ΔΗΜΗΤΡIΟΣ Β. ΠΑΠΑΔΟΠΟΥΛΟΣ ΚΑΘΗΓΗΤΗΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΦΥΣIΚΗΣ Ε I Σ Α Γ Ω Γ Η Σ Τ Η Δ I Α Φ Ο Ρ I Κ Η Γ Ε Ω Μ Ε Τ Ρ I Α

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΔΗΜΗΤΡIΟΣ Β. ΠΑΠΑΔΟΠΟΥΛΟΣ ΚΑΘΗΓΗΤΗΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΦΥΣIΚΗΣ Ε I Σ Α Γ Ω Γ Η Σ Τ Η Δ I Α Φ Ο Ρ I Κ Η Γ Ε Ω Μ Ε Τ Ρ I Α"

Transcript

1 ΔΗΜΗΤΡIΟΣ Β. ΠΑΠΑΔΟΠΟΥΛΟΣ ΚΑΘΗΓΗΤΗΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΦΥΣIΚΗΣ Ε I Σ Α Γ Ω Γ Η Σ Τ Η Δ I Α Φ Ο Ρ I Κ Η Γ Ε Ω Μ Ε Τ Ρ I Α Μ Ε Ε Φ Α Ρ Μ Ο Γ Ε Σ Σ Τ Η Φ Υ Σ I Κ Η ΘΕΣΣΑΛΟΝΙΚΗ 0

2 Π Ε Ρ I Ε Χ Ο Μ Ε Ν Α KΕΦ.. ΒΑΣIΚΕΣ ΕΝΝΟIΕΣ ΤΗΣ ΓΕΝIΚΗΣ ΤΟΠΟΛΟΓIΑΣ.. Εισαγωγή 5.. Ο τoπoλoγικός χώρoς 5.3. Ορισμό της περιoχής σημείoυ,τoυ κλειστoύ συvόλoυ και άλλωv τoπoλoγικώv εvvoιώv 6.4. Ορισμός τoυ συμπαγoύς συvόλoυ,συvαφoύς συvόλoυ 8.5. Απεικovίσεις, oμoτoπoία και η έvvoια τωv τoπoλoγικώv αvαλλoιώτωv 9 ΚΕΦ.. ΔIΑΦΟΡIΣIΜΕΣ ΠΟΛΛΑΠΛΟΤΗΤΕΣ.. Ευκλείδειoς διαvυσματικός χώρoς-γραμμικές απεικovίσεις 3.. Οι διαφoρίσιμες πoλλαπλότητες 6.3. Πρoσαvατoλισμέvη πoλλαπλότητα,τoπoλoγικό γιvόμεvo πoλλαπλoτήτωv και η μετρική επί μιας διαφoρίσιμης πoλλαπλότητας 0.4. Διαφoρικός λoγισμός επί τωv πoλλαπλoτήτωv 3.5. Διαvυσματικά πεδία,διαvύσματα,εφαπτόμεvoς χώρoς μιας πoλλαπλότητας 4.6. Eξωτερικές μoρφές πρώτης τάξης 35 ΚΕΦ.3. ΣΤΟIΧΕIΑ ΤΑΝΥΣΤIΚΗΣ ΑΛΓΕΒΡΑΣ ΕΠI ΜIΑΣ ΠΟΛΛΑΠΛΟΤΗΤΑΣ 3.. Ταvυστικό γιvόμεvo διαvυσματικώv χώρωv Ταvυστική δύvαμις Αλλαγή βάσης για τις συvιστώσες τωv ταvυστώv Πράξεις μεταξύ ταvυστώv Συμμετρικoί και αvτισυμμετρικoί ταvυστές Ειδικoί ταvυστές Ο Ψευδoευκλείδειoς χώρoς τoυ Mnkowsk Ο Μετρικός ταvυστής σε μια πoλλαπλότητα 6 ΚΕΦ.4. ΔIΑΦΟΡIΚΕΣ ΜΟΡΦΕΣ ΑΝΩΤΕΡΑΣ ΤΑΞΕΩΣ 4.. Ο διαvυσματικός χώρoς τωv αvτισυμμετρικώv ταvυστώv Αλλαγή βάσης στo χώρo Λ () *() n -Ο χώρoς Λ n Εξωτερικό γιvόμεvo μoρφώv 7 - -

3 4.4. Πρoσαvατoλισμός τoυ χώρoυ Εξωτερική διαφόριση Η παράγωγoς τoυ Le Ο διαστικός τελεστής *(Τελεστής τoυ Hodge)-Eσωτερικό γιvόμεvo μoρφώv Οι ακριβείς μoρφές Ο όγκoς και o υπoλoγισμός oλoκληρωμάτωv σε μια πρoσαvατoλισμέvη πoλλαπλότητα Τo θεώρημα τoυ Stoke's Τo θεώρημα τoυ Gauss και o oρισμός της απόκλισης 9 ΚΕΦ.5. Η ΓΕΩΜΕΤΡIΑ ΤΟΥ RIEMANN Εισαγωγικoί oρισμoί Παράλληλη μετατόπιση Αφιvική σύvδεση- Συvαλλoίωτη παράγωγoς Η στρέψη και τα σύμβoλα τoυ Chrstoffel Οι γεωδαισιακές καμπύλες Ο ταvυστής τoυ Remann 07 ΚΕΦ.6. ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΔIΑΦΟΡIΚΗΣ ΓΕΩΜΕΤΡIΑΣ ΣΤΗ ΦΥΣIΚΗ Ηλεκρoμαγvητισμός και διαφoρικές μoρφές Τα επίπεδα ηλεκρoμαγvητικά κύματα και η εξίσωση εvέργειας τoυ ηλεκτρoμαγvητικoύ πεδίoυ Αρχές της θερμoδυvαμικής,θερμoδυvαμικά συστήματα και άλλες γvωστές θερμoδυvαμικές σχέσεις Μηχαvική τoυ Hamlton Οι αγκύλες τoυ Posson και oι συμπλεκτικές μoρφές Γεωμετρικά μηχαvικά συστήματα Υπoλoγισμός τoυ ταvυστή καμπυλότητας με τη βoήθεια τωv διαφoρικώv μoρφώv Οι oμάδες τoυ Le Συγκεκριμέvες oμάδες τoυ Le Εφαρμoγές τoυ τελεστή τoυ Hodge Ασκήσεις πρoς λύση Βιβλιoγραφία

4 - 3 -

5 ΠΡΟΛΟΓΟΣ Το μάθημα της διαφορικής γεωμετρίας είναι ένα από τα πιο χρήσιμα κατ επιλογήν μαθήματα που διδάσκονται στους φοιτητές του Τμήματος Φυσικής, διότι είναι απαραίτητο στη μελέτη μαθημάτων όπως, Γενική Θεωρία Σχετικότητος, Θεωρητική Μηχανική, Ηλεκτρομαγνητική θεωρία και άλλα. Το βιβλίο είναι γραμμένο για φοιτητές του Τμήματος Φυσικής και στοχεύτει να τους δώσει εισαγωγικές γνώσεις της διαφορικής γεωμετρίας (όπως μορφές, τανυστές), απαραίτητων για να μπορέσουν να μελετήσουν μαθήματα γενικώτερου φυσικού ενδιαφέροντος, γραμμένα σε μια σύγχρονη γλώσσα όπως π.χ. αυτή των τανυστών. Το βιβλίο αποτελείται από επτά κεφάλαια, όπου τα έξη απ αυτά, αποτελούν τη βάση για να καταλάβουν οι αναγνώστες το έβδομο, που περιέχει μόνο εφαρμογές στη Φυσική. Για την καλύτερη κατανόηση των θεμάτων που εξετάζονται στο βιβλίο ενσωματώθηκαν στο μάθημα προβλήματα τα οποία εξετάζονται με χρήση των προγραμμάτων Mathematca και Male. Συγκεκριμένα για την Male, θα χρησιμοποιήσουμε πακέτο εντολών grtensor το οποίο έχει αναπτυχθεί από το πανεπιστήμιο του Queen s Unversty at Kngston,Ontaro,Canada, ακριβώς για την μελέτη προβλημάτων που αφορούν τη Γενική Θεωρία της Σχετικότητας. Στο κεφάλαιο 5, όπου εξετάζεται η γεωμετρία του Remann, χρησιμοποιώντας το παραπάνω πακέτο θα βρούμε μετρικές σε χώρους οικείους (π.χ. σφαίρα, πολικές συντεταγμένες στο επίπεδο) αλλά και σε πιο περίπλοκους χώρους οι οποίοι χρησιμοποιούνται στη μελέτη της Γενικής θεωρίας της Σχετικότητας(όπως ο χώρος Schwarzschld με την βοήθεια του οποίου υπολογίστηκε η μετατόπιση του περιηλίου του Ερμή). Στο κεφάλαιο 7, όπου μέσα σε άλλες εφαρμογές της διαφορικής γεωμετρίας, εξετάζεται και ο ηλεκτρομαγνητισμός, θα χρησιμοποιήσουμε την Male για την μελέτη των εξισώσεων Mawell, καθώς και για την γραφή τους στη γλώσσα της διαφορικής γεωμετρίας. Η Mathematca θα χρησιμοποιηθεί για γραφική αναπαράσταση των αποτελεσμάτων που θα λάβουμε από την Male για μια πιο. Οι εκδόσεις της Male και της Mathematca που χρησιμοποιήσαμε ήταν η και η 5. αντίστοιχα. Πρέπει να πούμε όμως πως τα ίδια προβλήματα μπορούν να αντιμετωπιστούν και με παλαιότερους ή νεότερους(στην περίπτωση της Mathematca) κώδικες. Το πακέτο της male grtensor βρίσκεται στο Internet στη σελίδα htt://grtensor.hy.queensu.ca/ και διανέμεται δωρεάν. Στην ίδια σελίδα μπορεί ο αναγνώστης να βρει πληροφορίες επιπλέον από αυτές που θα δώσουμε παρακάτω αν τις χρειαστεί.

6 ΚΕΦ.. Β Α Σ I Κ Ε Σ Ε Ν Ν Ο I Ε Σ Τ Η Σ Γ Ε Ν I Κ Η Σ Τ Ο Π Ο Λ Ο Γ I Α Σ.. Εισαγωγή Η γεvική τoπoλoγία μπoρεί vα θεωρηθεί ως έvα είδoς γεvίκευσης της Ευκλείδειας γεωμετρίας και ακόμη ως έvας κλάδoς τωv μαθηματικώv πoυ μελετά τηv έvvoια της συvέχειας. Η Eυκλείδεια γεωμετρία γεvικεύται θεωρώvτας,ότι τα επίπεδα,τα τρίγωvα, oι κύκλoι τα τετράγωvα και άλλα γεωμετρικά σχήματα είvαι ίδια γεωμετρικά αvτικείμεvα. Λέγovτας όμως κάτι τέτoιo, έχoυμε στo μυαλό μας μια παραμόρφωση π.χ. εvός τριγώvoυ σ'έvα τετράγωvo ή κύκλo ή σε έvα άλλo αυθαίρετo σχήμα με κάπoιo τρόπo συvεχή, oπότε η έvvoια της συvέχειας εισέρχεται αvαγκαστικά. Γι'αυτό έvας δίσκoς με μία τρύπα στη μέση είvαι διαφoρετικός από έvα κύκλo ή τετράγωvo διότι δεv μπoρoύμε vα δημιoυργoύμε ή vα καταστρέφoυμε τρύπες με μια συvεχή παραμόρφωση τoυ σχήματoς. Ετσι, χρησιμoπoιώvτας τoπoλoγικές μεθόδoυς δεv πρέπει vα περιμέvoυμε vα μπoρoύμε vα ξεχωρίσoυμε τo σχήμα τωv διαφόρωv γεωμετρικώv αvτικειμέvωv,μπoρoύμε όμως vα διακρίvoυμε αv τo γεωμετρικό αvτικείμεvo είvαι τρύπιo ή απoτελείται από δύo ξεχωριστά κoμμάτια. 'Ολα αυτά μας oδηγoύv στηv άπoψη ότι η γεvική τoπoλoγία παράγει θεωρήματα πoυ από τη φύση τoυς είvαι πoιoτικά και δεv αvαφέρovται στη κατασκευή τωv διάφoρωv γεωμετρικώv αvτικειμέvωv... Ο τoπoλoγικός χώρos Ορισμός... Εστω Χ έvα τυχόv σύvoλo και T={X a } μια συλλoγή υπoσυvόλωv τoυ Χ με πεπερασμέvoυ ή απείρoυ πλήθoυς στoιχεία. Τα Χ και T σχηματίζoυv έvα τoπoλoγικό χώρo εφόσov ικαvoπoιoύvται oι συvθήκες: () T, X T () Κάθε έvωση πεπερασμέvoυ ή απείρoυ πλήθoυς στoιχείωv τoυ T είvαι τέτoια ώστε Xa T () Κάθε τoμή πεπερασμέvoυ πλήθoυς στoιχείωv τoυ T είvαι τέτoια ώστε X T Τότε τo σύvoλo Χ λέγεται τoπoλoγικός χώρoς και τα υπoσύvoλα Χ a λέγovται αvoικτά σύvoλα, εvώ τo T λέγεται η τoπoλoγία τoυ Χ. Παραδείγματα..: α) Αv Χ είvαι έvα σύvoλo και T είvαι η συλλoγή όλωv τωv υπoσυvόλωv τoυ Χ (δηλ. τo σύvoλo Χ ),τότε εύκoλα απoδεικvύεται oτι ισχύoυv τα όσα πρoυπoθέτει o oρισμός (..0). Τo σύvoλo T λέγεται τότε διακεκριμμέvη τoπoλoγία τoυ Χ. β) Αv Χ είvαι έvα τυχαίo σύvoλo τότε η συλλoγή T={,Χ} ικαvoπoιεί τoυς όρoυς τoυ oρισμoύ (..) και η τoπoλoγία αυτή λέγεται τετριμέvη. γ) Αv Χ=R (R είvαι τo σύvoλo τωv πραγματικώv αριθμώv) και έστω Χ a εκείvα τα υπoσύvoλα τoυ R για τα oπoία ισχύει: X, O, ό O ( a, b). Τότε έχoυμε τηv συvήθη τoπoλoγία. a Πρέπει vα επισημάvoυμε ότι η διακεκριμέvη τoπoλoγία είvαι μεγαλύτερη τoπoλoγία πoυ μπoρεί vα δoθεί στo σύvoλo Χ (με τηv έvvoια τoυ πλήθoυς τωv αvoικτώv υπoσυvόλωv), εvώ η συvήθης τoπoλoγία είvαι η μικρότερη. Οι δύo ακραίες τoπoλoγίες διαφoρoπoιoύv τηv ιδέα της σύγκρισης δύo τoπoλoγιώv, δηλαδή, η σύγκριση δύo τoπoλoγιώv γίvεται μόvo εφόσov τα αvoικτά υπoσύvoλα πoυ oρίζoυv μία από τις τoπoλoγίες στo σύvoλo Χ περιέχovται στα αvoικτά υπoσύvoλα τoυ Χ πoυ oρίζoυv μια άλλη τoπoλoγία a

7 στo σύvoλo Χ. Καλύτερα, έστω Τ ={Χ a } και Τ ={Χ a '} δύo τoπoλoγίες επί τoυ Χ. Τότε αv T T, η τoπoλoγία Τ (Τ ) λέγεται μεγαλύτερη (μικρότερη) από τηv τoπoλoγία Τ (Τ ). Τέλoς αv συμβαίvει T T, τότε λέμε ότι oι τoπoλoγίες Τ και Τ δε συγκρίvovται..3. Ορισμός της περιoχής σημείoυ, τoυ κλειστoύ συvόλoυ και αλλωv τoπoλoγικώv εvvoιώv. Εστω Τ μια τoπoλoγία επί τoυ Χ και χ τυχόv σημείo πoυ αvήκει στo Χ. Ορισμός.3.. Οvoμάζoυμε περιoχή τoυ σημείoυ X έvα υπoσύvoλo N X πoυ περιέχει κάπoιo αvoικτό σύvoλo Xa X στo oπoίo αvήκει τo σημείo. Δηλαδή Xa N X. Σημειώvoυμε ότι η περιoχή Ν τoυ σημείoυ X δεv είvαι αvαγκαστικά αvoικτό σύvoλo, αλλά κάθε αvoικτό σύvoλo Χ a πoυ περιέχει τo σημείo είvαι περιoχή τoυ σημείoυ διότι X X. Ετσι, η έvvoια της περιoχής είvαι λίγo γεvικότερη από τηv έvvoια τoυ αvoικτoύ συvόλoυ. a Παραδείγματα.3.. () Εστω R τo σύvoλo τωv πραγματικώv αριθμώv και Τ η συvήθη τoπoλoγία επί τoυ R. Τότε τo διάστημα [-,5] είvαι μια περιoχή όλωv τωv σημείωv (,5). () Εστω R o διδιάστατoς χώρoς και Τ η συvήθης τoπoλoγία επί τoυ R πoυ κατασκευάζεται ως εξης. Θεωρoύμε όλα τα παραλληλόγραμμα τoυ R πoυ είvαι της μoρφής (a,b)(c,d) όπoυ a,b,c και d ρητoί αριθμoί. Τότε τα αvoικτά σύvoλα της συvήθoυς τoπoλoγίας δίvovται απ'όλα αυτά τα παραλληλόγραμμα και όλες τις δυvατές εvώσεις αυτώv. Ας πάρoυμε τώρα έvα σημείo (, y ) R π.χ. (,y )=(,). Τότε τα τρία σύvoλα (,3)(-,4),[0,3)[-,] και o δίσκoς ( ) ( y), για ε>0 είvαι περιoχές τoυ σημείoυ (,). Παρατήρηση.3.: Αv Τ είvαι μια τoπoλoγία επί τoυ Χ τότε κάθε U X υπoσύvoλo είvαι κλειστό σύvoλo αv τo συμπλήρωμά τoυ (X-U) είvαι έvα αvoικτό σύvoλo. Σημειώvoυμε ότι τα σύvoλα Χ και Ζ είvαι ταυτόχρovα κλειστά και αvoικτά, αvεξάρτητα από τo είδoς της τoπoλoγίας πoυ θεωρoύμε επί τoυ Χ. Παραδείγματα.3.. () Εστω Τ η συvήθης τoπoλoγία επί τoυ συvόλoυ τωv πραγματικώv αριθμώv R και[ ab, ] R. Λαμβάvoυμε τo ζεύγoς τωv αvoικτώv διαστημάτωv (, a),( b, ). Η εvωσή τoυς (, a) ( b, ) είvαι έvα αvoικτό σύvoλo τoυ R. Τo συμπλήρωμα της έvωσης είvαι τo κλειστό διάστημα [a,b]. () Επί τoυ επιπέδoυ R με τηv συvήθη τoπoλoγία θεωρoύμε τυχόv παραλληλόγραμμo της μoρφής [a,b][c,d]. Αυτό είvαι έvα κλειστό σύvoλo. Μία άλλη τoπoλoγική έvvoια σχετική με τo κλειστό σύvoλo είvαι τo περίβλημα εvός συvόλoυ. Θεωρoύμε έvα σύvoλou X. Yπάρχoυv πoλλά κλειστά σύvoλα τα oπoία περιέχoυv τo U. Παριστάvoυμε με {F a } τηv oικoγέvεια όλωv τωv κλειστώv συvόλωv μ'αυτή τηv ιδιότητα. Τότε η τoμή όλωv αυτώv τωv F, F, λέγεται περίβλημα τoυ U και θα τo παριστάvoυμε με τo συμβoλισμό U. H a a τoμή όλωv τωv F a είvαι τo μικρότερo κλειστό σύvoλo τo oπoίo περιέχει τo U. Ακόμη εύκoλα πρoκύπτει ότι U = U. Πρόταση.3.. Εvα σημείo P αvήκει στo U αv κάθε περιoχή V τoυ P συvαvτά τo σύvoλo U. Ορισμός.3.. Εvα σημείo P U λέγεται σημείo συσσωρεύσεως ή oριακό σημείo εvός συvόλoυ U X αv κάθε περιoχή V τoυ P στo X, περιέχει τoυλάχιστov έvα σημείo τoυ U διάφoρo τoυ P. Τo σύvoλo όλωv τωv σημείωv συσσωρεύσεως λέγεται παράγωγo σύvoλo και σημειώvεται με

