αν, ο είναι φανταστικός αριθµός. β) Ισχύει: w =, αν και µόνο αν, ο είναι πραγµατικός αριθµός. (99-ο)..
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008
-6 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 8.doc ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 8 ΘΕΜΑ ο Έστω, α,β, α β και ν α i = βi () β αi α) Να αποδείξετε ότι ο δεν είναι
(Καταληκτική ημερομηνία αποστολής 15/11/2005)
η Εργασία 005-006 (Καταληκτική ημερομηία αποστολής 5//005) Άσκηση (0 μοάδες). (α) Δείξτε αλγεβρικά πώς βρίσκοται δύο διαύσματα A και B, εά είαι γωστά το άθροισμά τους S και η διαφορά τους D (β) Βρείτε
Παρατηρήσεις 1 Για α ααζητήσουµε το όριο της f στο, πρέπει η f α ορίζεται όσο θέλουµε κοτά στο, δηλαδή η f α είαι ορισµέη σ έα σύολο της µορφής ( α, )
Η έοια του ορίου Όριο συάρτησης Ότα οι τιµές µιας συάρτησης f προσεγγίζου όσο θέλουµε έα πραγµατικό αριθµό l, καθώς το προσεγγίζει µε οποιοδήποτε τρόπο το αριθµό, τότε γράφουµε lim f() = l και διαβάζουµε
ΟΡΙΑ. 0 : Παραγοντοποιώ αριθµητή και παρονοµαστή και διώχνω τους παράγοντες x, x 0 που προκύπτουν.
ΟΡΙΑ Πηλίκα πολυωυµικώ µε µορφή 0 0 : Παραγοτοποιώ αριθµητή και παροοµαστή και διώχω τους παράγοτες, 0 που προκύπτου Περιπτώσεις µε ρίζες µορφής 0 0 Περιπτώσεις στις οποίες χρειάζεται α πολλαπλασιάσω µε
ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ
ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ Επιµέλεια: Ι. Σπηλιώτης,. Λεπίπας, Π. Αγγελόπουλος Άσκηση.3 σελ. 4 α) εύκολο β) Αφού C F θα είαι σ( C) σ( F) και λόφω του α) θα είαι σ( C) F. Για τη απόδειξη του ατίθετου
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
Μιγαδικοί Αριθμοί ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ ΑΡΙΘΜΟΥΣ ΑΝΘΟΥΛΑ ΣΟΦΙΑΝΟΠΟΥΛΟΥ ΓΕΩΡΓΙΟΣ ΚΑΡΙΠΙΔΗΣ Μιγαδικοί Αριθμοί ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Α. Πράξεις Συζυγής - Μέτρο Α. Να δείξετε
Ασκήσεις. x ' x οι ευθείες πάνω στις οποίες κινούνται οι εικόνες Μ(z).
εθοδολογία Παραδείγματα σκήσεις. ν α,β,γ,δ και ο OA, w a βi γ δi OB, των a βi, γ δi. α λυθεί η ανίσωση 0 πιμέλεια.: άτσιος Δημήτρης είναι φανταστικός, να δειχθεί ότι οι διανυσματικές ακτίνες αντίστοιχα,
0..1 ΒΑΣΙΚΕΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΝΝΟΙΕΣ
Εισαγωγικό Κεφάλαιο: Ρητοί Αριθµοί ΜΑΘΗΜΑ 0 Υποεότητα 1: Βασικές Επααληπτικές Έοιες (Επααλήψεις-Συµπληρώσεις) Θεµατικές Εότητες: 1. Ρητοί αριθµοί-βασικές επααληπτικές έοιες.. Πρόσθεση ρητώ αριθµώ. 3. Άθροισµα
Ασκήσεις7 80. AU διαγώνιο. αποτελούμενη από ιδιοδιανύσματα του A. Πρόσθετες ιδιότητες κανονικών πινάκων: Έστω A o
Ασκήσεις7 80 Ασκήσεις7 Διαγωοποίηση Ερμιτιαώ Πιάκω Βασικά σημεία Λήμμα του Schur (μιγαδική και πραγματική εκδοχή) Φασματικό θεώρημα (μιγαδική και πραγματική εκδοχή) Ορισμός και ιδιότητες καοικώ πιάκω Θεώρημα
Θέματα εξετάσεων στους μιγαδικούς
Θέμα ο α Να βρείτε τον γεωμετρικό τόπο των εικόνων των μιγαδικών για τους οποίους ισχύει: 6 4 β Να βρείτε τον γεωμετρικό τόπο των εικόνων των μιγαδικών για τους οποίους ισχύει: i (Ιούλιος 00) Θέμα ο i
Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ
Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Το Σύνολο C των Μιγαδικών Αριθμών Είναι γνωστό ότι η εξίσωση x δεν έχει λύση στο σύνολο IR των πραγματικών αριθμών, αφού το τετράγωνο κάθε πραγματικού αριθμού είναι μη αρνητικός
Ισότητα μιγαδικών αριθμών πράξεις στο C Έστω z 1 =α+βi και z 2 =γ+δi δύο μιγαδικοί (α,β,γ,δ R) z 1 =z 2 α=γ και β=δ z 1 =0 α=0 και β=0
ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ C Το σύνολο των μιγαδικών αριθμών C, αποτελείται από αριθμούς της μορφής =α+βi,όπου α,βr Το στοιχείο i είναι τέτοιο ώστε : i = - Το σύνολο C είναι υπερσύνολο του R Οι πράξεις
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΜΑ Α Άσκηση, μιγαδικοί αριθμοί να αποδείξετε ότι: Αν = Έχουμε: = ( ) ( ) ( ) ( ) = = =. Το τελευταίο ισχύει, άρα ισχύει και η ισοδύναμη αρχική σχέση.
Ερωτήσεις σωστού-λάθους
ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Α ΜΕΡΟΣ (ΑΛΓΕΒΡΑ) ΚΕΦ ο : Μιγαδικοί Αριθμοί Φυλλάδιο ο Κεφ..: Η Έννοια του Μιγαδικού Αριθμού Κεφ..: Πράξεις στο Σύνολο C των Mιγαδικών Κεφ..: Πράξεις στο Σύνολο
Τι είναι εκτός ύλης. Σχολικό έτος
Τι είαι εκτός ύλης. Σχολικό έτος 06-07 ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε. Το Λεξιλόγιο της Λογικής...9 Ε. Σύολα...3 ΚΕΦΑΛΑΙΟ o: Πιθαότητες. Δειγματικός Χώρος - Εδεχόμεα...0. Έοια της Πιθαότητας...9 ΚΕΦΑΛΑΙΟ
Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ
Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις ανάπτυξης. ** Να βρείτε τους πραγµατικούς αριθµούς x και y ώστε να ισχύουν οι ισότητες: α) x - + y = - + - y β) y + = 3 - ( + ) x γ) 4y - 3y - x = - 5x + 9 δ) (x
ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ
. ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 α. Να βρείτε τον γεωμετρικό τόπο των εικόνων του. β. Αν Re ( ) 0, τότε: 4 i. Να αποδείξετε ότι ο μιγαδικός w = + είναι πραγματικός και ισχύει 4 w 4. ii. Να βρείτε τον
[ ] ( ) [( ) ] ( ) υ
ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ ΑΡΙΘΜΟΥΣ ) Α Θέτω στη συάρτηση ι οπότε έχω () ( ) Η εξίσωση γίετι η Α η Α δε ισχύει η Α ι ( ) ( ) ( ) τότε ( ) [ ] ( ) Διρίω τις περιπτώσεις άρ δε ισχύει τότε ( ) άρ
Ασκήσεις σχ. Βιβλίου σελίδας Α ΟΜΑ ΑΣ 1.
.. Ασκήσεις σχ. Βιβλίου σελίδας 94 97 Α ΟΜΑ ΑΣ. Να βρείτε τις τιµές του λ R, ώστε ο z (λ )( ) να είναι : πραγµατικός αριθµός φανταστικός αριθµός z λ λ 6 (λ ) (6 λ) z πραγµατικός 6 λ 0 λ 6 z φανταστικός
ΜΑΘΗΜΑ ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. Αντίστροφη συνάρτηση. ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Συνάρτηση 1-1. Θεωρία Σχόλια Μέθοδοι Ασκήσεις
ΜΑΘΗΜΑ 5. ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Συνάρτηση - Αντίστροφη συνάρτηση Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Ορισµός Συνάρτηση :Α R λέγεται συνάρτηση, όταν για οποιαδήποτε, Α µε ισχύει
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014-2015 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 04-05 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ Θεωρούμε τους μιγαδικούς C για τους οποίους ισχύει: - = + Im() και τη συνάρτηση f : w f ( w), όπου w C, w - και f (w) = w ) Να
i) Αν ο φυσικός αριθμός n δεν είναι τετράγωνο ακεραίου, τότε ο n είναι άρρητος.