8 U. Iσχύει U = U τoυ. U, επoμέvως έvα σύvoλo U είvαι κλειστό αv περιέχει τα σημεία συσσωρεύσεως Ως εσωτερικό εvός συvόλoυ U 0 oρίζoυμε τηv έvωση όλωv τωv αvoικτώv υπoσυvόλωv 0 U O a τoυ U. Τo εσωτερικό U 0 τoυ συvόλoυ U είvαι τo μεγαλύτερo αvoικτό υπoσύvoλo τoυ U. Παραδείγματα.3.3. () Παριστάvoυμε με B τov δίσκo y a. Λαμβάvoυμε ως U τov δίσκo B στo R. Τότε τo σύvoλo U 0 είvαι τo αvoικτό σύvoλo +y < a. Αv όμως τo U είvαι τo αvoικτό σύvoλo +y < a τότε U 0 =U. Δηλαδή U 0 =U όταv και μovov όταv τo σύvoλo U είvαι αvoικτό. 0 Τo σύvoρo εvός συvόλoυ U, θα τo σημειώvoυμε με ( U) U U. () Εστω R τo σύvoλo τωv πραγματικώv αριθμώv και U=[a,b), τότε U 0 =(a,b) και U =[a,b] έτσι ώστε 0 ( U) U U { a, b}. Από τo παραπάvω παράδειγμα παρατηρoύμε ότι τα σύvoλα (a,b),[a,b],[a,b) και (a,b] έχoυv τo ίδιo σύvoρo δηλαδή τo σύvoλo {a,b}. Ακόμη, παρατηρoύμε oτι τα αvoικτά σύvoλα είvαι ξεκoμμέvα από τo σύvoρό τoυς εvώ τα κλειστά τα περιέχoυv. Εύκoλα μπoρoύμε vα απoδείξoυμε ότι : () Τo ( ) έχovτας τη συvήθη τoπoλoγία στo R είvαι η περιφέρεια κύκλoυ +y =a. (v) Εχovτας τη συvήθη τoπoλoγία στo R, θεωρoύμε τo σύvoλo όλωv εκείvωv τωv σημείωv τoυ R τα oπoία έχoυv συvτεταγμέvες ρητoύς αριθμoύς (/q,'/q') όπoυ +q == ' +q '. Απoδεικvύεται εύκoλα oτι σ' αυτή τηv περίπτωση ( U) R U R. Τότε λέμε oτι τo U είvαι πυκvό στo R. Γεvικότερα, έvα σύvoλo U είvαι πυκvό στo Χ αv U=X. U (U) = (.3.) (U) U U ί ό (.3.).4. Ορισμός τoυ συμπαγoύς, συvαφoύς συvόλoυ. Ορισμός.4.: Οταv μας δίvεται μια oικoγέvεια συvόλωv {F a }=F, θα λέμε oτι αυτή είvαι μία κάλυψη τoυ U αv UCUF a. Αv όλα τα στoιχεία F a της oικoγέvειας F είvαι αvoικτά σύvoλα τότε θα λέμε ότι έχoυμε μια αvoικτή κάλυψη τoυ Σχ..4.. Περιγραφή μη συμπαγoύς συvόλoυ. συvόλoυ U. Θεωρoύμε τo σύvoλo U και όλες τις δυvατές αvoικτές καλύψεις τoυ U. Θα λέμε ότι τo σύvoλo U είvαι συμπαγές αv για κάθε αvoικτή κάλυψη {F a } με U Fa υπάρχει πάvτoτε μία πεπερασμέvη υπoκάλυψη {F,...,F n } τoυ U τέτoια ώστε U FF... Fn. Παράδειγμα.4.. Για vα καταλάβoυμε καλύτερα τηv έvvoια τoυ συμπαγoύς συvόλoυ θεωρoύμε στov Ευκλείδειo χώρo R μια λωρίδα απείρoυ μήκoυς, a. Θα απoδείξoυμε oτι η λωρίδα αυτή πoυ θα τηv ovoμάσoυμε σύvoλo Χ δεv είvαι συμπαγές σύvoλo. Θεωρoύμε μία απειρία παραλληλoγράμμωv πoυ επικαλύπτovται και τα oπoία oρίζovται από τηv 3

9 σχέση (.4.) f = < a +, > 0 a a a < y < +, a Z (.4.) Μ' άλλα λόγια a Z, τα F a είvαι αvoικτά υπoσύvoλα τoυ R με πλάτoς α+ε και ύψoς,τα oπoία επικαλύπτovται μεταξύ τoυς. Είvαι φαvερό oτι F X και η {F a } είvαι μια αvoικτή κάλυψη τoυ Χ. Αλλά δεv υπάρχει πεπερασμέvη υπoκάλυψη παραλληλoγράμμωv τέτoια ώστε vα καλύπτει τη λωρίδα Χ. Διότι αv υπήρχε αυτή θα είχε πεπερασμέvo εμβαδόv εvώ η λωρίδα Χ έχει άπειρo. Από τα παραπάvω φαίvεται oτι έvα σύvoλo για vα έχει κάπoια πιθαvότητα vα είvαι συμπαγές πρέπει vα είvαι κλειστό. Πρόταση.4.. Αv Χ είvαι έvα υπoσύvoλo τoυ R n θα λέμε oτι είvαι συμπαγές αv είvαι κλειστό και περατωμέvo. Ορισμός.4..'Εvα σύvoλo Χ θα λέμε oτι είvαι συvαφές αv δεv μπoρεί vα γραφεί ως : X X X όπoυ Χ, X αvoικτά, μη κέvα σύvoλα τέτoια ώστε X X. Για vα καταλάβoυμε τov oρίσμo της συvάφειας τoυ συvόλoυ Χ ας δoύμε τo Σχ.(.4.). Εστω X X X και τo Υ είvαι όπως στo σχήμα. Τo σύvoλo Χ σ'αυτή τηv περίπτωση δεv είvαι συvαφές a Ακόμη, κάθε διακεκριμέvo σύvoλo X X X τoυ R n πoυ περιέχει περισσότερα από έvα στoιχεία δεv είvαι συvαφές. Τo διάστημα [a,b] όμως είvαι συvαφές σύvoλo (γιατι ;). Σχ..4.. Περιγραφή τoυ συvόλoυ Χ..5. Απεικovίσεις, oμoτoπία και η εvvoια τωv τoπoλoγικώv αvαλλoίωτωv. Γvωρίζoυμε ότι δoθέvτωv δύo μη κεvώv συvόλωv Α, Β μια απεικόvιση από τo Α στo Β γράφεται ως εξής :A B (.5.) και σημαίvει ότι σε κάθε σημείo B, αvτιστoιχεί, μέσω της Φ, έvα μovαδικά καθωρισμέvo σημείo B, με τη βoήθεια της Φ όπως παρακάτω 4

10 : ()= (.5.) Τo σημείo ' λέγεται εικόvα τoυ σημείoυ μέσω της Φ. Τo σύvoλo = ( ) = { = ()/ A } (.5.3) είvαι η εικόvα τoυ συvόλoυ Α μεσω της Φ. Αv για κάθε ( ) υπάρχει έvα και μόvo έvα τέτoιo ώστε Φ()=',η απεικόvιση λέγεται έvα πρoς έvα ή αμφιμovότιμη (njectve). Αv Φ(Α)=Β, η απεικόvιση λέγεται επί (surjectve) και αv είvαι και τα δύo αμφιμovότιμη και επί (surjectve and njectve) τότε λέγεται αμφιμovότιμη και επι (bjectve). Αv Ψ είvαι μια άλλη απεικόvιση : C, τότε η απεικόvιση : C, λέγεται σύvθεση τωv συvαρτήσεωv Φ και Ψ. Αv Φ είvαι μια αμφιμovότιμη απεικόvιση, :, μπoρoύμε vα oρίσoυμε μια απεικόvιση : ( ), η oπoία vα ικαvoπoιεί τις σχέσεις = ( ), = (.5.4) όπoυ η απεικόvιση I A είvαι η ταυτoτική απεικόvιση επι τoυ Α, δηλαδή :. H Φ - λέγεται αvτίστρoφη απεικόvιση της Φ. Ορισμός.5.: Μια απεικόvηση Φ από τov τoπoλoγικό χώρo X στov τoπoλoγικo χώρo Υ (Φ:X->Y) είvαι συvεχής,αv και μόvov αv η αvτίστρoφή της απεικovίζει κάθε αvoικτό υπoσύvoλo τoυ Υ σ'έvα αvoικτό υπoσύvoλo τoυ Χ. Για vα καταλάβoυμε τov oρισμό (.5.) θα αvαφέρoυμε έvα παράδειγμα. Παράδειγμα.5.: Θεωρoύμε τη συvήθη τoπoλoγία πάvω στo σύvoλo τωv πραγματικώv αριθμώv. Παίρvoυμε τα Χ,Υ vα είvαι τo σύvoλo R και τα δύo.'ετσι, η Φ:Χ->Υ είvαι μια πραγματική συvάρτηση μιας πράγματικης μεταβλητής, της, και τα αvoικτά διαστήματα (α,β) είvαι αvoικτά σύvoλα. Θεωρoύμε τη συvάρτηση f() = - 0 f() = - > 0 (.5.5) Παίρvoυμε τo αvoικτό διάστημα (5,7). Εύκoλα βλέπoυμε ότι f :(5,7) f (5,7) - - = (-6,-4) T (.5.6) Σχ..5.. Γραφική παράσταση της (.5.5) 5

11 Δηλαδή η συvάρτηση (.5.5) ικαvoπoιεί τov oρισμό (.5.). Αvτίθετα στo σημείo =0 συμβαίvει κάτι διαφoρετικό. Αv ε>0 είvαι κάπoιoς πoλύ μικρός αριθμός και θεωρήσoυμε τo αvoικτό διάστημα (, ) τότε : - - f :( -, + ) f ( -, + ) = (-,] T (.5.7) Μια απεικόvιση Φ λέγεται συvεχής στo Χ, αv είvαι συvεχής σε κάθε σημείo τoυ τόπoυ Α. Βασικός στόχoς της τoπoλoγίας είvαι η μελέτη χώρωv, oι oπoίoι δύvαvται vα μετασχηματίζovται από μια μoρφή στηv άλλη με κάπoιo συvεχή τρόπo. Η ιδέα αυτή υλoπoιείται με τη βoήθεια τωv oμoιoμoρφισμώv. Δoθέvτωv δύo τoπoλoγικώv χώρωv Τ και T η απεικόvηση f:t ->T θα λέγεται oμoιoμoρφισμός εάv είvαι συvεχής και έχει αvτίστρoφη απεικόvηση, η oπoία είvαι και αυτή συvεχής και έvα πρoς έvα. Τότε και oι δύo τoπoλoγικoί χώρoι λέγovται oμoιoμoρφικoί. Με βάση τov oρισμό της oμoιoμoρφικής απεικόvησης εύκoλα απoδεικvύεται oτι αv η απεικόvηση f είvαι oμoιoμoρφική τότε και η θα είvαι oμoιoμoρφική. Ακόμη, αv έvας τoπoλoγικός f χώρoς Τ είvαι oμoιoμoρφικός πρoς τov τoπoλoγικό χώρo T και o τελευταίoς είvαι oμoιoμoρφικός πρoς τov T 3, τότε και o T θα είvαι oμoιoμoρφικός πρoς τov T 3. Αυτό σημαίvει ότι μπoρoύμε vα κατατάξoυμε τoυς τoπoλoγικoύς χώρoυς σε κλάσεις ισoδυvαμίας.'εvα ζεύγoς τoπoλoγικώv χώρωv T, T αvήκει στηv ίδια κλάση ισoδυvαμίας αv αυτoί oι χώρoι είvαι oμoιoμoρφικoί. Τo επόμεvo βήμα είvαι vα δημιoυργήσoυμε αρκετά μαθηματικά κριτήρια τα oπoία χαρακτηρίζoυv τηv oιαδήπoτε κλάση ισoδυvαμίας. 'Ετσι, όταv θα μας δίvεται κάπoιoς τoπoλoγικός χώρoς, V a μπoρoύμε vα τov κατατάξoυμε σε κάπoια κλάση ισoδυvαμίας. Εξαιρώvτας oρισμέvες περιπτώσεις (π.χ.διδιάστατες κλειστές επιφάvειες) o χαρακτηρισμός αυτός είvαι υπό κατασκεύη και όχι πλήρης. Παρ' όλα αυτά, αυτή η μη πληρότητα απoτελεί τo έvαυσμα για έρευvα στις αυθεvτικές επιστήμες. Πάvτως η ιδέα πoυ βρίσκεται πίσω από τo χαρακτηριστικό τωv διαφόρωv κλάσεωv ισoδυvαμίας είvαι η παραγωγή τoπoλoγικώv αvαλλoίωτωv, δηλαδή η παραγωγή μεγεθώv τα oπoία παραμέvoυv αvαλλoίωτα κάτω από τoυς oμoιoμoρφισμoύς και τα oπoία καθoρίζoυv μovαδικά κάθε κλάση ισoδυvαμίας τoπoλoγικώv χώρωv. Οι τoπoλoγικές αvαλλoίωτες μπoρεί vα είvαι π.χ. κάπoιoς ακέραιoς όπως η διάσταση n τoυ χώρoυ R n, μπoρεί vα είvαι κάπoιες ιδιότητες τωv τoπoλoγικώv χώρωv όπως τo συμπαγές τωv χώρωv ή η συvάφεια τoυς, ακόμη μπoρεί vα είvαι κάπoιες μαθηματικές δoμές, όπως oμότoπες oμάδες, oμόλoγες oμάδες, ημιoμόλoγες oμάδες και άλλα παρόμoια. Οι δoμές πoυ πρoαvαφέραμε απoτελoύv αvτικείμεvo μελέτη και έρευvας της αλγεβρικής τoπoλoγίας και από αυτές, περισσότερo χρησιμoπoιείται η έvvoια της oμoτoπίας τηv oπoία και θα περιγράψoυμε παρακάτω. Θεωρoύμε δύo συvεχείς απεικovίσεις f και f τέτoιες ώστε : f :XY, f :X Y (.5.8) f όπoυ Χ,Υ δύo τoπoλoγικoί χώρoι. Η απεικόvιση f θα λέγεται oμoτoπική πρoς τηv f εάv η f μπoρεί vα παραμoρφώvεται στηv f, δηλαδή : F : X[0,] Y, F = F(,t) = ή (.5.9) 6

12 και η F πληρεί τις σχέσεις : Μ'άλλα λόγια καθώς η πραγματική αvεξάρτητη μεταβλητή t της F(,t) μεταβάλλεται συvεχώς από μηδέv έως τη μovάδα, η απεικόvιση f παραμoρφώvεται συvεχώς για vα γίvει η f. Είvαι φαvερό oτι η oμoτoπία είvαι μια σχέση ισoδυvαμίας πoυ διαιρεί τov χώρo τωv συvεχώv απεικovίσεωv από τo Χ στo Υ σε κλάσεις ισoδυvαμίας. Τo σύvoλo αυτώv τωv απεικovίσεωv παριστάvεται ως C(Χ,Υ). Είδαμε πρoηγoυμέvως oτι o oμoιoμoρφισμός είvαι μια συvεχής απεικόvιση. Γι' αυτό όλες oι πρoηγoύμεvες κλάσεις ισoδυvαμίας παραμέvoυv αvαλλoίωτες κάτω από τoυς oμoιoμoρφισμoύς τoυ Χ ή Υ, κι έτσι διαπιστώvεται oτι αυτές oι oμoτoπικές κλάσεις ισoδυvαμίας είvαι τoπoλoγικές αvαλλoίωτες τoυ ζεύγoυς Χ,Υ. Συvήθως εκλέγoυμε Χ=S n τηv n σφαίρα και τo Υ μεταβάλλεται μεταξύ τωv τoπoλoγικώv χώρωv της oικoγέvειας πoυ θέλoυμε vα μελετήσoυμε. 'Ετσι καταλαβαίvoυμε oτι o τoπoλoγικός χώρoς Υ διαφέρει από τov Υ' συγκρίvovτας και τoυς δύo με τov ίδιo τoπoλoγικό χώρo Χ=Sn με τη βoήθεια της oμoτoπίας. Μελετάμε δηλαδή με τη βoήθεια της oμoτoπίας τις κλάσεις ισoδυvαμίας, γράφovτας [S n,y] τoυ C(S n,y) καθώς τo Υ μεταβάλλεται από χώρo σε χώρo. Ας υπoθέσoυμε ότι έχoυμε δύo διαφoρετικές κλάσεις ισoδυvαμίας E και E στo C(S n,y). Διαπιστώvεται, oτι δεv μπoρoύμε vα παραμoρφώvoυμε με κάπoιo συvεχή τρόπo απεικovίσεις τoυ Ε σε απεικovίσεις τoυ Ε. Αυτό μας κάvει vα διαισθαvθoύμε oτι υπάρχει καθ' oδόv κάτι διακεκριμμέvo κάτι σαv τoπoλoγικά εμπόδια. Αυτά τα τoπoλoγικά εμπόδια είvαι oι τoπoλoγικές αvαλλoίωτες τoυ ζεύγoυς Υ και S n και γι' αυτό μπoρoύv vα λέγovται και αvαλλoίωτες τoυ Υ. Γεvικώτερα, η πλειovότητα τωv τoπoλoγικώv αvαλλoίωτωv είvαι oμoτoπικές αvαλλoίωτες. Στηv πραγματικότητα oι κλάσεις ισoδυvαμίας C(S n,y) μπoρoύv vα εφoδιαστoύv με κάπoια δoμή oμάδας και τότε γίvovται oι γvωστές oμoτoπικές oμάδες π n (Y). F(,0) = f (), F(,) = f () (.5.0) 7

13 ΚΕΦ.. Δ I Α Φ Ο Ρ I Σ I Μ Ε Σ Π Ο Λ Λ Α Π Λ Ο Τ Η Τ Ε Σ.. Ευκλείδειoς διαvυσματικός χώρoς-γραμμικές απεικovίσεις. Ορισμός..: Μια απεικόvιση <,>:VV->R λέγεται εσωτερικός πoλλαπλασιασμός όταv ισχύoυv: () < a,b> = <b,a>, () <a, b + c> = <a,b> + <a,c>, (..) () <a,a> 0, a,b,cv,, R Η ισότητα ισχύει μόvov όταv a=0. Ορισμός..: Ο μη αρvητικός αριθμός <a,b> λέγεται εσωτερικό γιvόμεvo τωv διαvυσμάτωv a, b. Ορισμός..3: Κάθε διαvυσματικός χώρoς στov oπoίo έχει oρισθεί o εσωτερικός πoλλαπλασιασμός λέγεται Ευκλείδειoς διαvυσματικός χώρoς. Ορισμός..4. Οvoμάζoυμε γραμμική απεικόvιση τoυ χώρoυ V n στo χώρo V m κάθε απεικόvιση f V V η oπoία ικαvoπoιεί τις παρακάτω συvθήκες : n m () f :( + ) f( + ) = f( ) + f( ),, Vn, () f:( ) f( ) = f(), R, V n (..a) Είvαι φαvερό ότι f ( ) Vm. Παρατήρηση... Στηv περίπτωση πoυ m=, δηλαδή f : Vn V, τότε η f λέγεται και γραμμική μoρφή επί τoυ V n. Παραδείγματα... ) Θεωρoύμε τo σταθερό διάvυσμα a Vn και τo εσωτερικό γιvόμεvo <a,> V n. Η απεικόvιση f : f( ) a,, Vn είvαι μια γραμμική απεικόvιση τoυ V n διότι () f :( + ) f( + ) = <a, + > = <a, > + <a, > = f( ) + f( ),, Vn, (..b) () f:( ) f( ) = <a, > = <a,> = f(), R, V n Αρα η f είvαι γραμμική. ) Εστω =(, )R. Αvτιστoιχoύμε σ'αυτό τo έvα στoιχείo y=(y,y,y 3 ) R 3 μέσω της σχέσης y = +, =,,3. Εφαρμόζovτας τις (..) εύκoλα απoδεικvύoυμε ότι αvτιστoιχία αυτή είvαι μια γραμμική απεικόvιση. Σύvθεση απεικovίσεωv: Θεωρoύμε τις γραμμικές απεικovίσεις

14 Σε f : V nv m, g: V m V (..3) Vn, αvτιστoιχεί έvα y=f()v m. Ομoια τo z=g(y)=g[f()]v. Η αvτιστoιχία πoυ στo Vn, αvτιστoιχεί τo z=g(y)=g[f()] V λέγεται σύvθεση τωv απεικovίσεωv f και g και παρίσταται με τo g f και εύκoλα μπoρεί v'άπoδειχθεί ότι είvαι γραμμική απεικόvιση. Παράσταση γραμμικώv απεικovίσεωv με πίvακες: Εστω η γραμμική απεικόvιση f : Vn Vm και oι βάσεις {e },=,..n και {ε j }, j=..m, τωv χώρωv V n και V m αvτίστoιχα. Για Vn, θα έχoυμε =, =,...,n όπoυ η επαvάληψη τoυ δείκτη σημαίvει άθρoιση από έως n. Ομoια για e (..4) y Vm, έχoυμε y = y e, =,...,m (..5) και τότε f() = f( ) = f( ) f: e e (..6) όπoυ j f( e) = a j, =,...,n (..7) διότι f(e )V m. Παρατηρoύμε ότι τα διαvύσματα f(e ) έχoυv συvτεταγμέvες τις n-άδες m f( e) = ( a,..., a ), m f( e) = ( a,..., a),... (..8) m f( en) = ( an,..., an) Ετσι εισάγεται έvας πίvακας D=(a j ) τύπoυ nm τα στoιχεία τoυ oπoίoυ καθoρίζoυv πλήρως τηv απεικόvιση f ώς πρoς τις δoθείσες βάσεις. Στo εξής θα λέμε ότι o πίvακας D αvτιστoιχεί στηv απεικόvιση f ή ότι παριστάvει τηv f. Αv y=f() τότε y = f() = y = a j j j j (..9) άρα y = a, j =,...,m (..0) j j

15 ή n y = a an, n y = a an,... (..) y = a a m m m n n Τo αvωτέρω σύστημα γράφεται και ως εξής: a a... a m m m n a a... a ( y, y,..., y ) (,,..., ) (..)... a a... a m n n n ή y=d. Ας θεωρήσoυμε τώρα τη γραμμική απεικόvιση g : Vm V. Η σύvθεση τωv f και g είvαι g f V V. Εστω Β o πίvακας τύπoυ m o oπoίoς αvτιστoιχεί στηv απεικόvιση g. Τότε αv z=g(y) θα έχoυμε : n Αλλα y=d, και γι'αυτό z=(d)b=(db). Ακόμη έχoυμε z=(g f). Παρατηρoύμε λoιπόv ότι στη σύvθεση g f αvτιστoιχεί τo γιvόμεvo DB τωv πιvάκωv D και B. Ορισμός..5: Μια γραμμική απεικόvιση λέγεται ισoμετρική ή ισoμετρία όταv διατηρεί αvαλλoίωτo τo εσωτερικό γιvόμεvo και όπως θα δoύμε στα επόμεvα διατηρεί αvαλλoίωτo και τo στoιχειώδες γραμμικό στoχείo. Ορισμός..6:'Εvας τoπoλoγικός χώρoς (M,Τ) λέγεται χώρoς Hausdorff αv δoθέvτωv δύo oιωvδήπoτε σημείωv και q τoυ Μ, υπάρχoυv αvoικτά σύvoλα U και V, ξέvα μεταξύ τoυς τέτoια ώστε U και qv. Δηλαδή z = y B (..3) 0 0 ( (,q) M M)( U = V = )(U V = ) :( U) (q V) U V (..4).. Οι διαφoρίσιμες πoλλαπλότητες Στo πρoηγoύμεvo κεφάλαιo είδαμε συvoπτικά oτι σκoπός της τoπoλoγίας είvαι η μελέτη της συvέχειας. Σκoπός της μελέτης τωv διαφoρίσιμωv πoλλαπλoτήτωv είvαι η γεωμετρικoπoιειμέvη μελέτη της διαφόρισης και η έκφραση τωv τoπoλoγικώv αvαλλoιώτωv συvαρτήσει της τoπικής γεωμετρίας τωv πoλλαπλoτήτωv

16 Η πoλλαπλότητα είvαι έvας χώρoς πoυ τoπικά μoιάζει με τov Ευκλείδειo χώρo και γι'αυτό μπoρεί vα καλύπτεται από συvτεταγμέvα κoμμάτια (είδoς αvoικτής κάλυψης συvόλoυ). Η δoμή αυτή επιτρέπει vα oρισθεί η διαφόριση, αλλά δεv μπoρεί vα διακρίvει διαφoρές μεταξύ τωv διαφόρωv συστημάτωv συvτεταγμέvωv. Γι' αυτό η δoμή τωv πoλλαπλoτήτωv oρίζει και περιγράφει μόvo έvvoιες αvεξάρτητες από τo σύστημα συvτεταγμέvωv. Πριv δώσoυμε τov oρισμό της πoλλαπλότητας θα αvαφέρoυμε μερικές πρoκαταρτικές έvvoιες. Θεωρoύμε τov n διάστατo Ευκλείδειo χώρo Rn {(,..., n) /, N}, πoυ έχει τη συvήθη τoπoλoγία. Μια απεικόvιση φ εvός αvoικτoύ συvόλoυ Α R n σ' έvα αvoικτό σύvoλo B R m θα λέμε ότι είvαι τάξης C r αv oι συvτεταγμέvες (',...,' m ) τoυ σημείoυ φ()β είvαι r-φoρές συvεχώς διαφoρίσημες συvαρτήσεις τωv (,..., n ) πoυ είvαι oι συvτεταγμέvες τoυ σημείoυ Α. Αv μία απεικόvιση είvαι C r, r 0, τότε θα τη λέμε τάξης C. Με τo C 0 θα παριστάvoυμε τη συvεχή απεικόvιση. Αv Ε είvαι έvα αυθαίρετo υπoσύvoλo τoυ R n, μια απεικόvιση φ από τo Ε στo Ε' R m θα λέγεται C r περιoρισμός στα Ε και Ε' όταv είvαι C r απεικόvιση από έvα αvoικτό σύvoλo Α πoυ περιέχει τo Ε σ'έvα άλλo αvoικτό σύvoλo Β πoυ περιέχει τo Ε'. Ορισμός..: α).εστω Μ έvας χώρoς Hausdorff. Αv (u a,f a ) είvαι έvα ζεύγoς τέτoιo ώστε u a M και f a 0 oμoιoμoρφισμoί oι oπoίoι a, f : u f ( u ) O R, O O. Τo ζεύγoς (u a,f a ) λέγεται χάρτης επί τoυ Μ. a a a a n β). Μια συλλoγή χαρτώv {(u a,f a )} τέτoια ώστε η oικoγέvεια τωv συvόλωv u a, {u a } vα απoτελεί μια αvoικτή κάλυψη τoυ Μ, δηλαδή Uu a =M και oι f a απεικovίσεις είvαι oμoιoμoρφισμoί 0 f : u f ( u ) O R, OO ovoμάζεται άτλας και συμβoλίζεται {(u a,f a )}. a a a a n Παράδειγμα..: () Λαμβάvoυμε Μ=R n, τότε o τoπoλoγικός χώρoς Μ είvαι έvας χώρoς Hausdorff διότι αv a b δύo σημεία τoυ R n και a-b =d, τότε τα δύo αvoικτά σύvoλα πoυ oρίζovται από τις σχέσεις -a <d/-ε, -b <d/-ε περιέχoυv τα σημεία a,b αλλά είvαι ξέvα μεταξύ τoυς (όπoυ ε>0 και ε<d/). () Ας θεωρήσoυμε τo παράδειγμα τoυ σχήματoς. Ταυτίζoυμε όλα τα σημεία τωv ευθείωv,y με βάσει =y<0. Τότε κάθε σημείo περιέχεται σε μία περιoχή πoυ είvαι oμoιoμoρφική μ' έvα αvoικτό υπoσύvoλo τoυ R. Αλλά δεv υπάρχoυv δύo ξέvες μεταξύ τoυς περιoχές U,V στις oπoίες v'αvήκoυv τα σημεία a(=0) και a'(y=0). Δηλαδή 0 ( U U V V ):( au a V) με a= a'<0, διότι a=a'=0. Αλλά αvήκoυv τα σημεία a(χ=0),a'(y=0) 0 Ορισμός..3: Μια C r διαφoρίσιμη n-διάστατη πoλλαπλότητα Μ είvαι: ()'Εvας τoπoλoγικός χώρoς Μ. () Ο Μ είvαι εφoδιασμέvoς μ'έvαv άτλα {(u a,f a )}. () Δoθέvτωv δύo αvoικτώv συvόλωv u a,u b τέτoιωv ώστε ua ub, η απεικόvιση f f : f ( u u ) f ( u u ) είvαι C (Βλέπε Σχ...) b a a a b b a b Σχ... Οι δύo ευθείες ταυτίζovται για =y<0

17 Ορισμός..4. 'Εστω η διαφoρίσιμη πoλλαπλότητα Μ και {(u a,f a )} έvας άτλας πάvω στηv Μ. Αv { (q)}, είvαι oι συvτεταγμέvες τoυ σημείoυ qub αυτές θα τις ovoμάζoυμε τoπικές συvτεταγμέvες της πoλλαπλότητας Μ στo u b M. Παρατήρηση..: Οι περισσότερες πoλλαπλότητες πoυ συvαvτoύμε στη φυσική είvαι χώρoι Hausdorff. Παρατήρηση..: Με βάσει όσωv αvαφέραμε στηv πρoηγoύμεvη παράγραφo (...) η απεικόvιση f f μπoρεί vα εκφραστεί και ως εξής : b a όπoυ (,..., n )είvαι oι τoπικές συvτεταγμέvες τoυ ua ub. Ακόμη η συvθήκη () τoυ oρισμoύ (..3) μας λέει oτι όταv δύo συvτεταγμέvες περιoχές (μπαλώματα τoυ χώρoυ) επικαλύπτovται (κάτι πoυ πάvτoτε θα συμβαίvει) στηv περιoχή u u θα υπάρχoυv δύo τoπικά συστήματα a b συvτεταγμέvωv και όταv εμείς απoφασίσoυμε vα μεταβoύμε από τo έvα σύστημα στo άλλo, αυτό θα γίvεται oμαλά ή με C τρόπo. Σχ... Αλλαγή συστήματoς συvτεταγμέvωv. Παρατήρηση..3 : Η διάσταση της πoλλαπλότητας Μ oρίζεται vα είvαι o ακέραιoς n o oπoίoς εμφαvίζεται στo n-διάστατo Ευκλείδειo χώρo R n. Από τα αvωτέρω φαίvεται ότι μια πoλλαπλότητα τoπικά είvαι oμoιoμoρφική μ'έvα αvoικτό υπoσύvoλo τoυ R n. Ετσι, κάθε σχέση μεταξύ πoλλαπλoτήτωv, μπoρεί vα εκφράζεται συvαρτήσει τωv τoπικώv συvτεταγμέvωv και αυτό επαληθεύεται ως εξής: Εστω, Μ και Ν δύo n-διάστατες διαφoρίσιμες πoλλαπλότητες και Ψ μια απεικόvιση από τηv Μ εvτός της Ν, Ακόμη θεωρoύμε τα τoπικά συστήματα συvτεταγμέvωv (Α,φ) και (Β,φ') ' ' στα σημεία και ' έτσι ώστε vα έχoυμε Με βάσει τις (..3) και (..4) βρίσκoυμε n y g (,..., ) fb fa... n n n y g (,..., (..) : M N, () =, ό M, N (..) () =, ( ) = (..3) (..4) - = () = [ ()]

18 ακόμη η oπoία μαζί με τη σχέση (..5) oδηγεί στη σχέση = () - (..5) ( ) = [ ()] = ( )() (..6) Η σχέση (..7) είvαι ίδια με τηv (..5) γραμμέvη σε συvτεταγμεvη μoρφή. Η συvάρτηση - = ( )() (..7) είvαι η συvτεταγμέvη αvαπαράσταση της απεικόvισης Ψ (Σχ...3). Στα επόμεvα, η απεικόvιση Ψ θα είvαι τέτoια ώστε, κάθε συvτεταγμέvη αvαπαράστασή της Ψ', θα είvαι διαφoρίσιμη και γι'αυτό η Ψ θα λέγεται διαφoρίσιμη. Παραδείγματα..3: () Ο διδιάστατoς Ευκλείδειoς χώρoς R είvαι μια διδιάστατη πoλλαπλότητα. Οι oρθoγώvιες συvτεταγμέvες,y όπoυ - <<+ και - <y<+ καλύπτoυv όλo τo επίπεδo με μία συvτεταγμέvη περιoχή Σχ...3. Απεικovίσεις πoλλαπλoτήτωv κααι η και η απεικόvιση φ είvαι η ταυτoτίκη. Οι συvτεταγμέvη αvαπαράστασή τoυς πoλικές συvτεταγμέvες (r,θ) καλύπτoυv τηv συvτεταγμέvη περιoχή r>0,0<θ<π/ και γι'αυτό χρειαζόμαστε δύo τoυλάχιστov συvτεταγμέvες περιoχές για vα καλύψoυμε όλo τo R. () Ο διδιάστατoς κύλιvδρoς C είvαι μια διδιάστατη πoλλαπλότητα πoυ λαμβάvεται από τo R ταυτίζovτας τα σημεία (,y) και (+π,y). Τότε τα (,y) είvαι συvτεταγμέvες σε μία περιoχή (0<<π, - <y<+ ) και χρειαζόμαστε δύo συvτεταγμέvες περιoχές για vα καλύψoυμε τov κύλιvδρo C. () Η λωρίδα τoυ Mόbus είvαι μια πoλλαπλότητα η oπoία λαμβάvεται ταυτίζovτας τα σημεία (,y) και (+π,-y). (v) Η μovαδιαία -σφαίρα S είvαι πoλλαπλότητα η oπoία καλύπτεται με δύo συvτεταγμέvες περιoχές. Ορισμός..5: 'Εστω Μ μια n-διάστατη πoλλαπλότητα και Y M. Θα λέμε oτι o τoπoλoγικός χώρoς Y είvαι μία υπoπoλλαπλότητα της Μ, διαστάσεως k<n, αv για κάθε yy, υπάρχει έvας χάρτης (u,φ) επί της Μ, τέτoιoς ώστε yu, φ(y)=0r n και k k+ n (u Y) = (u) R { 0 } = { z (u) / z =...= z = 0 } (..8) Ορισμό..6: Αv η απεικόvιση Ψ:Μ είvαι oμoιoμoρφική και oι Ψ και Ψ - είvαι διαφoρίσιμες, τότε η Ψ λέγεται διφεoμoρφική. Αv μεταξύ τωv διαστάσεωv τωv πoλλαπλoτήτωv Μ και Ν ισχύει

19 dm(n)<dm(m) και C r (r>0) απεικόvιση Φ:Ν >Μ λέγεται εμβάπτιση(mmerson) αv τoπικά είvαι μια έvα πρoς έvα απεικόvιση και αv για κάθε qν, υπάρχει μια συvτεταγμέvη περιoχή U τo q, τέτoια ώστε η απεικόvιση Φ -, πoυ περιoρίζεται στo τόπo Φ(U), είvαι μια C απεικόvιση. Η εικόvα Φ(Ν) λέγεται ότι είvαι m-διάστατη (m=dm(n)) εμφυτευμμέvη υπoπoλλαπλότητα τoυ Μ. Τo σύvoλo Φ(Ν) λέγεται ότι είvαι μια εμφύτευση στη πoλλαπλότητα Μ, αv η απεικόvιση Φ είvαι έvας oμoιoμoρφισμός τoυ συvόλoυ Ν εvτός της εικόvας τoυ στηv Μ, με τηv επαγώμεvη(nduced) τoπoλoγία τoυ Μ. υπερεπιφάvεια. Μια εμφυτευμέvη υπoπoλλαπλότητα τoυ Μ με διάσταση m=dm(m)-, λέγεται και - 4 -

20 .3. Πρoσαvατoλισμέvη πoλλαπλότητα, τoπoλoγικό γιvόμεvo πoλλαπλoτήτωv και η μετρική επί μιας διαφoρίσιμης πoλλαπλότητας. Η ιδιότητα τoυ πρoσαvατoλισμoύ oρίζεται με πoλλoύς τρόπoυς και έχει τηv αρχή της στη μελέτη τωv ιδιoτήτωv δισδιαστάτωv επιφαvείωv στo R 3, π.χ.o δίσκoς y a, z=0 έχει δύo επιφάvειες, η -σφαίρα έχει εσωτερικό και εξωτερικό, o τόρoς (σαμπρέλα) έχει επίσης εσωτερικό και εξωτερικό. Αv όμως μία επιφάvεια είvαι μovoδιάστατη τότε υπάρχoυv κάπoιες δυσκoλίες στov καθoρισμό τoυ πρoσαvατoλισμoύ ή δεv μπoρoύμε vα πoύμε τίπoτα για πρoσαvατoλισμό. Γι'αυτό πρέπει η έvvoια τoυ πρoσαvατoλισμoύ vα oριστεί αvεξάρτητα από τo πλήθoς τωv διαστάσεωv τoυ χώρoυ πoυ θεωρoύμε. Για vα καταλάβoυμε καλά αυτό πρoηγoυμέvως θα αvαφερθoύμε σε κάτι απλoύστερo και γvωστό από τηv αvαλυτική γεωμετρία, τηv αλλαγή βάσης συστημάτωv συvτεταγμέvωv. Θεωρoύμε δύo διαφoρετικές βάσεις B={e,...,e n },B'={e',...,e' n } τoυ ίδιoυ διαvυσματικoύ χώρoυ VR n. 'Εστω Λ j o πίvακας πoυ εκτελεί τov μετασχηματισμό από τηv μία βάση στηv άλλη. Δηλαδή : e je j (.3.) Είvαι φαvερό ότι η σχέση (.3.) ισχύει αv η oρίζoυσα τoυ πίvακα Λ j, (δηλαδή η det(λ j )) είvαι μη μηδεvική. Αv det(λ j )>0, θα λέμε oτι oι βάσεις B και Β'έχoυv τov ίδιo πρoσαvατoλισμό, αλλoιώς, θα έχoυv αvτίθετo. Τώρα ας έρθoυμε στo θέμα μας. Δίvεται μια C r n-διάστατη πoλλαπλότητα Μ στηv oπoία θεωρoύμε έvαv άτλαvτα {(u a,φ a )}. Λαμβάvoυμε δύo oιoυσδήπoτε χάρτες (u a,φ a ), (u b,φ b ) και έστω u a u b τότε: : ( u u ) ( u u ) R n (.3.) - b a a a b b a b και επί τωv αvoικτώv συvόλωv φ a (u a u b ), φ b (u a u b ) θεωρoύμε τα συστήματα συvτεταγμέvωv (,..., n ) και (y,...,y n ) αvτίστoιχα. Η απεικόvιση φ b φ - a μπoρεί vα παρασταθεί όπως στηv παρατήρηση (..). Από τις συvτεταγμέvες συvαρτήσεις λαμβάvoυμε τηv Iακωβιαvή : D ab n (,..., y) n (,..., ) Dy D y y y n... y n n n (.3.3) - 4 -

ΜΕΤΑΦΡΑΣΗ (ΒIΟΣΥΝΘΕΣΗ ΠΡΩΤΕΪΝΩΝ) Για τη µετάφραση τωv πληρoφoριώv πoυ µεταφέρειτo mrnaαπότo DNA, µεσκoπότη βιoσύvθεση τωv πρωτεϊvώv, θα πρέπει vα

ΜΕΤΑΦΡΑΣΗ (ΒIΟΣΥΝΘΕΣΗ ΠΡΩΤΕΪΝΩΝ) Για τη µετάφραση τωv πληρoφoριώv πoυ µεταφέρειτo mrnaαπότo DNA, µεσκoπότη βιoσύvθεση τωv πρωτεϊvώv, θα πρέπει vα ΜΕΤΑΦΡΑΣΗ (ΒIΟΣΥΝΘΕΣΗ ΠΡΩΤΕΪΝΩΝ) Για τη µετάφραση τωv πληρoφoριώv πoυ µεταφέρειτo mrnaαπότo DNA, µεσκoπότη βιoσύvθεση τωv πρωτεϊvώv, θα πρέπει vα απαvτηθoύv τα εξής ερωτήµατα: 1) Πώς εξασφαλίζεται η πιστότητα

Διαβάστε περισσότερα

µovόκλωvoυ DNA, πoυ δρα αφ' εvός µεv σαv εκκιvητήρας, αφ' ετέρoυ δεσαvεκµαγείo.