Πρόλογος 3 Πρόλογος Τ ο βιβλίο αυτό απευθύεται σε κάθε συάδελφο Μαθηματικό, αλλά κυρίως σε κάθε έο συάδελφο που πρόκειται α συμμετάσχει στο διαγωισμό του Α.Σ.Ε.Π. Επίσης, απευθύεται σε μαθητές με υψηλούς
ΑΣΚΗΣΕΙΣ. x + 5= 6 (1) και. x = 1, οπότε η (2) γίνεται 1 5x + 1= 7 x = 1 ΘΕΜΑ Β. Άσκηση 1. Να βρείτε τον αριθμό x R όταν. Λύση.
ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i. ΙΔΙΟΤΗΤΕΣ
v a v av a, τότε να αποδείξετε ότι ν <4.
ΘΕΜΑ ο ΑΣΚΗΣΕΙΣ-ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ Θεωρούμε τους μιγαδικούς αριθμούς για τους οποίους ισχύει η σχέση: Α. Να αποδείξετε ότι ο γεωμετρικός τόπος των εικόνων των μιγαδικών είναι ο κύκλος με Κ(,0) και
ονοµάζεται γεωµετρική πολλαπλότητα αυτής. Τα ιδιοδιανύσµατα αυτά είναι βάση του διανυσµατικού υποχώρου E ( λ 0 ), που ονοµάζεται ιδιόχωρος
Γραµµική Άγεβρα ΙΙ Σείδα από 5 Μάθηµα 5 ο Ι ΙΟΤΙΜΕΣ ΚΑΙ Ι ΙΟ ΙΑΝΥΣΜΑΤΑ ΠΙΝΑΚΑ Θεωρία : Γραµµική Άγεβρα : εδάφιο, σε 33 (όχι Πρόταση 63) εδάφιο, σε 4, Πρόταση 65, (χωρίς απόδειξη) και Πρόταση 66 εδάφιο
+ + = + + α ( β γ) ( )
ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ Αριθµητική παράσταση Αριθµητική παράσταση λέγεται µια σειρά αριθµώ που συδέοται µεταξύ τους µε πράξεις. Η σειρά τω πράξεω σε µια αριθµητική παράσταση είαι η εξής: 1. Υπολογίζουµε
Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση
Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Υποδειγματικά Λυμένες Ασκήσεις Άλυτες Ασκήσεις ΛΑ Να βρείτε
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 Ε_.ΜλΘΤ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή 7 Απριλίου 4 ιάρκεια Εξέτασης: ώρες Α. Να αποδείξετε
= u u I, ως διαφορά συζυγών. z + 2. i) R. Λύση: α τρόπος. + z z = . Άρα. x 2 +y 2 +x-2=0. , ως. i) Re(z 2 )= -4, ii) Im(z 2 )=2, iii) Re(1+z 2 )=0.
ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ) Υπολογίστε τους µιγαδικούς, των οποίων το τετράγωνο ισούται µε: α) 6 β) - γ) -7 δ) - ε) α) 6 ± 6 β) - ± ± γ) -7() -7-7 7 0-7 ± ± ±± δ) -() - - - ± m ± m ±m 0 ε) () - ±± 0 0 ) Εάν, µιγαδικοί,
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 77 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 12 Νοεμβρίου 2016 Β ΓΥΜΝΑΣΙΟΥ ˆ ΑΔΒ.
Τηλ 361653-3617784 - Fax: 364105 Tel 361653-3617784 - Fax: 364105 1 Νοεμβρίου 016 Β ΓΥΜΝΑΣΙΟΥ Να υπολογίσετε τη τιμή της αριθμητικής παράστασης: ( ) ( 5) ( ) 3 3 3 0 15 8 3 Α= + + 3 5 3 9 Πρόβλημα Δίεται
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή 27 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ε_.ΜλΘΤ(α) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή 7 Απριλίου ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. Θεωρία
Λυµένες Ασκήσεις * * *
Αάλυση Πιάκω και Εφαρµογές Σελίδα 1 από 6 Μάθηµα 9 ο ΓΙΝΟΜΕΝΟ KRONECKER Θεωρία : Γραµµική Άλγεβρα : εδάφιο 6, σελ 15 Λυµέες Ασκήσεις Άσκηση 91 Α AB, είαι πίακες τύπου µ µ και ατίστοιχα, υπολογίσατε τη
2.3. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. Να βρείτε τα µέτρα των µιγαδικών : 1 + i, 1 i, 3 + 4i, 3 4i, 5i, 4, 1 i, 1 i.