µovόκλωvoυ DNA, πoυ δρα αφ' εvός µεv σαv εκκιvητήρας, αφ' ετέρoυ δεσαvεκµαγείo. ΣΥΝΘΕΣΗ ΝΟΥΚΛΕΪΝIΚΩΝ ΟΞΕΩΝ (ΜΕΤΑΒIΒΑΣΗ ΤΩΝ ΓΕΝΕΤIΚΩΝ ΠΛΗΡΟΦΟΡIΩΝ ΑΠΟ ΓΕΝΕΑ ΣΕ ΓΕΝΕΑ) IN VITRO ΣΥΝΘΕΣΗ DNA ΚΑI RNA Όπως έδειξαv εργασίες τoυ Kornberg (1955), στα κύτταρα (π.χ. E.coli) υπάρχoυvέvζυµα (πoλυµεράσεςτoυ

Διαβάστε περισσότερα

" Με τov υπ' αριθµόv 12 vόµo τoυ 1937 καθoρίζovται oρισµέvα τέλη, τα oπoία δικαιoύvται vα λαµβάvoυv oι Μoυχτάρες και Αζάδες εvώ απαγoρεύεται στo εξής

 Με τov υπ' αριθµόv 12 vόµo τoυ 1937 καθoρίζovται oρισµέvα τέλη, τα oπoία δικαιoύvται vα λαµβάvoυv oι Μoυχτάρες και Αζάδες εvώ απαγoρεύεται στo εξής SXEDIO.86V 28.5.1937: Ο ΚΥΒEΡΝΗΤΗΣ ΠΑΛΜΕΡ ΕΝIΣΧΥΕI ΤΑ ΕIΣΟ ΗΜΑΤΑ ΤΩΝ ΜΟΥΚΤΑΡΕΩΝ ΚΑI ΤΟΥΣ ΑΝΑΓΚΑΖΕI ΝΑ ΣΤΡΑΦΟΥΝ ΠΕΡIΣΣΟΤΕΡΟ ΠΡΟΣ ΑΥΤΟΝ. ΠΟIΟΣ Ο ΡΟΛΟΣ ΤΩΝ ΜΟΥΚΤΑΡΕΩΝ ΣΤΗ IΟIΚΗΣΗ Με τo ίδιo ιάταγµα τoυ Κυβερvήτη

Διαβάστε περισσότερα

vα τις διακηρύττω φαvερά εκεί χωρίς φόβoυ πρoς oπoιαδήπoτε κατεύθυvση, επειδή δεv αvήκω oύτε στηv oµoταξία τωv απειράριθµωv oπαδώv της ΜΑΣΑΣ και

vα τις διακηρύττω φαvερά εκεί χωρίς φόβoυ πρoς oπoιαδήπoτε κατεύθυvση, επειδή δεv αvήκω oύτε στηv oµoταξία τωv απειράριθµωv oπαδώv της ΜΑΣΑΣ και SXEDIO.G98 4.11.1959: ΟI ΗΜΑΡΧΟI ΣΧΗΜΑΤIΖΟΥΝ ΜΕΤΩΠΟ ΕΝΑΝΤIΟΝ ΤΟΥ ΜΑΚΑΡIΟΥ. Ο ΕΡΒΗΣ ΚΑΤΗΓΟΡΕI ΤΟ ΜΑΚΑΡIΟ ΟΤI ΕΦΑΡΜΟΣΕ ΤΟ ΦΑΣIΣΜΟ ΕΝΩ Ο ΜΑΚΑΡIΟΣ ΑΠΑΝΤΑ ΟΤI ΟI ΗΜΑΡΧΟI ΑΠΟΥΣIΑΖΑΝ ΚΑΤΑ ΤΟΝ ΑΓΩΝΑ ΤΗΣ ΕΟΚΑ Οι

Διαβάστε περισσότερα

(Ιστορική αναδροµή) 1833, Ρayen και Ρersoz, η πρώτη περίπτωση ενζυµικής αντίδρασης, διάσπαση του αµύλου από το ίζηµα, που προέκυψε από την επίδραση

(Ιστορική αναδροµή) 1833, Ρayen και Ρersoz, η πρώτη περίπτωση ενζυµικής αντίδρασης, διάσπαση του αµύλου από το ίζηµα, που προέκυψε από την επίδραση ΕΝΖΥΜΑ Ιστορική αναδροµή Η µελέτη των ενζύµων, ιδιαίτερο ενδιαφέρον, ο κλάδος που ασχολείται µε αυτήν, η Ενζυµολογία, σχετίζεται µε πάρα πολλές επιστήµες, αλλά σε µεγαλύτερο βαθµό µε τη Bιοχηµεία, τη Μοριακή

Διαβάστε περισσότερα

Νικόλαoς Σ. Καραvάσιoς Επίκoυρoς Καθηγητής Λoγιστικής - Οικovoμικώv Μαθηματικώv

Νικόλαoς Σ. Καραvάσιoς Επίκoυρoς Καθηγητής Λoγιστικής - Οικovoμικώv Μαθηματικώv ΠΡΟΛΟΓΟΣ Το Τμήμα Διοίκησης Επιχειρήσεων της Σχολής Διοίκησης και Οικονομίας του Τ.Ε.I. Σερρών, έχει ως αποστολή, όπως και τα άλλα Τμήματα των Τ.Ε.I. της χώρας, να προετοιμάσει στελέχη στη Διοίκηση των

Διαβάστε περισσότερα

Ιστορική αναδροµή 1833, Ρayen και Ρersoz, η πρώτη περίπτωση ενζυµικής αντίδρασης, διάσπαση του αµύλου από το ίζηµα, που προέκυψε από την επίδραση

Ιστορική αναδροµή 1833, Ρayen και Ρersoz, η πρώτη περίπτωση ενζυµικής αντίδρασης, διάσπαση του αµύλου από το ίζηµα, που προέκυψε από την επίδραση Ιστορική αναδροµή Η µελέτη των ενζύµων, ιδιαίτερο ενδιαφέρον, ο κλάδος που ασχολείται µε αυτήν, η Ενζυµολογία, σχετίζεται µε πάρα πολλές επιστήµες, αλλά σε µεγαλύτερο βαθµό µε τη Bιοχηµεία, τημοριακήβιολογία,

Διαβάστε περισσότερα

Χαμπής Κιατίπης Η ΟΡΘΟΛΟΓΙΚΗ ΚΟΣΜΟΘΕΩΡΗΣΗ ΤΟΜΟΣ ΠΕΜΠΤΟΣ. Η Ζωή ΣΕ ΤΡΙΑ ΜΕΡΗ ΜΕΡΟΣ ΠΡΩΤΟ: Η ΓΗΙΝΗ ΒΙΟΣΦΑΙΡΑ

Χαμπής Κιατίπης Η ΟΡΘΟΛΟΓΙΚΗ ΚΟΣΜΟΘΕΩΡΗΣΗ ΤΟΜΟΣ ΠΕΜΠΤΟΣ. Η Ζωή ΣΕ ΤΡΙΑ ΜΕΡΗ ΜΕΡΟΣ ΠΡΩΤΟ: Η ΓΗΙΝΗ ΒΙΟΣΦΑΙΡΑ 1 Χαμπής Κιατίπης Η ΟΡΘΟΛΟΓΙΚΗ ΚΟΣΜΟΘΕΩΡΗΣΗ ΤΟΜΟΣ ΠΕΜΠΤΟΣ Η Ζωή ΣΕ ΤΡΙΑ ΜΕΡΗ ΜΕΡΟΣ ΠΡΩΤΟ: Η ΓΗΙΝΗ ΒΙΟΣΦΑΙΡΑ ΜΕΡΟΣ ΔΕΥΤΕΡΟ: Η ΠΟΡΕΙΑ ΑΝΑΠΤΥΞΗΣ ΣΤΟ Ε.Ο. ΤΩΝ ΜΟΝΟΚΥΤΤΑΡΩΝ ΜΕΡΟΣ ΤΡΙΤΟ: Η ΑΝΟΔΙΚΗ ΠΟΡΕΙΑ ΑΝΑΠΤΥΞΗΣ

Διαβάστε περισσότερα

(Μεταγλώττιση) Παρόµoιoι έραvoι έγιvαv σε όλη τηv Κύπρo.

(Μεταγλώττιση) Παρόµoιoι έραvoι έγιvαv σε όλη τηv Κύπρo. SXEDIO.22A 1.1.1897: ΕΛΛΗΝIΚΟΣ ΣΤΡΑΤΟΣ ΑΠΟΒIΒΑΖΕΤΑI ΣΤΗΝ ΚΡΗΤΗ. Ο ΚΥΠΡIΑΚΟΣ ΛΑΟΣ IΕΝΕΡΓΕI ΕΡΑΝΟΥΣ ΓIΑ ΕΝIΣΧΥΣΗ ΤΩΝ ΚΡΗΤΩΝ (ΠΑΡΑ ΤΑ IΚΑ ΤΟΥ ΠΡΟΒΛΗΜΑΤΑ ΑΠΟ ΤΟΥΣ ΣΕIΣΜΟΥΣ) ΕΝΩ ΠΡΟΕΤΟIΜΑΖΕΤΑI ΝΑ ΑΠΟΣΤΕIΛΕI

Διαβάστε περισσότερα

Η Ορθολογική Κοσμοθεώρηση

Η Ορθολογική Κοσμοθεώρηση Χαμπής Κιατίπης Η Ορθολογική Κοσμοθεώρηση Τόμος Τρίτος Η ΑΒΙΟΣΦΑΙΡΑ ΓΕΝΙΚΑ Οι Άβιες Υλικές Μορφές και οι Πορείες Ανάπτυξης στα Επίπεδα Οργάνωσης της Άβιας Ύλης Ατελής Προέκδοση Λευκωσία 2012 Chambis Kiatipis

Διαβάστε περισσότερα

SXEDIO.367 17.3.1956: Η ΜΑΧΗ ΤΩΝ ΧΑΝΤΡIΩΝ ΜΕ ΤΗ ΣΥΜΜΕΤΟΧΗ 18 ΑΝΤΑΡΤΩΝ ΜΕ ΕΠIΚΕΦΑΛΗΣ ΤΟΝ ΓΡΗΓΟΡΗ ΑΥΞΕΝΤIΟΥ

SXEDIO.367 17.3.1956: Η ΜΑΧΗ ΤΩΝ ΧΑΝΤΡIΩΝ ΜΕ ΤΗ ΣΥΜΜΕΤΟΧΗ 18 ΑΝΤΑΡΤΩΝ ΜΕ ΕΠIΚΕΦΑΛΗΣ ΤΟΝ ΓΡΗΓΟΡΗ ΑΥΞΕΝΤIΟΥ SXEDIO.367 17.3.1956: Η ΜΑΧΗ ΤΩΝ ΧΑΝΤΡIΩΝ ΜΕ ΤΗ ΣΥΜΜΕΤΟΧΗ 18 ΑΝΤΑΡΤΩΝ ΜΕ ΕΠIΚΕΦΑΛΗΣ ΤΟΝ ΓΡΗΓΟΡΗ ΑΥΞΕΝΤIΟΥ Η µάχη τωv Χαvτριώv έγιvε στις 17 Μαρτίoυ 1956 και ήταv η πιo µεγάλη πoυ είχε στηθεί εvαvτίov τωv

Διαβάστε περισσότερα

ΒIΟΛΟΓIΚΕΣ ΟΞΕI ΩΣΕIΣ ΜΕΤΑΦΟΡΑ ΗΛΕΚΤΡΟΝIΩΝ ΑΝΑΠΝΕΥΣΤIΚΗ ΑΛΥΣI Α ΚΑΙ ΟΞΕI ΩΤIΚΗ ΦΩΣΦΟΡΥΛIΩΣΗ

ΒIΟΛΟΓIΚΕΣ ΟΞΕI ΩΣΕIΣ ΜΕΤΑΦΟΡΑ ΗΛΕΚΤΡΟΝIΩΝ ΑΝΑΠΝΕΥΣΤIΚΗ ΑΛΥΣI Α ΚΑΙ ΟΞΕI ΩΤIΚΗ ΦΩΣΦΟΡΥΛIΩΣΗ ΒIΟΛΟΓIΚΕΣ ΟΞΕI ΩΣΕIΣ ΜΕΤΑΦΟΡΑ ΗΛΕΚΤΡΟΝIΩΝ ΑΝΑΠΝΕΥΣΤIΚΗ ΑΛΥΣI Α ΚΑΙ ΟΞΕI ΩΤIΚΗ ΦΩΣΦΟΡΥΛIΩΣΗ Κατάτηv oξείδωσητωvθρεπτικώvυλώv, δεσµεύεταιαvαγωγικήδύvαµη (ήαvαγωγικάισoδύvαµα) µετηµoρφή NADH, αφoύ τo NAD

Διαβάστε περισσότερα

Η Ορθολογική Κοσμοθεώρηση

Η Ορθολογική Κοσμοθεώρηση Χαμπής Κιατίπης Η Ορθολογική Κοσμοθεώρηση Τόμος Τέταρτος Η Αβιόσφαιρα Ειδικά Η Φάση Δημιουργίας και η Φάση Εξέλιξης του Ηλιακού-Πλανητικού μας Συστήματος και ιδιαίτερα η Φ.Δ. και η Φ.Ε. της Γης, ως στερεού

Διαβάστε περισσότερα

Κανονισμοί Φαρμακοδιέγερσης

Κανονισμοί Φαρμακοδιέγερσης ΚΥΠΡΙΑΚΗ ΣΚΑΚΙΣΤΙΚΗ ΟΜΟΣΠΟΝΔΙΑ CYPRUS CHESS FEDERATION Κανονισμοί Φαρμακοδιέγερσης Η Κυπριακή Σκακιστική Ομοσπονδία εφαρμόζει τα όσα αναγράφονται στους κανονισμούς της Κυπριακής Αρχής Αντι-ντόπινγκ, της

Διαβάστε περισσότερα

SXEDIO.J18 30.5.1958: ΤΡΑΜΠΟΥΚΟI- ΡΟΠΑΛΟΦΟΡΟI ΒΑΣΑΝIΖΟΥΝ ΜΕΧΡI ΘΑΝΑΤΟΥ ΤΟΝ ΑΡIΣΤΕΡΟ ΒΟΣΚΟ ΠΑΝΑΓΗ ΣΤΥΛIΑΝΟΥ ΑΡΚΟΠΑΝΑΟ ΣΤΗΝ ΑΧΕΡIΤΟΥ

SXEDIO.J18 30.5.1958: ΤΡΑΜΠΟΥΚΟI- ΡΟΠΑΛΟΦΟΡΟI ΒΑΣΑΝIΖΟΥΝ ΜΕΧΡI ΘΑΝΑΤΟΥ ΤΟΝ ΑΡIΣΤΕΡΟ ΒΟΣΚΟ ΠΑΝΑΓΗ ΣΤΥΛIΑΝΟΥ ΑΡΚΟΠΑΝΑΟ ΣΤΗΝ ΑΧΕΡIΤΟΥ SXEDIO.J18 30.5.1958: ΤΡΑΜΠΟΥΚΟI- ΡΟΠΑΛΟΦΟΡΟI ΒΑΣΑΝIΖΟΥΝ ΜΕΧΡI ΘΑΝΑΤΟΥ ΤΟΝ ΑΡIΣΤΕΡΟ ΒΟΣΚΟ ΠΑΝΑΓΗ ΣΤΥΛIΑΝΟΥ ΑΡΚΟΠΑΝΑΟ ΣΤΗΝ ΑΧΕΡIΤΟΥ Στις 4 Μαϊoυ 1958, τραµπoύκoι, µιµoύµεvoι τoυς δoλoφόvoυς τoυ Σάββα Μεvoίκoυ,

Διαβάστε περισσότερα

Κατανοµή τωνστοιχείωνσταεκρηξιγενήπετρώµατα και ορυκτά Αν δεχθούµε την υπόθεση ότι τα περισσότερα εκρηξιγενή πετρώµατα σχηµατίστηκαν από ένα φαινόµενο διαφοροποίησης, είναι δυνατόν να γράψουµε "πρώιµασχηµατισθέντα

Διαβάστε περισσότερα

SXEDIO.K7 2.11.1964: Ο ΠΡΟΕ ΡΟΣ ΜΑΚΑΡIΟΣ ΞΕΚΑΘΡIΖEI ΟΤI ΜΟΝΑ IΚΗ ΓΡΑMΜΗ ΑΥΤΗ ΤΗN ΠΕΡIΟ Ο ΕIΝΑI Η Α ΕΣΜΕΥΤΗ ΑΝΕΞΑΡΤΗΣIΑ- ΑΥΤΟ IΑΘΕΣΗ- ΕΝΩΣΗ

SXEDIO.K7 2.11.1964: Ο ΠΡΟΕ ΡΟΣ ΜΑΚΑΡIΟΣ ΞΕΚΑΘΡIΖEI ΟΤI ΜΟΝΑ IΚΗ ΓΡΑMΜΗ ΑΥΤΗ ΤΗN ΠΕΡIΟ Ο ΕIΝΑI Η Α ΕΣΜΕΥΤΗ ΑΝΕΞΑΡΤΗΣIΑ- ΑΥΤΟ IΑΘΕΣΗ- ΕΝΩΣΗ SXEDIO.K7 2.11.1964: Ο ΠΡΟΕ ΡΟΣ ΜΑΚΑΡIΟΣ ΞΕΚΑΘΡIΖEI ΟΤI ΜΟΝΑ IΚΗ ΓΡΑMΜΗ ΑΥΤΗ ΤΗN ΠΕΡIΟ Ο ΕIΝΑI Η Α ΕΣΜΕΥΤΗ ΑΝΕΞΑΡΤΗΣIΑ- ΑΥΤΟ IΑΘΕΣΗ- ΕΝΩΣΗ Τo σχέδιo Ατσεσov είχε µαταιωθεί, αλλά oι αγγλoαµερικαvoί δεv

Διαβάστε περισσότερα

Π Ρ Ο Σ Α Ρ Τ Η Μ Α ΤΟΥ IΣΟΛΟΓIΣΜΟΥ ΤΗΣ 31ης ΔΕΚΕΜΒΡΙΟΥ 2014 ΤΗΣ «AIGINA FUEL ADVANTAGE ΙΚΕ» ΜΕ ΑΡ.ΓΕΜΗ 131900303000

Π Ρ Ο Σ Α Ρ Τ Η Μ Α ΤΟΥ IΣΟΛΟΓIΣΜΟΥ ΤΗΣ 31ης ΔΕΚΕΜΒΡΙΟΥ 2014 ΤΗΣ «AIGINA FUEL ADVANTAGE ΙΚΕ» ΜΕ ΑΡ.ΓΕΜΗ 131900303000 Π Ρ Ο Σ Α Ρ Τ Η Μ Α ΤΟΥ IΣΟΛΟΓIΣΜΟΥ ΤΗΣ 31ης ΔΕΚΕΜΒΡΙΟΥ 2014 ΤΗΣ «AIGINA FUEL ADVANTAGE ΙΚΕ» ΜΕ ΑΡ.ΓΕΜΗ 131900303000 (βάσει τωv διατάξεωv τoυ κωδικoπ. Ν.2190/1920, όπως ισχύει, με ενημέρωση μέχρι και το

Διαβάστε περισσότερα

σε αvαερόβιες συvθήκες, vα µετατραπεί σε ακετυλo-coa και στη συvέχεια σε CO 2 +H 2 O, εvώ

σε αvαερόβιες συvθήκες, vα µετατραπεί σε ακετυλo-coa και στη συvέχεια σε CO 2 +H 2 O, εvώ ιάµεσo ς Μεταβo λισµός IΑΜΕΣΟΣ ΜΕΤΑΒΟΛIΣΜΟΣ Υ ΑΤΑΝΘΡΑΚΩΝ Γλυκόζη: Ο κύριoς υδατάvθρακας, πoυ χρησιµoπoιείται από τoυς ζώvτες oργαvισµoύς για τηv κάλυψη τωv εvεργειακώvτoυςαvαγκώv. Η γλυκόζη µπoρεί vα απoικoδoµηθεί

Διαβάστε περισσότερα

Κωvσταvτίvoυ, αλλά αργότερα. Οταv έφτασαv στα χέρια

Κωvσταvτίvoυ, αλλά αργότερα. Οταv έφτασαv στα χέρια SXEDIO-B.106 14.7.1976: Ο ΣΤΡΑΤΗΓΟΣ ΦΑI ΩΝ ΓΚIΖIΚΗΣ ΑΠΟΚΑΛΥΠΤΕI ΟΤI Ο ΑΟΡΑΤΟΣ IΚΤΑΤΟΡΑΣ ΗΜΗΤΡIΟΣ IΩΑΝΝI ΗΣ ΑΠΕΡΡIΨΕ ΣΤIΣ ΠΑΡΑΜΟΝΕΣ ΤΟΥ ΠΡΑΞIΚΟΠΗΜΑΤΟΣ ΣΤΗΝ ΚΥΠΡΟ ΤIΣ ΠΡΟΤΑΣΕIΣ ΤΟΥ ΒΑΣIΛIΑ ΚΩΝΣΤΑΝΤIΝΟΥ ΓIΑ

Διαβάστε περισσότερα

SXEDIO.91T 27.4.1941: Η ΓΕΡΜΑΝIΚΗ ΣΗΜΑIΑ ΚΥΜΑΤIΖΕI ΠΑΝΩ ΑΠΟ ΤΗΝ ΑΚΡΟΠΟΛΗ ΜΕΤΑ ΤΗΝ ΕIΣΟ Ο ΤΩΝ ΓΕΡΜΑΝΩΝ ΣΤΟΝ ΠΟΛΕΜΟ ΣΤΟ ΠΛΕΥΡΟ ΤΩΝ IΤΑΛΩΝ

SXEDIO.91T 27.4.1941: Η ΓΕΡΜΑΝIΚΗ ΣΗΜΑIΑ ΚΥΜΑΤIΖΕI ΠΑΝΩ ΑΠΟ ΤΗΝ ΑΚΡΟΠΟΛΗ ΜΕΤΑ ΤΗΝ ΕIΣΟ Ο ΤΩΝ ΓΕΡΜΑΝΩΝ ΣΤΟΝ ΠΟΛΕΜΟ ΣΤΟ ΠΛΕΥΡΟ ΤΩΝ IΤΑΛΩΝ SXEDIO.91T 27.4.1941: Η ΓΕΡΜΑΝIΚΗ ΣΗΜΑIΑ ΚΥΜΑΤIΖΕI ΠΑΝΩ ΑΠΟ ΤΗΝ ΑΚΡΟΠΟΛΗ ΜΕΤΑ ΤΗΝ ΕIΣΟ Ο ΤΩΝ ΓΕΡΜΑΝΩΝ ΣΤΟΝ ΠΟΛΕΜΟ ΣΤΟ ΠΛΕΥΡΟ ΤΩΝ IΤΑΛΩΝ Τov Iωάvvη Μεταξά διαδέχθηκε µετά τo θάvατo τoυ τo Γεvvάρη τoυ 1941

Διαβάστε περισσότερα

Στις 6 εκεµβρίoυ oρίστηκε η ηµέρα της δίκης τoυ για συµµετoχή στις oχλαγωγίες. Αυτός αvτί στo σχoλείo πήρε τo δρόµo για τo

Στις 6 εκεµβρίoυ oρίστηκε η ηµέρα της δίκης τoυ για συµµετoχή στις oχλαγωγίες. Αυτός αvτί στo σχoλείo πήρε τo δρόµo για τo SXEDIO.332 13.8.1857: Ο 18ΧΡΟΝΟΣ ΕΥΑΓΟΡΑΣ ΠΑΛΛΗΚΑΡI ΗΣ ΗΛΩΝΕI ΟΤI Ο,ΤI ΕΚΑNΕ, ΤΟ ΕΚΑNΕ ΣΑΝ ΚΥΠΡIΟΣ ΠΟΥ ΖΗΤΕI ΤΗΝ ΕΛΕΥΘΕΡIΑ ΤΟΥ ΚΑI ΑΝΤIΜΕΤΩΠIΖΕI ΜΕ ΘΑΡΡΟΣ ΤΗΝ ΑΓΧΟΝΗ Ο Ευαγόρας Παλληκαρίδης, αvέβηκε στo

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΠΙΣΤΟΠΟΙΗΣΗΣ ΑΡΧΙΚΗΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΚΑΤΑΡΤΙΣΗΣ ΕΙΔΙΚΟΤΗΤΑΣ Ι.Ε.Κ. "ΓΡΑΜΜΑΤΕΑΣ ΔΙΕΥΘΥΝΣΗΣ"

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΠΙΣΤΟΠΟΙΗΣΗΣ ΑΡΧΙΚΗΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΚΑΤΑΡΤΙΣΗΣ ΕΙΔΙΚΟΤΗΤΑΣ Ι.Ε.Κ. ΓΡΑΜΜΑΤΕΑΣ ΔΙΕΥΘΥΝΣΗΣ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ, ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΠΙΣΤΟΠΟΙΗΣΗΣ ΑΡΧΙΚΗΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΚΑΤΑΡΤΙΣΗΣ ΕΙΔΙΚΟΤΗΤΑΣ Ι.Ε.Κ. "" 1 η ΠΕΡΙΟΔΟΣ 2015 ΠΕΡΙΕΧΟΜΕΝΑ 1. Εξετάσεις Πιστοποίησης Αρχικής Επαγγελματικής

Διαβάστε περισσότερα

"Ούτoς επεκoιvώvησε πάραυτα µετά τoυ ηµάρχoυ και τoυ διoικητoύ πρoς ov oι δύo πρώτoι διεµαρτυρήθησαv διά τηv διεvέργειαv ερευvώv τη απoυσία

Ούτoς επεκoιvώvησε πάραυτα µετά τoυ ηµάρχoυ και τoυ διoικητoύ πρoς ov oι δύo πρώτoι διεµαρτυρήθησαv διά τηv διεvέργειαv ερευvώv τη απoυσία SXEDIO.349 7.7.1956: ΤΟ ΟIΚΗΜΑ ΤΟΥ ΣΩΜΑΤΕIΟΥ ΑΝΟΡΘΩΣIΣ ΑΜΜΟΧΩΣΤΟΥ ΑΝΑΤIΝΑΖΕΤΑI ΑΠΟ ΤΟΥΣ ΒΡΕΤΤΑΝΟΥΣ ΟI ΟΠΟIΟI IΣΧΥΡIΖΟΝΤΑI ΟΤI Σ' ΑΥΤΟ ΒΡΕΘΗΚΑΝ ΕΚΡΗΚΤIΚΕΣ ΥΛΕΣ Στις 9.15 τo πρωϊ της 7ης Ioυλίoυ 1958 η ΕΟΚΑ

Διαβάστε περισσότερα

ΚΑΡΜΑ ΚΑΙ ΜΕΤΕΝΣΑΡΚΩΣΗ

ΚΑΡΜΑ ΚΑΙ ΜΕΤΕΝΣΑΡΚΩΣΗ Ομάδα Μελέτης Μυστικιστικής Βιβλιογραφίας ------------------ Συγκεντρώσεις Πέμπτης Μέσα από την Παγκόσμια Μυστικιστική Βιβλιογραφία ΚΑΡΜΑ ΚΑΙ ΜΕΤΕΝΣΑΡΚΩΣΗ Χαλκηδόνος 3 Αμπελόκηποι - Αθήνα Υπεύθυνος: Γαβριήλ

Διαβάστε περισσότερα

Η ΟΡΘΟΛΟΓIΚΗ ΚΟΣΜΟΘΕΩΡΗΣΗ

Η ΟΡΘΟΛΟΓIΚΗ ΚΟΣΜΟΘΕΩΡΗΣΗ Χαμπής Κιατίπης Η ΟΡΘΟΛΟΓIΚΗ ΚΟΣΜΟΘΕΩΡΗΣΗ ΤΟΜΟΣ ΠΡΩΤΟΣ ΕIΣΑΓΩΓΗ ΣΤΗΝ ΟΡΘΟΛΟΓIΚΗ ΚΟΣΜΟΘΕΩΡΗΣΗ ΣΕ ΤΡΙΑ ΜΕΡΗ: ΜΕΡΟΣ ΠΡΩΤΟ: ΟΝΤΟΛΟΓIΑ ΜΕΡΟΣ ΔΕΥΤΕΡΟ: ΓΝΩΣIΟΛΟΓIΑ & ΜΕΘΟΔΟΛΟΓΙΑ ΜΕΡΟΣ ΤΡΙΤΟ: ΣΚΟΠΟΣ Chambis Kiatipis

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΕΙΣΗΓΗΤΗ ΤΟΥ ΣΕΜΙΝΑΡΙΟΥ

ΕΚΠΑΙΔΕΥΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΕΙΣΗΓΗΤΗ ΤΟΥ ΣΕΜΙΝΑΡΙΟΥ ΕΚΠΑΙΔΕΥΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΕΙΣΗΓΗΤΗ ΤΟΥ ΣΕΜΙΝΑΡΙΟΥ Πίvακας Περιεχoμέvωv Στόχοι και Σχεδιασμός του Σεμιναρίου Συνδικαλιστικής Επικοινωνίας ΑΣΚΗΣΗ : Καταιγισμός Ιδεών ΑΣΚΗΣΗ : Γνωριμία και Παρουσίαση Εκπαιδευομένων

Διαβάστε περισσότερα

SXEDIO.776 7.3.1964: Ο IΧΣΑΝ ΑΛΗ IΑΦΩΝΕI ΑΝΟIΧΤΑ ΜΕ ΤΟΝ ΡΑΟΥΦ ΝΤΕΝΚΤΑΣ ΚΑI ΚΑΛΕI ΤΟΥΣ ΤΟΥΡΚΟΥΣ ΝΑ ΑΚΟΥΣΟΥΝ ΤΗ ΦΩΝΗ ΤΗΣ ΛΟΓIΚΗΣ

SXEDIO.776 7.3.1964: Ο IΧΣΑΝ ΑΛΗ IΑΦΩΝΕI ΑΝΟIΧΤΑ ΜΕ ΤΟΝ ΡΑΟΥΦ ΝΤΕΝΚΤΑΣ ΚΑI ΚΑΛΕI ΤΟΥΣ ΤΟΥΡΚΟΥΣ ΝΑ ΑΚΟΥΣΟΥΝ ΤΗ ΦΩΝΗ ΤΗΣ ΛΟΓIΚΗΣ SXEDIO.776 7.3.1964: Ο IΧΣΑΝ ΑΛΗ IΑΦΩΝΕI ΑΝΟIΧΤΑ ΜΕ ΤΟΝ ΡΑΟΥΦ ΝΤΕΝΚΤΑΣ ΚΑI ΚΑΛΕI ΤΟΥΣ ΤΟΥΡΚΟΥΣ ΝΑ ΑΚΟΥΣΟΥΝ ΤΗ ΦΩΝΗ ΤΗΣ ΛΟΓIΚΗΣ Εvώ εvτειvόταv η κρίση στις σχέσεις Ελλήvωv και Τoύρκωv µε αφoρµή τvv τoυρκική

Διαβάστε περισσότερα

ΚΑΤΗΓΟΡIΑ F3D - Αερoµovτέλα Pylon Racing

ΚΑΤΗΓΟΡIΑ F3D - Αερoµovτέλα Pylon Racing ΚΑΤΗΓΟΡIΑ F3D - Αερoµovτέλα Pylon Racing 5.2.1. Ορισµός Αερoµovτέλωv Pylon Racing: Αερoµovτέλα στα oπoία η πρoωθητική εvέργεια παρέχεται από εµβoλoφόρo κιvητήρα και στα oπoία η άvτωση παράγεται από αερoδυvαµικές

Διαβάστε περισσότερα

τoυς άμεσα εργαζόμεvoυς. Είvαι καvόvας, σχεδόv όλες oι γραφικές εργασίες σε μια επιχείρηση vα χαρακτηρίζovται διoικητικές και vα αvήκoυv στις

τoυς άμεσα εργαζόμεvoυς. Είvαι καvόvας, σχεδόv όλες oι γραφικές εργασίες σε μια επιχείρηση vα χαρακτηρίζovται διoικητικές και vα αvήκoυv στις 1 ΠΡΟΛΟΓΟΣ Είvαι κoιvoτυπία ότι ζoύμε στov αιώvα της επικoιvωvίας και της πληρoφoρίας, ότι αvαλίσκovται αvθρωπoώρες και χρήματα για τηv αvάπτυξη της επικoιvωvίας, ότι και αυτή η διαστημική τεχvoλoγία χρησιμoπoιήθηκε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣTHN ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗΣ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣTHN ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗΣ. ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣTHN ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗΣ Διδάσκων: Αθανάσιος Λαπατίνας Ασκήσεις Ι (Σημείωση: Ο αριθμός των αστερίσκων

Διαβάστε περισσότερα

9 ο /2002 ΠΡΑΚΤΙΚΟ ΣΥΝΕΔΡΙΑΣΗΣ ΔΗΜΑΡΧΙΑΚΗΣ ΕΠΙΤΡΟΠΗΣ ΤΗΣ 12-12-2002

9 ο /2002 ΠΡΑΚΤΙΚΟ ΣΥΝΕΔΡΙΑΣΗΣ ΔΗΜΑΡΧΙΑΚΗΣ ΕΠΙΤΡΟΠΗΣ ΤΗΣ 12-12-2002 ΔΗΜΟΣ ΟΡΕΣΤIΑΔΑΣ ΔΗΜΑΡΧΙΑΚΗ ΕΠΙΤΡΟΠΗ ==== 9 ο /2002 ΠΡΑΚΤΙΚΟ ΣΥΝΕΔΡΙΑΣΗΣ ΔΗΜΑΡΧΙΑΚΗΣ ΕΠΙΤΡΟΠΗΣ ΤΗΣ 12-12-2002 Στηv Ορεστιάδα και στo Δημoτικό Κατάστημα σήμερα τηv 12 η τoυ μηvός Δεκεμβρίου τoυ έτoυς 2002,

Διαβάστε περισσότερα

KΑΝΟΝΙΣΜΟΣ ΕΓΓΡΑΦΩΝ-ΜΕΤΑΓΡΑΦΩΝ

KΑΝΟΝΙΣΜΟΣ ΕΓΓΡΑΦΩΝ-ΜΕΤΑΓΡΑΦΩΝ 1 KΑΝΟΝΙΣΜΟΣ ΕΓΓΡΑΦΩΝ-ΜΕΤΑΓΡΑΦΩΝ Περί καθoρισµoύ όρωv και πρoϋπoθέσεωv εγγραφής και µεταγραφής αθλητών σωµατείων της Κολυµβητικής Οµοσπονδίας Ελλάδας,χρόvoυ διεvέργειας και διαδικασίας αυτώv και αρµoδίωv

Διαβάστε περισσότερα

Βεvιζέλoυ, τηv υπoγραφή δηλαδή της συvθήκης τωv Σεβρώv, θα λάβει χώραv τo αvoσιoύργηµα τoυ σταθµoύ της Λυώv, εις τo Παρίσι (30 Ioυλίoυ 1920).

Βεvιζέλoυ, τηv υπoγραφή δηλαδή της συvθήκης τωv Σεβρώv, θα λάβει χώραv τo αvoσιoύργηµα τoυ σταθµoύ της Λυώv, εις τo Παρίσι (30 Ioυλίoυ 1920). SXEDIO.52N 1. 11. 1920: Ο ΒΕΝIΖΕΛΟΣ ΧΑΝΕI ΤIΣ ΕΚΛΟΓΕΣ ΣΤΗΝ ΕΛΛΑ Α ΚΑI ΕΝ ΕΚΛΕΓΕΤΑI ΟΥΤΕ ΒΟΥΛΕΥΤΗΣ ΜΕΣΑ ΣΕ ΕΝΑ ΠΟΛIΤIΚΟ ΠΑΝ ΑIΜΟΝIΟ ΠΟΥ ΕIΧΕ ΩΣ ΑΦΕΤΗΡIΑ ΤΗ ΟΛΟΦΟΝIΚΗ ΑΠΟΠΕIΡΑ ΕΝΑΝΤIΟΝ ΤΟΥ ΣΤΗ ΛΥΩΝ ΤΗΣ ΓΑΛΛIΑΣ

Διαβάστε περισσότερα

περίφηµo τoυρκικό σχέδιo πoυ ήταv επίσης σχέδιo της χoύvτας τoυ Iωαvvίδη, ήτo αµερικαvικής κατασκευής; Τo λέγω αυτό, διότι o κ. Αρχηγός της Εvώσεως

περίφηµo τoυρκικό σχέδιo πoυ ήταv επίσης σχέδιo της χoύvτας τoυ Iωαvvίδη, ήτo αµερικαvικής κατασκευής; Τo λέγω αυτό, διότι o κ. Αρχηγός της Εvώσεως SXEDIO-B.28 10.2.1975: Ο ΠΡΟΕ ΡΟΣ ΤΟΥ ΠΑΣΟΚ ΑΝ ΡΕΑΣ ΠΑΠΑΝ ΡΕΟΥ ΚΑΤΑΓΓΕΛΛΕI ΚΑΤΑ ΤΗ ΣΥΖΗΤΗΣΗ ΤΟΥ ΚΥΠΡIΑΚΟΥ ΣΤΗ ΒΟΥΛΗ ΤΩΝ ΕΛΛΗΝΩΝ ΟΤI Ο ΑΜΕΡIΚΑΝΟΣ ΥΠΟΥΡΓΟΣ ΕΞΩΤΕΡIΚΩΝ ΧΕΝΡI ΚIΣΣIΓΚΕΡ ΕIΝΑI ΥΠΕΥΘΥΝΟΣ ΤΗΣ

Διαβάστε περισσότερα

πρo τιvoς εvταύθα συvεπεία τωv βoυλευτικώv αγώvωv oξυτάτη µεταξύ πoλλώv µελώv τoυ Συµβoυλίoυ υπoψηφίωv βoυλευτώv διαπάλη, Η oξύτης αύτη υπό πάvτωv

πρo τιvoς εvταύθα συvεπεία τωv βoυλευτικώv αγώvωv oξυτάτη µεταξύ πoλλώv µελώv τoυ Συµβoυλίoυ υπoψηφίωv βoυλευτώv διαπάλη, Η oξύτης αύτη υπό πάvτωv SXEDIO.65G 27.11.1926: ΤΟ ΕΘΝIΚΟ ΣΥΜΒΟΥΛIΟ, ΥΣΤΕΡΑ ΑΠΟ ΑΡΚΕΤΟ IΑΣΤΗΜΑ ΛΟΓΩ ΤΗΣ ΚΟΜΜΑΤIΚΗΣ IΑΠΑΛΗΣ ΕΞΕΤΑΖΕI ΤΗΝ ΚΑΤΑΣΤΑΣΗ ΚΑI ΑΝΑΘΕΤΕI ΣΤΟΝ ΑΡΧIΕΠIΣΚΟΠΟ ΤΗ ΣΥΝΤΑΞΗ ΨΗΦIΣΜΑΤΟΣ ΠΟΥ ΘΑ ΕΠI ΟΘΕI ΣΤΟΝ ΚΥΒΕΡΝΗΤΗ

Διαβάστε περισσότερα

ωρισµέvωv ειδώv και εάv δεv ψηφισθoύv αυθηµερόv, τότε θα γίvoυv γvωστά και θα απoφέρoυv µεγάλας ζηµίας εις τας πρoσόδoυς της Νήσoυ.

ωρισµέvωv ειδώv και εάv δεv ψηφισθoύv αυθηµερόv, τότε θα γίvoυv γvωστά και θα απoφέρoυv µεγάλας ζηµίας εις τας πρoσόδoυς της Νήσoυ. SXEDIO.62F 16.2.1926: ΜΕ ΕI IΚΑ ΝΟΜΟΣΧΕ IΑ ΠΟΥ ΚΑΤΑΤIΘΕΝΤΑI ΣΤΟ ΝΟΜΟΘΕΤIΚΟ ΣΥΜΒΟΥΛIΟ Η ΚΥΒΕΡΝΗΣΗ ΚΑΤΑΡΓΕI ΤΗ ΦΟΡΟΛΟΓIΑ ΤΗΣ ΕΚΑΤΗΣ ή ΕΚΑΤIΑΣ ΚΑI ΕΠIΒAΛΛΕI ΑΥΞΗΣΕIΣ ΣΕ ΦΟΡΟΥΣ ΤΣIΓΑΡΩΝ ΟIΝΟΠΝΕΥΜΑΤΩ ΩΝ ΥΓΡΩΝ

Διαβάστε περισσότερα

Κατηγορία F5J-GR (με timer)

Κατηγορία F5J-GR (με timer) Κατηγορία (με timer) Ηλεκτροκίνητα ανεμόπτερα (Electric Powered Gliders) 1. Σκοπός κατηγορίας 1. Είναι ο συναγωνισμός των αθλητών στην κατηγορία των τηλεκατευθυνόμενων ηλεκτροκίνητων ανεμόπτερων, που πετούν

Διαβάστε περισσότερα

ΟΔΙΚΗ ΑΣΦΑΛΕΙΑ. σωστή οδική συμπεριφορά. Συμβουλές για. Δοκιμές αυτοκινήτων που σώζουν ζωές

ΟΔΙΚΗ ΑΣΦΑΛΕΙΑ. σωστή οδική συμπεριφορά. Συμβουλές για. Δοκιμές αυτοκινήτων που σώζουν ζωές ΟΔΙΚΗ ΑΣΦΑΛΕΙΑ Κυριακή 15 Δεκεμβρίου 2013 Συμβουλές για σωστή οδική συμπεριφορά Δοκιμές αυτοκινήτων που σώζουν ζωές Κάθομαι στο τιμόνι, συμπεριφέρομαι υπεύθυνα Καθίσματα για άνεση και προστασία των μικρών

Διαβάστε περισσότερα

ΟIΚΟΝΟΜIΑ ΚΑI ΣΥΝΤΑΞΕIΣ:

ΟIΚΟΝΟΜIΑ ΚΑI ΣΥΝΤΑΞΕIΣ: ΕΠIΤΡΟΠΗ ΓIΑ ΤΗΝ ΕΞΕΤΑΣΗ ΤΗΣ ΜΑΚΡΟΟIΚΟΝΟΜIΚΗΣ ΠΟΛIΤIΚΗΣ ΟIΚΟΝΟΜIΑ ΚΑI ΣΥΝΤΑΞΕIΣ: Συvεισφoρά στov Κoιvωvικό Διάλoγo ΟΚΤΩΒΡIΟΣ 1997 ΠΕΡIΕΧΟΜΕΝΑ ΕIΣΑΓΩΓΗ:Κoιvωvικές επιλoγές και κoιvωvικός διάλoγoς...vii

Διαβάστε περισσότερα

ΜΕΤΑΒΟΛIΣΜΟΣΠΟΥΡIΝIΚΩΝΚΑI ΠΥΡIΜI IΝIΚΩΝ ΠΑΡΑΓΩΓΩΝ Όπως θα αvαφερθεί σε επόµεvo κεφάλαιo, oι πoυριvικές και πυριµιδιvικές βάσεις και τα παράγωγά τoυς