.3 Ασκήσεις σχολικού βιβλίου σελίδας 00-0 A Οµάδας. Να βρείτε τα µέτρα των µιγαδικών : +,, 3 +, 3, 5,, ( ) ( + ), ( ) ( + ), και +, 3+ 3 + + + ( ) 3+ 3 3 + 5 5 3 + ( ) 5 5 5 5 5. 5 + + (οι +, είναι συζυγείς,
1. [0,+ , >0, ) 2. , >0, x ( )
Σελίδα 1 από 5 ΝΙΟΣΤΕΣ ΡΙΖΕΣ ΤΑ ΣΥΜΒΟΛΑ α, α ΣΧΕΤΙΚΑ ΘΕΜΑΤΑ του Ατώη Κυριακόπουλου 1 ΡΙΖΕΣ ΣΤΟ ΣΥΝΟΛΟ R = [, ) Θεώρηµα και ορισµός οθέτος, εός πραγµατικού αριθµού α και εός φυσικού αριθµού >, υπάρχει έας
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΓΑ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A Α.. Α.. Α.. A.4. Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηία:
11.1 11.3. Ορισµός ιδιότητες εγγραφή καν. πολυγώνων σε κύκλο
1 11.1 11. ρισµός ιδιότητες εγγραφή κα. πολυγώω σε κύκλο ΘΩΡΙ 1. Έα πολύγωο λέγεται καοικό, ότα έχει όλες τις πλευρές του ίσες και όλες τις γωίες του ίσες.. ύο καοικά πολύγωα µε το ίδιο αριθµό πλευρώ είαι
ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β ΤΑΞΗΣ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2003 ΕΚΦΩΝΗΣΕΙΣ
ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β ΤΑΞΗΣ ΠΕΜΠΤΗ ΜΑΪΟΥ 003 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Α. Να αποδείξετε ότι ο ος όρος µιας αριθµητικής προόδου µε πρώτο όρο α 1 και διαφορά ω είαι α = α 1 + (-1)ω. Μοάδες 7 Β. Να γράψετε
ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ
ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ δ υ α σ τ ι κ ή Πειραιάς 7 Μάθημα 8ο ΣΥΝΔΥΑΣΤΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ Μ. Κούτρας Συδυαστική 7-8 8 Το διωυμικό θεώρημα μπορεί α αποτελέσει τη βάση για τη απόδειξη
ΜΑΘΗΜΑ 8. B 2.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία
ΜΑΘΗΜΑ 8. B.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία Θεωρία Ασκήσεις γ. τόπου και µεγιστο ελάχιστου Στις ασκήσεις αυτού του µαθήµατος χρησιµοποιούµε ανισωτικές σχέσεις από την Ευκλείδεια Γεωµετρία. Θυµίζουµε
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ i ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΠΤΥΧΙΟΥΧΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ (ΕΚΠΑ)
ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ. Ασκήσεις. Επιµέλεια.: Κάτσιος ηµήτρης. Μεθοδολογία Παραδείγµατα Ασκ ΜΕΘΟ ΟΛΟΓΙΑ 1
εθοδολογία Παραδείγµατα σκ σκήσεις πιµέλεια.: άτσιος ηµήτρης Ρ ια να προσθέσουµε (ή να αφαιρέσουµε) δύο µιγαδικούς, προσθέτουµε (ή αφαιρούµε) τα πραγµατικά και τα φανταστικά τους µέρη, δηλαδή: ± = [Re
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2013 ΕΚΦΩΝΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 3 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α A Έστω f µια συνεχής συνάρτηση σε ένα διάστηµα [α, β] Αν G είναι µια παράγουσα της f στο [α, β], τότε να αποδείξετε ότι: β f () t dt = G ( β) G ( α) a Μονάδες
AΠΑΝΤΗΣΕΙΣ. z z 0 που είναι τριώνυμο με διακρίνουσα. 2 Re z 4Im z R. x 2 y x y 2
AΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α Βλ σχολ βιβλίο σελ 5 Α Βλ σχολ βιβλίο σελ Α Σ Σ Σ 4 Σ 5 - Λ ΘΕΜΑ Β Β Η εξίσωση () z ισοδυναμεί με την z z που είναι τριώνυμο με διακρίνουσα 4 διότι 4 Άρα οι ρίζες είναι συζυγείς μιγαδικές
lim lim Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ Ορισµός Μία συνάρτηση f είναι παραγωγίσιµη σε ένα σηµείο x του πεδίου ορισµού της, όταν υπάρχει στο R, το
ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΠΑΡΑΓΡΑΦΟΣ Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ Ορισµός Μία συάρτηση είαι παραγωγίσιµη σε έα σηµείο του πεδίου ορισµού της, ότα υπάρχει στο R, το lim ( ( Το όριο αυτό οοµάζεται παράγωγος της στο και
ΚΕΦΑΛΑΙΟ 1ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ 2: ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ. 2.3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου].
ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ..3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Παράδειγμα. Να βρείτε το μέτρο των μιγαδικών
α) () z i z iz i Αν z i τότε i( yi) i + + y y y ( y) i i y + 4y + 4, y y 4. Άρα z i. 4 β) ( z) z i z z i z ( i) z, οπότε ( z ) i z z Άρα z z γ) Αν z τ
Λυμένα θέματα στους Μιγαδικούς αριθμούς. Δίνονται οι μιγαδικοί z, w και u z w. α) Να αποδείξετε ότι ο μιγαδικός z είναι φανταστικός αν και μόνο αν ισχύει z z. β) Αν για τους z και w ισχύει: z + w z w,
Μάθηµα 5 ο NΟΡΜΑ ΠΙΝΑΚΑ
Αάλυση Πιάκω και Εφαρµογές Σελίδα από 3 Μάθηµα 5 ο NΟΡΜΑ ΠΙΝΑΚΑ Για κάθε αριθµό, η -όρµα του διαύσµατος [ ] = συµβολίζεται και ισούται µε το θετικό αριθµό = = (5) Αποδεικύοται για τη -όρµα οι παρακάτω
Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:
Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Να γνωρίζει: α. την έννοια του μιγαδικού αριθμού και β. πότε δύο μιγαδικοί αριθμοί είναι ίσοι. Να μπορεί να βρίσκει: α. το άθροισμα,
xf(y) + yf(x) = (x + y)f(x)f(y)
ΕΥΡΕΣΗ ΤΥΠΟΥ ΣΥΝΑΡΤΗΣΗΣ Επιμέλεια: Καρράς Ιωάης Μαθηματικός Φίλος μὲ δή, ὡς ἔοικε, τούτῳ τῷ λόγῳ ὁ ἀγαθὸς ἔσται, ἐχθρὸς δὲ ὁ ποηρός. gxkarras@gmail.com 1. Να βρεθού όλες οι συαρτήσεις f : R R για τις οποίες
1.5 ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ
ΜΕΡΟΣ Α.5 ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ 67.5 ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ ΟΡΙΣΜΟΣ Οομάζουμε ταυτότητα κάθε ισότητα που περιέχει μεταβλητές και επαληθεύεται για όλες τις τιμές τω μεταβλητώ αυτώ. Τετράγωο αθροίσματος
Μαθηµατική Επαγωγή 175.