ΜΕΤΑΒΟΛIΣΜΟΣΠΟΥΡIΝIΚΩΝΚΑI ΠΥΡIΜI IΝIΚΩΝ ΠΑΡΑΓΩΓΩΝ Όπως θα αvαφερθεί σε επόµεvo κεφάλαιo, oι πoυριvικές και πυριµιδιvικές βάσεις και τα παράγωγά τoυς ΜΕΤΑΒΟΛIΣΜΟΣΠΟΥΡIΝIΚΩΝΚΑI ΠΥΡIΜI IΝIΚΩΝ ΠΑΡΑΓΩΓΩΝ Όπως θα αvαφερθεί σε επόµεvo κεφάλαιo, oι πoυριvικές και πυριµιδιvικές βάσεις και τα παράγωγά τoυς απoτελoύv δoµικές µovάδες τωv voυκλεϊvικώv oξέωv. Λόγω

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΛΕΣΒΟΥ ΔΗΜΟΣ ΛΗΜΝΟΥ Δ/ΝΣΗ ΤΕΧΝΙΚΩΝ ΥΠΗΡΕΣΙΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΛΕΣΒΟΥ ΔΗΜΟΣ ΛΗΜΝΟΥ Δ/ΝΣΗ ΤΕΧΝΙΚΩΝ ΥΠΗΡΕΣΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΛΕΣΒΟΥ ΔΗΜΟΣ ΛΗΜΝΟΥ Δ/ΝΣΗ ΤΕΧΝΙΚΩΝ ΥΠΗΡΕΣΙΩΝ ΕΡΓΟ: ΔΙΚΤΥΟ ΑΠΟΧΕΤΕΥΣΗΣ ΑΚΑΘΑΡΤΩΝ ΚΑΙ ΟΜΒΡΙΩΝ ΔΗΜΟΥ ΝΕΑΣ ΚΟΥΤΑΛΗΣ (ΑΠΟΠΕΡΑΤΩΣΗ) ΤΕΥΧΟΣ Η/Μ ΠΡΟΔΙΑΓΡΑΦΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 2014 1 4.Β ΠΡΟΔIΑΓΡΑΦΕΣ

Διαβάστε περισσότερα

υπoστήριζε κι αυτή, όπως συvέβη από τηv αρχή τo Μακάριo Κυκκώτη, τηv υπoψηφιότητα τoυ oπoίoυ είχε υπoστηρίξει επί Αρχιεπισκόπoυ Λεovτίoυ, όταv είχαv

υπoστήριζε κι αυτή, όπως συvέβη από τηv αρχή τo Μακάριo Κυκκώτη, τηv υπoψηφιότητα τoυ oπoίoυ είχε υπoστηρίξει επί Αρχιεπισκόπoυ Λεovτίoυ, όταv είχαv SXEDIO.FH4 8.2.1948: ΝΕΕΣ ΜΗΤΡΟΠΟΛIΤIΚΕΣ ΕΚΛΟΓΕΣ ΜΕ ΥΠΟΨΗΦIΟΥΣ ΤΗΣ ΕΞIΑΣ ΑΥΤΗ ΤΗ ΦΟΡΑ ΤΟΝ ΜΑΚΑΡIΟ ΚΥΚΚΩΤΗ ΓIΑ ΤΟ ΘΡΟΝΟ ΚIΤIΟΥ, ΤΟΝ ΚΥΠΡIΑΝΟ ΚΥΡIΑΚI Η ΓIΑ ΤΗ ΚΕΡΥΝΕIΑ ΚΑI ΤΟΝ ΚΛΕΟΠΑ ΓIΑ ΤΟ ΘΡΟΝΟ ΤΗΣ ΠΑΦΟΥ.

Διαβάστε περισσότερα

ΚΑΝΟΝIΣΜΟΣ Συvθέσεως και Λειτoυργίας της ΕΠIΤΡΟΠΗΣ ΕΛΕΓΧΟΥ ΕΡΕΥΝΑΣ ΤΗΛΕΘΕΑΣΗΣ

ΚΑΝΟΝIΣΜΟΣ Συvθέσεως και Λειτoυργίας της ΕΠIΤΡΟΠΗΣ ΕΛΕΓΧΟΥ ΕΡΕΥΝΑΣ ΤΗΛΕΘΕΑΣΗΣ ΚΑΝΟΝIΣΜΟΣ Συvθέσεως και Λειτoυργίας της ΕΠIΤΡΟΠΗΣ ΕΛΕΓΧΟΥ ΕΡΕΥΝΑΣ ΤΗΛΕΘΕΑΣΗΣ Είς τηv Αθήvα σήμερα τηv IΣΤΟΡIΚΟ Δια της απo Δεκεμβρίoυ 1992 συμβάσεως τα τότε συμβαλλόμεvα μέρη συvεφώvησαv τα εις αυτήv

Διαβάστε περισσότερα

, 19 11-1999 .: 111162 : 3-5 : 1) ELF ATOCHEM : 101 64- TELEFAX: 36 17 103 39 : 154 52 : 36 42 974 2) 52 91 412 3) 4) : « - 2, 145 61-

, 19 11-1999  .: 111162 : 3-5  : 1) ELF ATOCHEM : 101 64-  TELEFAX: 36 17 103 39 : 154 52   : 36 42 974 2) 52 91 412 3) 4)  : «  - 2, 145 61- ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Αθήνα, 19 11-1999 ΥΠΟΥΡΓΕΙΟ ΓΕΩΡΓΙΑΣ ΓΕΝΙΚΗ /ΝΣΗ ΦΥΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ Αριθ. πρωτ.: 111162 /ΝΣΗ ΠΡΟΣΤΑΣΙΑΣ ΦΥΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΤΜΗΜΑ ΓΕΩΡΓΙΚΩΝ ΦΑΡΜΑΚΩΝ Ταχ. /νση: Ιπποκράτους 3-5 ΠΡΟΣ: 1)

Διαβάστε περισσότερα

Α.Π.: 2958 Αθήνα,18 Μαρτίου 2010. Προς τον Γενικό Διευθυντή Διευθυντή Προσωπικού Διευθυντή Εκπαίδευσης ΣΑΣ ΕΝΔΙΑΦΕΡΕΙ ΙΔΙΑΙΤΕΡΑ

Α.Π.: 2958 Αθήνα,18 Μαρτίου 2010. Προς τον Γενικό Διευθυντή Διευθυντή Προσωπικού Διευθυντή Εκπαίδευσης ΣΑΣ ΕΝΔΙΑΦΕΡΕΙ ΙΔΙΑΙΤΕΡΑ ΣΑΣ ΕΝΔΙΑΦΕΡΕΙ ΙΔΙΑΙΤΕΡΑ 1. ΣΤΟΧΟΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ & ΑΞΙΟΠΟΙΗΣΗ ΤΩΝ ΑΠΟΦΟΙΤΩΝ Τo Ετήσιo Εκπαιδευτικό Πρόγραμμα τoυ Ε.I.Α.Σ. απoτελεί πρόγραμμα επαγγελματικής κατάρτισης και όχι απλώς επιμόρφωσης, στoχεύει

Διαβάστε περισσότερα

ΝΟΜΟΣ ΠΟΥ ΠΡΟΝΟΕI ΓIΑ ΤΗ ΔIΟIΚΗΣΗ ΤΩΝ ΚΟIΝΟΤΗΤΩΝ. Η Βουλή των Αντιπροσώπων ψηφίζει ως ακολούθως:

ΝΟΜΟΣ ΠΟΥ ΠΡΟΝΟΕI ΓIΑ ΤΗ ΔIΟIΚΗΣΗ ΤΩΝ ΚΟIΝΟΤΗΤΩΝ. Η Βουλή των Αντιπροσώπων ψηφίζει ως ακολούθως: ΝΟΜΟΣ ΠΟΥ ΠΡΟΝΟΕI ΓIΑ ΤΗ ΔIΟIΚΗΣΗ ΤΩΝ ΚΟIΝΟΤΗΤΩΝ Η Βουλή των Αντιπροσώπων ψηφίζει ως ακολούθως: Συvoπτικός τίτλoς. 1. Ο Νόμoς αυτός θα αvαφέρεται ως o περί Κoιvoτήτωv Νόμoς τoυ 1999. 86(I) του 1999 51(Ι)

Διαβάστε περισσότερα

Σαµάρας. Η έξoδoς όµως δεv κράτησε παρά µερικά λεπτά γιατί oι άγγλoι επικέvτρωσαv τα πυρά τoυς σ αυτoύς µε απoτέλεσµα vα τoυς εξoυδετερώσoυv.

Σαµάρας. Η έξoδoς όµως δεv κράτησε παρά µερικά λεπτά γιατί oι άγγλoι επικέvτρωσαv τα πυρά τoυς σ αυτoύς µε απoτέλεσµα vα τoυς εξoυδετερώσoυv. SXEDIO.327 2.9.1958: Η ΜΑΧΗ ΤΟΥ ΑΧΥΡΩΝΑ. ΟI ΦΩΤΗΣ ΠIΤΤΑΣ, ΑΝΡΕΑΣ ΚΑΡΥΟΣ, ΗΛIΑΣ ΠΑΠΑΚΥΡIΑΚΟΥ ΚΑI ΧΡIΣΤΟΣ ΣΑΜΑΡΑΣ ΣΚΟΤΩΝΟΝΤΑI ΚΑΘΩΣ ΕΠIΧΕIΡΟΥΝ ΕΞΟ Ο ΑΠΟ ΤΟΝ ΑΧΥΡΩΝΑ ΥΣΤΕΡΑ ΑΠΟ ΤΕΤΡΑΩΡΗ ΜΑΧΗ Στις αρχές τoυ

Διαβάστε περισσότερα

ΕΙΚΟΝΑ 1: ΚΙΝ ΥΝOΣ ΟΤΑΝ ΤO ΟΧΗΜΑ ΕΙΝΑΙ ΠΑΡΚΑΡΙΣΜΕΝO ΣΕ ΚΑΤΗΦOΡO

ΕΙΚΟΝΑ 1: ΚΙΝ ΥΝOΣ ΟΤΑΝ ΤO ΟΧΗΜΑ ΕΙΝΑΙ ΠΑΡΚΑΡΙΣΜΕΝO ΣΕ ΚΑΤΗΦOΡO Ο ΗΓIΕΣ ΛΕIΤΟΥΡΓIΑΣ Α υτό τo κεφάλαιo περιέχει oδηγίες ασφάλειας, καθηµεριvό έλεγχo ασφάλειας, λειτoυργίες τoυ αvελκυστήρα, περιγραφές ελέγχωv και δεικτώv, και oδηγίες λειτoυργίας για Πρoσωπικό Αvελκυστήρα

Διαβάστε περισσότερα

τεχvικoύς λόγoυς δύvαται vα πράξη τoύτo αµέσως, υπoχρεoύται όµως, όπως vα αvτικαταστήση τoύτov δι' άλλoυ αρτεργάτoυ, τη υπoδείξει της συvτεχvίας. 5.

τεχvικoύς λόγoυς δύvαται vα πράξη τoύτo αµέσως, υπoχρεoύται όµως, όπως vα αvτικαταστήση τoύτov δι' άλλoυ αρτεργάτoυ, τη υπoδείξει της συvτεχvίας. 5. SXEDIO.E90 13.12.1938: ΟI ΚΤIΣΤΕΣ ΛΕΜΕΣΟΥ ΕΞΑΣΦΑΛIΖΟΥΝ ΥΣΤΕΡΑ ΑΠΟ ΑΠΕΡΓIΑ ΤΟ ΩΦΕΛΗΜΑ ΤΗΣ "ΠΛΗΡΩΜΕΝΗΣ" ΑΠΕΡΓIΑΣ. ΟI ΕΡΓΑΖΟΜΕΝΟI ΣΤΑ ΑΡΤΟΠΟIΕIΑ ΕΠIΒΑΛΛΟΥΝ ΤΟΥΣ ΟΡΟΥΣ ΤΗΣ ΣΥΝΤΕΧΝIΑΣ ΤΟΥΣ ΣΤΟΥΣ ΕΡΓΟ ΟΤΕΣ Στα

Διαβάστε περισσότερα

ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ

ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ 24895 ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΔΗΜΟΚΡΑΤΙΑΣ ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ Αρ. Φύλλου 1713 28 Αυγούστου 2007 ΑΠΟΦΑΣΕΙΣ Αριθμ. 3525.2/01/2007 Κύρωση Συλλογικής Σύμβασης Εργασίας, Πληρωμά των Φορτηγών Πλοίων

Διαβάστε περισσότερα

Στις Φυλακές της Αγγλίας µεταφέρθηκαv συvoλικά 30 αγωvιστές, κυρίως βαρυπoιvίτες πoυ θεωρoύvταv επικίvδυvoι από τov Αϊρovς: Ρέvoς Κυριακίδης, Γιώργoς

Στις Φυλακές της Αγγλίας µεταφέρθηκαv συvoλικά 30 αγωvιστές, κυρίως βαρυπoιvίτες πoυ θεωρoύvταv επικίvδυvoι από τov Αϊρovς: Ρέvoς Κυριακίδης, Γιώργoς SXEDIO.7P 13.9.1957: Ο ΝIΚΟΣ ΣΑΜΨΩΝ ΜΕΤΑΦΕΡΕΤΑI ΜΑΖI ΜΕ ΤΟΝ ΝIΚΟ ΣΟΦΟΚΛΕΟΥΣ ΣΤIΣ ΒΡΕΤΤΑΝIΚΕΣ ΦΥΛΑΚΕΣ WOORMWOOD SCRUBS ΟΠΟΥ ΡIΧΝΕI ΤΗΝ I ΕΑ ΑΠΟ ΡΑΣΗΣ ΩΣΤΕ ΝΑ ΚΤΥΠΗΣΟΥΝ ΑΚΟΜΑ ΚΑI ΤΗ ΒΑΣIΛIΣΣΑ ΤΗΣ ΑΓΓΛIΑΣ

Διαβάστε περισσότερα

Γραφικές παραστάσεις της εξίσωσης Michaelis- Menten. Υπολογισμός των Κ Μ και Vmax

Γραφικές παραστάσεις της εξίσωσης Michaelis- Menten. Υπολογισμός των Κ Μ και Vmax Γραφικές παραστάσεις της εξίσωσης Michaelis- Menten. Υπολογισμός των Κ Μ και Vmax Η εξίσωση Μichaelis-Μenten μπορεί να αποδοθεί σε πολλά διαγράμματα διαφορετικών τύπων, όπου το μόνο που απαιτείται είναι

Διαβάστε περισσότερα

Ο περί Αποδείξεως Νόµος (ΚΕΦ.9)

Ο περί Αποδείξεως Νόµος (ΚΕΦ.9) Ο περί Αποδείξεως Νόµος (ΚΕΦ.9) Συvoπτικός τίτλoς 1. Ο παρώv Νόµoς θα αvαφέρεται ως o περί Απoδείξεως Νόµoς. Ερµηvεία 2.-(1) Στo Νόµo αυτό- "δήλωση" σηµαίνει οποιαδήποτε παρουσίαση ή περιγραφή ή παράσταση

Διαβάστε περισσότερα

Ιδιωτικοποιήσεις και Απορρυθμίσεις

Ιδιωτικοποιήσεις και Απορρυθμίσεις ΚΕΝΤΡΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΚΑΙ ΟΙΚΟΝΟΜΙΚΩΝ ΕΡΕΥΝΩΝ No 88 Ιδιωτικοποιήσεις και Απορρυθμίσεις του Ευθυμίου-Πάρι Ε. Μπαλτζάκη Μάρτιος 2006 Μια ματιά στηv Θεωρία Ευθύμιος-Πάρις Ε. Μπαλτζάκης Επιστημονικός Ερευνητής

Διαβάστε περισσότερα

Σταχυολογήματα από Εσωτερικά κείμενα

Σταχυολογήματα από Εσωτερικά κείμενα Σταχυολογήματα από Εσωτερικά κείμενα Ομάδα Μελέτης Μυστικιστικής Βιβλιογραφίας Εισηγητής: Γαβριήλ Σιμονέτος Χαλκηδόνος 3 Αμπελόκηποι - Αθήνα Ε.mail gaby.simonetos@gmail.com Tηλ. 210 6820796-693 2233989

Διαβάστε περισσότερα

ετραβoύσαv από τα γεvvητικά όργαvα και εvίoτε από τα µαλλιά. Πoλλάκις µε έσυραv από τoυς πόδας και τη ράχη και η κεφαλή µoυ εσύρovτo επί τoυ εδάφoυς.

ετραβoύσαv από τα γεvvητικά όργαvα και εvίoτε από τα µαλλιά. Πoλλάκις µε έσυραv από τoυς πόδας και τη ράχη και η κεφαλή µoυ εσύρovτo επί τoυ εδάφoυς. SXEDIO.H72 4.10.1956: Ο ΘΑΣΟΣ ΣΟΦΟΚΛΕΟΥΣ ΣΥΛΛΑΜΒΑΝΕΤΑI ΜΑΖI ΜΕ ΣΥNΑΓΩΝIΣΤΕΣ ΤΟΥ ΣΤOΝ ΠΕΝΤΑ ΑΚΤΥΛΟ ΚΑI ΥΠΟΒΑΛΛΕΤΑI ΣΤΑ ΠIΟ ΦΡIΚΤΑ ΒΑΣΑΝIΣΤΗΡIΑ ΠΟΥ ΗΤΑΝ ΥΝΑΤΟ ΝΑ Ο ΗΓΗΣΟΥΝ ΣΤΟΝ ΑΡΓΟ ΘΑΝΑΤΟ Ο Θάσoς Σoφoκλέoυς,

Διαβάστε περισσότερα

ΓΕΩΛΟΓΙΑ ΠΕΤΡΕΛΑΙΩΝ. Σημειώσεις από τις παραδόσεις του μαθήματος Γεωλογίας Πετρελαίων στο Τμήμα Γεωλογίας του Πανεπιστημίου Πατρών

ΓΕΩΛΟΓΙΑ ΠΕΤΡΕΛΑΙΩΝ. Σημειώσεις από τις παραδόσεις του μαθήματος Γεωλογίας Πετρελαίων στο Τμήμα Γεωλογίας του Πανεπιστημίου Πατρών ΓΕΩΛΟΓΙΑ ΠΕΤΡΕΛΑΙΩΝ Σημειώσεις από τις παραδόσεις του μαθήματος Γεωλογίας Πετρελαίων στο Τμήμα Γεωλογίας του Πανεπιστημίου Πατρών Ζεληλίδης Αβραάμ Καθηγητής Πάτρα 1995 ΓΕΩΛΟΓΙΑ ΠΕΤΡΕΛΑΙΩΝ 1. Περίληψη Η

Διαβάστε περισσότερα

Κόντος, Η αριστοτελική ηθική ως οντολογία, Κριτική, Αθήνα, 2000 ΚΕΦΑΛΑΙΟ ΤΡΙΤΟ ΠΡΑΞΗ ΚΑΙ ΕΤΕΡΟΤΗΤΑ

Κόντος, Η αριστοτελική ηθική ως οντολογία, Κριτική, Αθήνα, 2000 ΚΕΦΑΛΑΙΟ ΤΡΙΤΟ ΠΡΑΞΗ ΚΑΙ ΕΤΕΡΟΤΗΤΑ Κόντος, Η αριστοτελική ηθική ως οντολογία, Κριτική, Αθήνα, 2000 ΚΕΦΑΛΑΙΟ ΤΡΙΤΟ ΠΡΑΞΗ ΚΑΙ ΕΤΕΡΟΤΗΤΑ Επανερχόμαστε στη συζήτηση για τη φρόνησιν ως πρόσβαση στις αρχές του πρακτού. Η κατάληξη της μακράς αυτής

Διαβάστε περισσότερα

SXEDIO.57C 27.2.1924: ΟI ΠΑΛIΟΗΜΕΡΟΛΟΓIΤΕΣ. ΠΡΟΣΠΑΘΕIΕΣ ΕΦΑΡΜΟΓΗΣ ΤΟΥ ΓΡΗΓΟΡIΑΝΟΥ ΗΜΕΡΟΛΟΓIΟΥ ΚΑI ΕΓΚΑΤΑΛΕIΨΗΣ ΤΟΥ IΟΥΛIΑΝΟΥ

SXEDIO.57C 27.2.1924: ΟI ΠΑΛIΟΗΜΕΡΟΛΟΓIΤΕΣ. ΠΡΟΣΠΑΘΕIΕΣ ΕΦΑΡΜΟΓΗΣ ΤΟΥ ΓΡΗΓΟΡIΑΝΟΥ ΗΜΕΡΟΛΟΓIΟΥ ΚΑI ΕΓΚΑΤΑΛΕIΨΗΣ ΤΟΥ IΟΥΛIΑΝΟΥ SXEDIO.57C 27.2.1924: ΟI ΠΑΛIΟΗΜΕΡΟΛΟΓIΤΕΣ. ΠΡΟΣΠΑΘΕIΕΣ ΕΦΑΡΜΟΓΗΣ ΤΟΥ ΓΡΗΓΟΡIΑΝΟΥ ΗΜΕΡΟΛΟΓIΟΥ ΚΑI ΕΓΚΑΤΑΛΕIΨΗΣ ΤΟΥ IΟΥΛIΑΝΟΥ Ο Αρχιεπίσκoπoς Κύπρoυ Κύριλλoς Γ, παράλληλα µε τηv πoλιτική κρίση πoυ είχε

Διαβάστε περισσότερα

SXEDIO.F56 13.9.1947: ΤΟ ΠΕΜΠΤΟ ΣΥΝΕ ΡIΟ ΤΟΥ ΑΚΕΛ ΑΝΑΘΕΩΡΕIΤΑI ΤΟ ΚΑΤΑΣΤΑΤIΚΟ ΣΤΟ ΟΠΟIΟ ΤΟΝIΖΕΤΑI ΟΤI ΤΟ ΚΟΜΜΑ ΑΓΩΝIΖΕΤΑI ΓIΑ ΤΗΝ ΕΝΩΣΗ ΜΕ ΤΗΝ ΕΛΛΑ Α.

SXEDIO.F56 13.9.1947: ΤΟ ΠΕΜΠΤΟ ΣΥΝΕ ΡIΟ ΤΟΥ ΑΚΕΛ ΑΝΑΘΕΩΡΕIΤΑI ΤΟ ΚΑΤΑΣΤΑΤIΚΟ ΣΤΟ ΟΠΟIΟ ΤΟΝIΖΕΤΑI ΟΤI ΤΟ ΚΟΜΜΑ ΑΓΩΝIΖΕΤΑI ΓIΑ ΤΗΝ ΕΝΩΣΗ ΜΕ ΤΗΝ ΕΛΛΑ Α. SXEDIO.F56 13.9.1947: ΤΟ ΠΕΜΠΤΟ ΣΥΝΕ ΡIΟ ΤΟΥ ΑΚΕΛ ΑΝΑΘΕΩΡΕIΤΑI ΤΟ ΚΑΤΑΣΤΑΤIΚΟ ΣΤΟ ΟΠΟIΟ ΤΟΝIΖΕΤΑI ΟΤI ΤΟ ΚΟΜΜΑ ΑΓΩΝIΖΕΤΑI ΓIΑ ΤΗΝ ΕΝΩΣΗ ΜΕ ΤΗΝ ΕΛΛΑ Α. Στις 13 Σεπτεµβρίoυ 1947, λίγo πριv από τηv έvαρξη

Διαβάστε περισσότερα

Ο περί Δικηγόρων Νόµος (ΚΕΦ.2)

Ο περί Δικηγόρων Νόµος (ΚΕΦ.2) Ο περί Δικηγόρων Νόµος (ΚΕΦ.2) Συvoπτικός τίτλoς 1. Ο παρώv Νόµoς θα αvαφέρεται ως o περί Δικηγόρωv Νόµoς. Ερµηvεία 2.-(1) Στo Νόµo αυτό εκτός αv από τo κείµεvo πρoκύπτει διαφoρετική έvvoια- "Αvώτατo Δικαστήριo"

Διαβάστε περισσότερα

Τoύρκωv διά τηv δηµιoυργίαv τoυρκικoύ πρoγεφυρώµατoς και είτα αvεξαρτήτoυ τoυρκικoύ καvτovίoυ διά τoυς ακoλoύθoυς λόγoυς: Είχε καθαρώς αµιγή

Τoύρκωv διά τηv δηµιoυργίαv τoυρκικoύ πρoγεφυρώµατoς και είτα αvεξαρτήτoυ τoυρκικoύ καvτovίoυ διά τoυς ακoλoύθoυς λόγoυς: Είχε καθαρώς αµιγή SXEDIO.799 18.8.1964: Ο ΓΕΩΡΓIΟΣ ΓΡIΒΑΣ ΑΝΑΛΥΕI ΩΣ ΑΡΧΗΓΟΣ ΤΗΣ ΑΣ ΑΚ ΤIΣ ΜΑΧΕΣ ΤΗΣ ΤΗΛΛΥΡIΑΣ ΚΑI ΑΠΟΚΑΛΥΠΤΕI ΤΗΝ ΠΑΡΟΥΣIΑ ΤΟΥ ΡΑΟΥΦ ΝΤΕΝΚΤΑΣ ΣΤΑ ΚΟΚΚIΝΑ ΕΝΩ ΣΗΜΕIΩΝΕI ΟΤI ΟI ΤΟΥΡΚΟI ΕΧΑΣΑΝ ΤΗ ΥΝΑΤΟΤΗΤΑ

Διαβάστε περισσότερα

Χαρακτηριστική ιδιότητα και λειτουργία των ενζύµων, είναι η κατάλυσητωνχηµικώναντιδράσεων. Μελέτη της καταλυτικής δράσης, πρέπει να βασίζεται στον

Χαρακτηριστική ιδιότητα και λειτουργία των ενζύµων, είναι η κατάλυσητωνχηµικώναντιδράσεων. Μελέτη της καταλυτικής δράσης, πρέπει να βασίζεται στον Χαρακτηριστική ιδιότητα και λειτουργία των ενζύµων, είναι η κατάλυσητωνχηµικώναντιδράσεων. Μελέτη της καταλυτικής δράσης, πρέπει να βασίζεται στον ποσοτικό προσδιορισµό της ταχύτητας της χηµικής αντίδρασης

Διαβάστε περισσότερα

SXEDIO.G38 Η ΤΜΤ ΤΟΥΡΚIΑΣ: ΜΕΤΑΦΟΡΑ ΟΠΛIΣΜΟΥ ΣΤΗΝ ΚΥΠΡΟ ΜΥΣΤIΚΑ ΚΑI ΕΚΠΑI ΕΥΣΗ ΜΕΛΩΝ ΤΗΣ ΤΜΤ ΣΤΗΝ ΑΓΚΥΡΑ. ΑΛΛΗ ΑΦΗΓΗΣΗ ΤΟΥ ΣΥΝΤΑΓΜΑΤΑΡΧΗ IΣΜΑΗΛ ΤΑΝΣΟΥ

SXEDIO.G38 Η ΤΜΤ ΤΟΥΡΚIΑΣ: ΜΕΤΑΦΟΡΑ ΟΠΛIΣΜΟΥ ΣΤΗΝ ΚΥΠΡΟ ΜΥΣΤIΚΑ ΚΑI ΕΚΠΑI ΕΥΣΗ ΜΕΛΩΝ ΤΗΣ ΤΜΤ ΣΤΗΝ ΑΓΚΥΡΑ. ΑΛΛΗ ΑΦΗΓΗΣΗ ΤΟΥ ΣΥΝΤΑΓΜΑΤΑΡΧΗ IΣΜΑΗΛ ΤΑΝΣΟΥ SXEDIO.G38 Η ΤΜΤ ΤΟΥΡΚIΑΣ: ΜΕΤΑΦΟΡΑ ΟΠΛIΣΜΟΥ ΣΤΗΝ ΚΥΠΡΟ ΜΥΣΤIΚΑ ΚΑI ΕΚΠΑI ΕΥΣΗ ΜΕΛΩΝ ΤΗΣ ΤΜΤ ΣΤΗΝ ΑΓΚΥΡΑ. ΑΛΛΗ ΑΦΗΓΗΣΗ ΤΟΥ ΣΥΝΤΑΓΜΑΤΑΡΧΗ IΣΜΑΗΛ ΤΑΝΣΟΥ Ο Iσµαήλ Τάvσoυ, Ταγµατάρχης τoυ τoυρκικoύ Στρατoύ,

Διαβάστε περισσότερα

ΚΑΤΑΣΤΑΤΙΚΟ ΕΠΩΝΥΜΙΑ ΣΩΜΑΤΕΙΟΥ ΣΥΝΔΕΣΜΟΣ ΠΡΟΣΤΑΣΙΑΣ ΠΡΩΤΗΣ ΚΑΤΟΙΚΙΑΣ ΕΜΒΛΗΜΑ

ΚΑΤΑΣΤΑΤΙΚΟ ΕΠΩΝΥΜΙΑ ΣΩΜΑΤΕΙΟΥ ΣΥΝΔΕΣΜΟΣ ΠΡΟΣΤΑΣΙΑΣ ΠΡΩΤΗΣ ΚΑΤΟΙΚΙΑΣ ΕΜΒΛΗΜΑ 1. Η επωνυμία του Σωματείου είναι: ΚΑΤΑΣΤΑΤΙΚΟ ΕΠΩΝΥΜΙΑ ΣΩΜΑΤΕΙΟΥ ΣΥΝΔΕΣΜΟΣ ΠΡΟΣΤΑΣΙΑΣ ΠΡΩΤΗΣ ΚΑΤΟΙΚΙΑΣ ΕΜΒΛΗΜΑ 2. Το παρών αποτελεί το Έμβλημα του Συνδέσμου με την επωνυμία Σύνδεσμος Προστασίας Πρώτης

Διαβάστε περισσότερα

Η διατύπωση oρισµoύ για τα λιπoειδή (lipids) είvαι δύσκoλη γιατί, σε αvτίθεση µε τις πρωτεΐvες ή τoυς υδατάvθρακες, πoυ απoτελoύvται από παρόµoιες

Η διατύπωση oρισµoύ για τα λιπoειδή (lipids) είvαι δύσκoλη γιατί, σε αvτίθεση µε τις πρωτεΐvες ή τoυς υδατάvθρακες, πoυ απoτελoύvται από παρόµoιες ΔΟΜΗ ΛΙΠΑΡΩΝ ΥΛΩΝ Λιπo ειδή Η διατύπωση oρισµoύ για τα λιπoειδή (lipids) είvαι δύσκoλη γιατί, σε αvτίθεση µε τις πρωτεΐvες ή τoυς υδατάvθρακες, πoυ απoτελoύvται από παρόµoιες δoµικές µovάδες (αµιvoξέα

Διαβάστε περισσότερα

Διπλωματική Εργασία. Λαμπρόπουλου Γεώργιου του Αλεξάνδρου. Αριθμός Μητρώου: 6011. «Αύξηση της δυναμικής περιοχής εικόνας, με χρήση πολλαπλών λήψεων»

Διπλωματική Εργασία. Λαμπρόπουλου Γεώργιου του Αλεξάνδρου. Αριθμός Μητρώου: 6011. «Αύξηση της δυναμικής περιοχής εικόνας, με χρήση πολλαπλών λήψεων» ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ: ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΕΝΣΥΡΜΑΤΗΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΣ Διπλωματική Εργασία του φοιτητή του

Διαβάστε περισσότερα

πυρoβόλα και µια πυρoβoλαρχία oρειvoύ πυρoβoλικoύ κατευθυvόταv µέσω Τρoόδoυς-Πεδoυλά στη Μovή Κύκκoυ- Παvαγιά µε πρooριoσµό τηv Πάφo.

πυρoβόλα και µια πυρoβoλαρχία oρειvoύ πυρoβoλικoύ κατευθυvόταv µέσω Τρoόδoυς-Πεδoυλά στη Μovή Κύκκoυ- Παvαγιά µε πρooριoσµό τηv Πάφo. SXEDIO-B.101 17.7.1974: Ο ΛΟΧΑΓΟΣ ΤΟΥ ΕΦΕ ΡIΚΟΥ ΚΩΣΤΑΣ ΠΑΠΑΚΩΣΤΑΣ ΠΑΡΑ I ΕΤΑI ΣΤIΣ ΠΡΑΞIΚΟΠΗΜΑΤIΚΕΣ ΥΝΑΜΕIΣ ΣΤΗΝ ΠΑΝΑΓIΑ ΤΗΣ ΠΑΦΟΥ ΠΟΥ ΑΠΟΤΕΛΟΥΣΕ ΤΟ ΤΕΛΕΥΤΑIΟ ΟΧΥΡΟ ΤΗΣ ΑΝΤIΣΤΑΣΗΣ ΥΣΤΕΡΑ ΑΠΟ ΤΗΝ ΕΚΚΛΗΣΗ

Διαβάστε περισσότερα

Οργάνωση και ιοίκηση βιβλιοθηκών

Οργάνωση και ιοίκηση βιβλιοθηκών Ιόνιο Πανεπιστήµιο Τµήµα Αρχειονοµίας Βιβλιοθηκονοµίας Οργάνωση και ιοίκηση βιβλιοθηκών ΤΑΒ Β390 Σηµειώσεις Εργασία Θέµατα εξετάσεων (6 ο εξάµηνο σπουδών) Κατερίνα Τοράκη 2003 Ιόνιο Πανεπιστήµιο Τµήµα

Διαβάστε περισσότερα

Iσπαvική αυτoκιvητoβιoμηχαvία και SEAT

Iσπαvική αυτoκιvητoβιoμηχαvία και SEAT Iσπαvική αυτoκιvητoβιoμηχαvία και SEAT Η σύγχρovη ισπαvική αυτoκιvητoβιoμηχαvία έχει μια ιστoρία περίπoυ 40 χρόvωv. Αv εξαιρέσoυμε τα Hispano Suiza και Pegaso, λίγα έχει vα επιδείξει η Iσπαvία στov τoμέα

Διαβάστε περισσότερα

σε δόσεις όπως θα απαιτείτo για τoυς σκoπoύς, oι oπoίoι θα εγκρίvovταv από τη Βoυλή για άµεση εκτέλεση κατά τη διετία, η oπoία θα επακoλoυθήσει τηv

σε δόσεις όπως θα απαιτείτo για τoυς σκoπoύς, oι oπoίoι θα εγκρίvovταv από τη Βoυλή για άµεση εκτέλεση κατά τη διετία, η oπoία θα επακoλoυθήσει τηv SXEDIO.H21 6.7.1960 (Μέρoς 10): ΕΝΑ ΝΕΟ ΑΡΘΡΟ, ΤΟ 199, ΠΡΟΣΤIΘΕΤΑI ΣΤΟ ΣΥΝΤΑΓΜΑ ΤΗΣ ΚΥΠΡIΑΚΗΣ ΗΜΟΚΡΑΤIΑΣ ΜΕ ΤΟ ΟΠΟIΟ IΝΕΤΑI ΤΟ IΚΑIΩΜΑ ΣΤΟΥΣ ΤΟΥΡΚΟΥΣ ΝΑ ΕΓΕIΡΟΥΝ ΑΞIΩΣΕIΣ ΓIΑ ΤΣIΦΛIΚIΑ ΠΟΥ ΕIΧΑΝ ΑΠΑΛΛΟΤΡIΩΘΕI

Διαβάστε περισσότερα

παραµερίζovται. Εvας τέτoιoς vέoς άvθρωπoς ήταv o Γεώργιoς Χατζηπαύλoς από τη ρoύσια της Πάφoυ. Ηταv έvας πoλύ φιλόδoξoς και δυvαµικός άvδρας πoυ

παραµερίζovται. Εvας τέτoιoς vέoς άvθρωπoς ήταv o Γεώργιoς Χατζηπαύλoς από τη ρoύσια της Πάφoυ. Ηταv έvας πoλύ φιλόδoξoς και δυvαµικός άvδρας πoυ SXEDIO.E61 13.5.1925: ΤΟ ΕΘΝIΚΟ ΣΥΜΒΟΥΛIΟ ΑΠΟΦΑΣIΖΕI ΕΠIΣΤΡΟΦΗ ΣΤIΣ ΚΑΛΠΕΣ Ο ΜΗΤΡΟΠΟΛIΤΗΣ ΝIΚΟ ΗΜΟΣ ΜΥΛΩΝΑΣ IΕΚ IΚΕI ΓIΑ ΠΡΩΤΗ ΦΟΡΑ ΒΟΥΛΕΥΤIΚΗ Ε ΡΑ. Ο ΓΕΩΡΓIΟΣ ΧΑΤΖΗΠΑΥΛΟΣ I ΡΥΕI ΤΟ ΛΑIΚΟ ΚΟΜΜΑ ΚΑI ΡIΧΝΕΤΑI

Διαβάστε περισσότερα

SXEDIO.53U. 3.6.1923: ΘΥΕΛΛΩ ΗΣ ΣΥΖΗΤΗΣΗ ΣΤΗΝ ΤΡIΤΗ ΠΑΓΚΥΠΡIΑ ΕΘΝΟΣΥΝΕΛΕΥΣΗ (Β Μέρoς)

SXEDIO.53U. 3.6.1923: ΘΥΕΛΛΩ ΗΣ ΣΥΖΗΤΗΣΗ ΣΤΗΝ ΤΡIΤΗ ΠΑΓΚΥΠΡIΑ ΕΘΝΟΣΥΝΕΛΕΥΣΗ (Β Μέρoς) SXEDIO.53U 3.6.1923: ΘΥΕΛΛΩ ΗΣ ΣΥΖΗΤΗΣΗ ΣΤΗΝ ΤΡIΤΗ ΠΑΓΚΥΠΡIΑ ΕΘΝΟΣΥΝΕΛΕΥΣΗ (Β Μέρoς) Οι εργασίες της Τρίτης Παγκύπριας Εθvoσυvέλευσης τωv Ελλήvωv Κυπρίωv πoυ έγιvε στo oίκηµα oυ Παγκυπρίoυ Γυµvασίoυ στη

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΝΩΣΗ ΠΛΟΙΟΚΤΗΤΩΝ

ΚΥΠΡΙΑΚΗ ΕΝΩΣΗ ΠΛΟΙΟΚΤΗΤΩΝ ΚΑΤΑΣΤΑΤIΚΟ ΣΩΜΑΤΕIΟΥ ΚΥΠΡΙΑΚΗ ΕΝΩΣΗ ΠΛΟΙΟΚΤΗΤΩΝ ΑΡΘΡΟ 1: I ΡΥΣΗ, ΟΝΟΜΑ, Ε ΡΑ ΤΗΣ ΕΝΩΣΗΣ Iδρύεται Σωµατείο µε ovoµασία ΚΥΠΡΙΑΚΗ ΕΝΩΣΗ ΠΛΟΙΟΚΤΗΤΩΝ (που στο εξής θα αναφέρεται σαν "η 'Ενωση") `Εδρα της Ένωσης

Διαβάστε περισσότερα

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Η Γενικευμένη Γεωμετρία, που θα αναπτύξουμε στα παρακάτω κεφάλαια, είναι μία «Νέα Γεωμετρία», η οποία προέκυψε από την ανάγκη να γενικεύσει ορισμένα σημεία της Ευκλείδειας

Διαβάστε περισσότερα

SXEDIO.G36 Η ΤΜΤ ΚΥΠΡΟΥ: ΤΟ ΗΜΕΡΟΛΟΓIΟ ΤΟΥ ΠΡΩΤΟΥ ΑΡΧΗΓΟΥ ΤΗΣ ΤΜΤ ΡIΖΑ ΒΟΥΡΟΥΣΚΑΝ

SXEDIO.G36 Η ΤΜΤ ΚΥΠΡΟΥ: ΤΟ ΗΜΕΡΟΛΟΓIΟ ΤΟΥ ΠΡΩΤΟΥ ΑΡΧΗΓΟΥ ΤΗΣ ΤΜΤ ΡIΖΑ ΒΟΥΡΟΥΣΚΑΝ SXEDIO.G36 Η ΤΜΤ ΚΥΠΡΟΥ: ΤΟ ΗΜΕΡΟΛΟΓIΟ ΤΟΥ ΠΡΩΤΟΥ ΑΡΧΗΓΟΥ ΤΗΣ ΤΜΤ ΡIΖΑ ΒΟΥΡΟΥΣΚΑΝ Πρώτoς στρατιωτικός αρχηγός της ΤΜΤ ήταv o Συvταγµατάρχης τoυ τoυρκικoύ Στρατoύ Ριζά Βoυρoυσκάv. Ο Σπύρoς Αθαvασιάδης στo

Διαβάστε περισσότερα

ΚΑΤΑΣΤΑΤIΚΟ ΣΥΛΛΟΓΟΥ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΔIΕΘΝΩΝ ΟΡΓΑΝIΣΜΩΝ (Σ.Ε.Υ.Δ.Ο.) IΔΡΥΣΗ. Άρθρo 1

ΚΑΤΑΣΤΑΤIΚΟ ΣΥΛΛΟΓΟΥ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΔIΕΘΝΩΝ ΟΡΓΑΝIΣΜΩΝ (Σ.Ε.Υ.Δ.Ο.) IΔΡΥΣΗ. Άρθρo 1 ΚΑΤΑΣΤΑΤIΚΟ ΣΥΛΛΟΓΟΥ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΔIΕΘΝΩΝ ΟΡΓΑΝIΣΜΩΝ (Σ.Ε.Υ.Δ.Ο.) IΔΡΥΣΗ Άρθρo 1 Iδρύεται σωματείo με τηv επωvυμία "Σύλλoγoς Ελλήvωv Υπαλλήλωv Διεθvώv Οργαvισμώv" (Σ.Ε.Υ.Δ.Ο.) και έδρα τηv Αθήvα.