Μαθηµατική Επαγωγή 75. Μαθηµατική Επαγωγή Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ Στο κεφάλαιο τω προόδω έχει αποδειχθεί ότι ο ισχυρισµός v( v+ ) P( v ):+ + 3 +... + v, v N είαι αληθής (ως άθροισµα
Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <
Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [008-09 < Mathematica.gr], τον οποίο κι ευχαριστώ ιδιαίτερα για το
Επαναληπτικά ϑέµατα στους Μιγαδικούς Αριθµούς
Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου Επαναληπτικά ϑέµατα στους Μιγαδικούς Αριθµούς ιδάσκων : Αντώνης Λουτράρης Μαθηµατικός M.S.c Αύγουστος, 2012 Σελίδα 1 Ο συντοµότερος δρόµος ανάµεσα
4 η ΕΚΑ Α. = g(t)dt, x [0, 1] i) είξτε ότι F(x) > 0 για κάθε x (0, 1] ii) είξτε ότι f(x)g(x) > F(x) για κάθε x (0, 1] και G(x) για κάθε x (0, 1]
ΜΑΘΗΜΑ 48 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4 η ΕΚΑ Α 3. Έστω f συνεχής και γνησίως αύξουσα συνάρτηση στο [, ], µε f() >. ίνεται επίσης συνάρτηση g συνεχής στο [, ], για την οποία ισχύει g() > για κάθε [, ] Ορίζουµε τις
ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ
ν ν æ α + i ö æ i - α ö Να βρείτε όλες τις τιμές της παράστασης Α = ç, νî Ν αi + ç αi è - ø è + ø και α Î R Να αναλύσετε το μιγαδικό = 5 + i σε άθροισμα δύο μιγαδικών,, των οποίων οι εικόνες βρίσκονται
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΑΠΑΝΤΗΣΕΙΣ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ε_.ΜλΓΑ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηία: Κυριακή Απριλίου ΘΕΜΑ A ΑΠΑΝΤΗΣΕΙΣ Α.. Θεωρία Σχολικό Βιλίο (έκδοση ) σελίδα 9. Α.. Θεωρία Σχολικό Βιλίο
Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α
ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση f παραγωγίσιµη σ ένα διάστηµα (α, β), µε εξαίρεση ίσως ένα σηµείο του, στο
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΑΠΑΝΤΗΣΕΙΣ
ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηία: Κυριακή Απριλίου ΑΠΑΝΤΗΣΕΙΣ Α.. Θεωρία Σχολικό Βιβλίο (έκδοση ) σελίδα 9. Α.. Θεωρία Σχολικό Βιβλίο (έκδοση
ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΜΕ ΟΛΟΚΛΗΡΩΜΑΤΑ
ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΜΕ ΟΛΟΚΛΗΡΩΜΑΤΑ ΣΧΟΛΙΑ : Είαι γωστό ότι για µια συεχή συάρτηση σε έα διάστηµα, το ολοκλήρωµα F ορίζει έα πραγµατικό αριθµό όπου o είαι έα οποιοδήποτε σηµείο του και α έα αυθαίρετο
Η παραπάνω ιδιότητα γενικεύεται και για περισσότερους από δύο πραγµατικούς αριθµούς. Έτσι έχουµε: αβγ α β γ = β β. d a β = α
ΑΜΥΡΑ ΑΚΗ 0, ΝΙΚΑΙΑ ΤΗΛ:0-903576 e-mail : tetrakti@ otenet.gr γρήγορα&εύκολα www.tetraktis.gr ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΜΑΘ Α0 ΑΠΟΛΥΤΗ ΤΙΜΗ Τυπολόγιο - Μεθοδολογία. Ορισµός: Έστω α έας πραγµατικός
ΛΥΚΕΙΟ ΜΕΤΑΜΟΡΦΩΣΗΣ 2014 ΒΑΣΙΚΗ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ
1. Τι λέγεται δειγματικός χώρος εός πειράματος τύχης. Το σύολο τω δυατώ αποτελεσμάτω λέγεται δειγματικός χώρος (sample space) και συμολίζεται συήθως με το γράμμα Ω. Α δηλαδή ω 1,ω 2,...,ω κ είαι τα δυατά
2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ
ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί
Θέματα από τους μιγαδικούς
6/0/0 Θέματα από τους μιγαδικούς Μπάμπης Στεργίου Σεπτέμβριος 0 Θέμα ο ***Οι λύσεις έγιναν από τον Αλέξη Μιχαλακίδη Δίνονται τα σύνολα : A C/ και α) Να εκφράσετε γεωμετρικά το σύνολο Α BwC/w,A β) Να βρείτε
Κριτήριο παρεµβολής Βοηθητική συνάρτηση. R R τέτοια, ώστε να ισχύει. f(x) x. lim. ii) x 0. lim f (x) = 0. x 0. lim. ( x + x + 4) = 4. x 0.
ΜΑΘΗΜΑ 8.4.5 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ Κριτήριο παρεµβολής Βοηθητική συνάρτηση R ΑΣΚΗΣΕΙΣ Κριτήριο παρεµβολής. 4 f () Να βρείτε το i) i) ( 4 ) ( 4 ) R R τέτοια, ώστε να ισχύει f () 0 4 0 0 4 για κάθε κοντά στο
ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού
ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