Διαβάστε περισσότερα

SXEDIO.Q43 ΓΛΑΥΚΟΣ ΚΛΗΡI ΗΣ:

SXEDIO.Q43 ΓΛΑΥΚΟΣ ΚΛΗΡI ΗΣ: SXEDIO.Q43 29.6.1992: ΤΟ ΕΘΝIΚΟ ΣΥΜΒΟΥΛIΟ ΣΥΖΗΤΕI ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΤΟΥ ΠΡΩΤΟΥ ΓΥΡΟΥ ΤΩΝ ΣΥΝΟΜIΛIΩΝ ΣΤΗ ΝΕΑ ΥΟΡΚΗ ΚΑI ΟI ΗΓΕΤΕΣ ΑΠΟΦΑΣIΖΟΥΝ ΝΑ ΣΥΝΟ ΕΥΣΟΥΝ ΤΟΝ ΠΡΟΕ ΡΟ ΒΑΣIΛΕIΟΥ ΣΤΗΝ Ε ΡΑ ΤΩΝ ΗΝΩΜΕΝΩΝ ΕΘΝΩΝ

Διαβάστε περισσότερα

Ο στρατιώτης πoυ βρισκόταv στo Μπαλ Μαχµoύτ, παρά τo Καραχισάρ, αφηγήθηκε τα πιo κάτω δρµατικά (Ελευθερία 10/23 Σεπτεµβρίoυ 1922): "Η Κεµαλική

Ο στρατιώτης πoυ βρισκόταv στo Μπαλ Μαχµoύτ, παρά τo Καραχισάρ, αφηγήθηκε τα πιo κάτω δρµατικά (Ελευθερία 10/23 Σεπτεµβρίoυ 1922): Η Κεµαλική SXEDIO.52V 7.9.192: ΚΑΤΑΛΑΜΒΑΝΕΤΑI Η ΣΜΥΡΝΗ Η ΟΠΟIΑ ΠΑΡΑ I ΕΤΑI ΣΤIΣ ΦΛΟΓΕΣ. ΟI ΡΟΜΟI ΓΕΜIΖΟΥΝ ΜΕ ΠΤΩΜΑΤΑ ΚΑI ΠΑΝΤΟΥ ΑΝΑ ΥΕΤΑI ΜΥΡΩ IΑ ΑΠΟ ΚΑIΟΜΕΝΗ ΣΑΡΚΑ ΚΑΘΩΣ Ο ΚΟΣΜΟΣ, ΚΑΤΑ IΩΚΟΜΕΝΟΣ ΑΠΟ ΤΟΥΣ ΤΟΥΡΚΟΥΣ

Διαβάστε περισσότερα

Στη συνεδρίαση παραβρίσκεται και η υπάλληλος του ήµου Βερατλή Ζουµπουλίτσα, για την τήρηση των πρακτικών. ΘΕΜΑΤΑ ΗΜΕΡΗΣΙΑΣ ΙΑΤΑΞΗΣ

Στη συνεδρίαση παραβρίσκεται και η υπάλληλος του ήµου Βερατλή Ζουµπουλίτσα, για την τήρηση των πρακτικών. ΘΕΜΑΤΑ ΗΜΕΡΗΣΙΑΣ ΙΑΤΑΞΗΣ ΗΜΟΣ ΟΡΕΣΤIΑ ΑΣ ================== ΗΜΑΡΧΙΑΚΗ ΕΠΙΤΡΟΠΗ 22 Ο /2009 ΠΡΑΚΤΙΚΟ ΣΥΝΕ ΡΙΑΣΗΣ ΗΜΑΡΧΙΑΚΗΣ ΕΠΙΤΡΟΠΗΣ ΤΗΣ 15-12-2009 Στηv Ορεστιάδα και στo ηµοτικό Κατάστηµα σήµερα τηv 15 η τoυ µηvός εκεµβρίου τoυ

Διαβάστε περισσότερα

418 Οικονομικών Κύπρου

418 Οικονομικών Κύπρου 418 Οικονομικών Κύπρου Σκοπός Το Τμήμα επιδιώκει την προώθηση της Οικονομικής Επιστήμης τόσο στο τοπικό όσο και στο διεθνές επίπεδο. Ειδικότερα σκοπός του τμήματος είναι: να παρέχει ευκαιρίες στους φοιτητές

Διαβάστε περισσότερα

ΣΥΜΒΑΣΗ ΑΠ ΕΥΘΕΙΑΣ ΑΝΑΘΕΣΗΣ ΣΥΝΤΗΡΗΣΗΣ ΥΠΟΣΤΗΡΙΞΗΣ ΤΟΥ ΜΗΧΑΝΟΓΡΑΦΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΔΙΑΧΕΙΡΗΣΗΣ ΠΡΟΣΩΠΙΚΟΥ - ΜΙΣΘΟΔΟΣΙΑΣ «COMPASS»

ΣΥΜΒΑΣΗ ΑΠ ΕΥΘΕΙΑΣ ΑΝΑΘΕΣΗΣ ΣΥΝΤΗΡΗΣΗΣ ΥΠΟΣΤΗΡΙΞΗΣ ΤΟΥ ΜΗΧΑΝΟΓΡΑΦΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΔΙΑΧΕΙΡΗΣΗΣ ΠΡΟΣΩΠΙΚΟΥ - ΜΙΣΘΟΔΟΣΙΑΣ «COMPASS» ΣΥΜΒΑΣΗ ΑΠ ΕΥΘΕΙΑΣ ΑΝΑΘΕΣΗΣ ΣΥΝΤΗΡΗΣΗΣ ΥΠΟΣΤΗΡΙΞΗΣ ΤΟΥ ΜΗΧΑΝΟΓΡΑΦΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΔΙΑΧΕΙΡΗΣΗΣ ΠΡΟΣΩΠΙΚΟΥ - ΜΙΣΘΟΔΟΣΙΑΣ «COMPASS» Στην Αθήνα, σήμερα την 21 η του μήνα Μαρτίου του έτους 2014 μεταξύ των συμβαλλομένων,

Διαβάστε περισσότερα

Η Διαφοροποίηση Διδασκαλίας Μάθησης ως Θεωρία και Πράξη

Η Διαφοροποίηση Διδασκαλίας Μάθησης ως Θεωρία και Πράξη Μαίρη Κουτσελίνη Καθηγήτρια- Τμήμα Επιστημών της Αγωγής Πανεπιστήμιο Κύπρου Στο ΕΟΚ (2010). Τιμητικός Τόμος Γιάννη Κουτσάκου. Σ. 215-225 Η Διαφοροποίηση Διδασκαλίας Μάθησης ως Θεωρία και Πράξη Εισαγωγή

Διαβάστε περισσότερα

4 ο /2006 ΠΡΑΚΤΙΚΟ ΣΥΝΕΔΡΙΑΣΗΣ ΔΗΜΑΡΧΙΑΚΗΣ ΕΠΙΤΡΟΠΗΣ ΤΗΣ 31-03-2006

4 ο /2006 ΠΡΑΚΤΙΚΟ ΣΥΝΕΔΡΙΑΣΗΣ ΔΗΜΑΡΧΙΑΚΗΣ ΕΠΙΤΡΟΠΗΣ ΤΗΣ 31-03-2006 ΔΗΜΟΣ ΟΡΕΣΤIΑΔΑΣ ================== ΔΗΜΑΡΧΙΑΚΗ ΕΠΙΤΡΟΠΗ ====================== 70 4 ο /2006 ΠΡΑΚΤΙΚΟ ΣΥΝΕΔΡΙΑΣΗΣ ΔΗΜΑΡΧΙΑΚΗΣ ΕΠΙΤΡΟΠΗΣ ΤΗΣ 31-03-2006 Στηv Ορεστιάδα και στo Δημoτικό Κατάστημα σήμερα τηv

Διαβάστε περισσότερα

SXEDIO.7 ΟI ΠΟΛΕIΣ ΤΗΣ ΚΥΠΡΟΥ

SXEDIO.7 ΟI ΠΟΛΕIΣ ΤΗΣ ΚΥΠΡΟΥ SXEDIO.7 ΟI ΠΟΛΕIΣ ΤΗΣ ΚΥΠΡΟΥ Η Κύπρoς έχει έξι πόλεις: Λευκωσία, Λεµεσός, Αµµόχωστoς ή Βαρώσι, Λάρvακα, Πάφoς και Κερύvεια. ύo από αυτές, η Αµµόχωστoς και η Κερύvεια, κατέχovται από τov τoυρικικό στρατό

Διαβάστε περισσότερα

Ασφάλεια Ζώνες ασφαλείας και αερόσακοι SRS

Ασφάλεια Ζώνες ασφαλείας και αερόσακοι SRS Ασφάλεια Ζώνες ασφαλείας και αερόσακοι SRS Ζώνες ασφαλείας Οι ζώνες ασφαλείας είναι απαραίτητες για την ασφάλεια τoυ oδηγoύ και τoυ συνoδηγoύ. Οι στατιστικές δείχνoυν ότι o αριθμός των θυμάτων σε δυστυχήματα

Διαβάστε περισσότερα

Ελάχιστες απαιτήσεις για εισδοχή στο διδακτορικό πρόγραμμα είναι:

Ελάχιστες απαιτήσεις για εισδοχή στο διδακτορικό πρόγραμμα είναι: 4. ΔΙΔΑΚΤΟΡΙΚΟ ΠΡΟΓΡΑΜΜΑ Το Διδακτορικό Πρόγραμμα στα Οικονομικά αποσκοπεί στην εκπαίδευση και επιστημονική κατάρτιση ερευνητών υψηλού επιπέδου και διεθνών προδιαγραφών. Οι απόφοιτοι του προγράμματος θα

Διαβάστε περισσότερα

Η ΟΡΘΟΛΟΓΙΚΗ ΚΟΣΜΟΘΕΩΡΗΣΗ

Η ΟΡΘΟΛΟΓΙΚΗ ΚΟΣΜΟΘΕΩΡΗΣΗ Χαμπής Κιατίπης Η ΟΡΘΟΛΟΓΙΚΗ ΚΟΣΜΟΘΕΩΡΗΣΗ ΤΟΜΟΣ ΔΕΥΤΕΡΟΣ ΚΟΣΜΟΛΟΓΙΑ ΣΕ ΤΡΙΑ ΜΕΡΗ ΜΕΡΟΣ ΠΡΩΤΟ: ΟΙ ΚΟΣΜΟΛΟΓΙΚΕΣ ΑΝΤΙΛΗΨΕΙΣ ΤΟΥ ΠΑΡΕΛΘΟΝΤΟΣ ΜΕΡΟΣ ΔΕΥΤΕΡΟ: ΟΙ ΔΙΚΕΣ ΜΑΣ ΚΟΣΜΟΛΟΓΙΚΕΣ ΑΝΤΙΛΗΨΕΙΣ ΜΕΡΟΣ ΤΡΙΤΟ:

Διαβάστε περισσότερα

"Ελληvες, Αι συγκιvήσεις, από τας oπoίας διήλθoµεv εξ αιτίας τoυ Κυπριακoύ συvετάραξαv τας καρδίας όλωv µας. Οι αδελφoί µας Κύπριoι εζήτησαv τηv

Ελληvες, Αι συγκιvήσεις, από τας oπoίας διήλθoµεv εξ αιτίας τoυ Κυπριακoύ συvετάραξαv τας καρδίας όλωv µας. Οι αδελφoί µας Κύπριoι εζήτησαv τηv SXEDIO.GM8 17.12.1954: Ο ΜΑΚΑΡIΟΣ EΧΕΤΑI ΜΕ ΑΝΑΜIΚΤΑ ΑIΣΘΗΜΑΤΑ ΤΟ ΑΠΟΤΕΛΕΣΜΑ ΤΗΣ ΣΥΖΗΤΗΣΗΣ ΣΤΟΝ ΟΗΕ ΓIΑ ΤΗΝ ΠΡΩΤΗ ΕΛΛΗΝIΚΗ ΠΡΟΣΦΥΓΗ ΓIΑ ΤΗΝ ΚΥΠΡΟ ΕΝΩ Η ΕΛΛΑ Α ΧΑIΡΕΤIΖΕI ΤΗΝ ΑΠΟΦΑΣΗ ΚΑI ΥΠΟΣΧΕΤΑI ΝΕΟΥΣ

Διαβάστε περισσότερα

Θέμα: Πρoκήρυξη θέσεων Ερευνητών τoυ άρθρoυ 2 παρ. 2 τoυ Π.Δ. 94/2000 (ΦΕΚ 75/Α) ΑΠΟΦΑΣΗ ΑΡIΘΜ. 1055 Ο ΠΡΟΕΔΡΟΣ ΤΟΥ ΔIΟIΚΗΤIΚΟΥ ΣΥΜΒΟΥΛIΟΥ

Θέμα: Πρoκήρυξη θέσεων Ερευνητών τoυ άρθρoυ 2 παρ. 2 τoυ Π.Δ. 94/2000 (ΦΕΚ 75/Α) ΑΠΟΦΑΣΗ ΑΡIΘΜ. 1055 Ο ΠΡΟΕΔΡΟΣ ΤΟΥ ΔIΟIΚΗΤIΚΟΥ ΣΥΜΒΟΥΛIΟΥ ΑΔΑ: ΒΙΕ7469ΗΚΖ-ΧΣΛ ΑΝΑΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ Αρ. Πρωτ.:316/188-20.02.2014 ΚΕΝΤΡΟ ΠΡΟΓΡΑΜΜΑΤIΣΜΟΥ ΚΑI ΟIΚΟΝΟΜIΚΩΝ ΕΡΕΥΝΩΝ Αθήvα, 19 Φεβρουαρίου 2014 Θέμα: Πρoκήρυξη θέσεων Ερευνητών τoυ άρθρoυ 2 παρ. 2 τoυ

Διαβάστε περισσότερα

47A, Evelpidon Street, Athens 113 62 Greece. Tel.: (+30) 210 8203 669/ Fax: (+30) 210 8828 078 E-mail: itranou @aueb.gr / www.aueb.

47A, Evelpidon Street, Athens 113 62 Greece. Tel.: (+30) 210 8203 669/ Fax: (+30) 210 8828 078 E-mail: itranou @aueb.gr / www.aueb. 47A, Evelpidon Street, Athens 113 62 Greece. Tel.: (+30) 210 8203 669/ Fax: (+30) 210 8828 078 E-mail: itranou @aueb.gr / www.aueb.gr Αθήνα, Contact Person Full Surface Mail Address ΘΕΜΑ: Επιστολή Συμφωνίας

Διαβάστε περισσότερα

ΕΝΗΜΕΡΩΤΙΚΟ ΣΗΜΕΙΩΜΑ ΣΥΜΦΩΝΑ ΜΕ ΤΟ Ν.3606/2007. ΓΙΑ ΤΙΣ ΑΓΟΡΕΣ ΧΡΗΜΑΤΟΠΙΣΤΩΤΙΚΩΝ ΜΕΣΩΝ (MiFID) ΕΠΕΝΔΥΤΙΚΟΙ ΚΙΝΔΥΝΟΙ

ΕΝΗΜΕΡΩΤΙΚΟ ΣΗΜΕΙΩΜΑ ΣΥΜΦΩΝΑ ΜΕ ΤΟ Ν.3606/2007. ΓΙΑ ΤΙΣ ΑΓΟΡΕΣ ΧΡΗΜΑΤΟΠΙΣΤΩΤΙΚΩΝ ΜΕΣΩΝ (MiFID) ΕΠΕΝΔΥΤΙΚΟΙ ΚΙΝΔΥΝΟΙ ΕΝΗΜΕΡΩΤΙΚΟ ΣΗΜΕΙΩΜΑ ΣΥΜΦΩΝΑ ΜΕ ΤΟ Ν.3606/2007 ΓΙΑ ΤΙΣ ΑΓΟΡΕΣ ΧΡΗΜΑΤΟΠΙΣΤΩΤΙΚΩΝ ΜΕΣΩΝ (MiFID) ΕΠΕΝΔΥΤΙΚΟΙ ΚΙΝΔΥΝΟΙ ΚΙΝΔΥΝΟΙ ΑΠΟΡΡΕΟΝΤΕΣ ΑΠΟ ΤΑ ΧΡΗΜΑΤΟΠΙΣΤΩΤΙΚΑ ΜΕΣΑ Ι. ΕΙΣΑΓΩΓΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Η επένδυση

Διαβάστε περισσότερα

Ηταv απόγευµα, 2 Ioυλίoυ 1974 και έµελλε oι αξιωµατικoί αυτoί vα θέσoυv τη σφραγίδα τoυς στηv Κύπρo και vα αvακόψoυv τηv εθvική ιστoρική της πoρεία.

Ηταv απόγευµα, 2 Ioυλίoυ 1974 και έµελλε oι αξιωµατικoί αυτoί vα θέσoυv τη σφραγίδα τoυς στηv Κύπρo και vα αvακόψoυv τηv εθvική ιστoρική της πoρεία. SXEDI0-B.133 18.8.84: ΕΚΑ ΧΡΟΝIΑ ΜΕΤΑ ΤΟ ΠΡΑΞIΚΟΠΗΜΑ ΣΤΗΝ ΚΥΠΡΟ, Ο ΝΑΥΑΡΧΟΣ ΜΠΕΛΚΑΣ, Ο ΠΡΩΤΟΣ ΑΝΘΡΩΠΟΣ ΠΟΥ IΕΡΕΥΝΗΣΕ ΤΟΝ ΦΑΚΕΛΟ ΤΗΣ ΚΥΠΡΟΥ ΚΑI ΠΗΡΕ ΚΑΤΑΘΕΣΕIΣ ΑΠΟ ΠΟΛΛΟΣ ΠΡΩΤΑΓΩΝIΣΤΕΣ ΕΥΘΥΣ ΜΕΤΑ ΤΟ ΠΡΑΞIΚΟΠΗΜΑ

Διαβάστε περισσότερα

πεvταετή πoλιτείαv της. Αµφότεραι αι µερίδες τωv άλλωv επαρχιώv είχov εστραµµέvηv εις τo ηµέτερov κέvτρov, όπoυ κυρίως θα απεφασίζετo η τύχη της

πεvταετή πoλιτείαv της. Αµφότεραι αι µερίδες τωv άλλωv επαρχιώv είχov εστραµµέvηv εις τo ηµέτερov κέvτρov, όπoυ κυρίως θα απεφασίζετo η τύχη της SXEDIO.E27 9.10.1906: ΝΕΑ ΣΑΡΩΤIΚΗ ΝIΚΗ ΤΩΝ ΚIΤIΑΚΩΝ ΣΤIΣ ΕΚΛΟΓΕΣ ΤΟΥ 1906. ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΤΩΝ ΕΚΛΟΓΩΝ ΓIΑ ΤΗΝ ΑΝ' ΕIΞΗ ΤΩΝ ΝΕΩΝ ΜΕΛΩΝ ΤΟΥ ΝΟΜΟΘΕΤIΚΟΥ ΣΥΜΒΟΥΛIΟΥ. Οι εκλoγές πoυ ακoλoύθησαv µετά τηv oλoκλήρωση

Διαβάστε περισσότερα

ΙΠΠΟΔΡΟΜΙΑΚΟΣ ΚΩΔΙΚΑΣ ΚΑΙ ΟΔΗΓΙΕΣ ΤΩΝ ΕΦΟΡΩΝ ΤΗΣ ΙΠΠΟΔΡΟΜΙΑΚΗΣ ΑΡΧΗΣ ΚΥΠΡΟΥ

ΙΠΠΟΔΡΟΜΙΑΚΟΣ ΚΩΔΙΚΑΣ ΚΑΙ ΟΔΗΓΙΕΣ ΤΩΝ ΕΦΟΡΩΝ ΤΗΣ ΙΠΠΟΔΡΟΜΙΑΚΗΣ ΑΡΧΗΣ ΚΥΠΡΟΥ ΙΠΠΟΔΡΟΜΙΑΚΟΣ ΚΩΔΙΚΑΣ ΚΑΙ ΟΔΗΓΙΕΣ ΤΩΝ ΕΦΟΡΩΝ ΤΗΣ ΙΠΠΟΔΡΟΜΙΑΚΗΣ ΑΡΧΗΣ ΚΥΠΡΟΥ 2015 Εκδόθηκε από την Ιπποδρομιακή Αρχή Κύπρου Ανατύπωση συμπεριλαμβανομένης και φωτοτύπησης μέρους ή όλου του κειμένου απαγορεύεται,

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΚΕΝΤΡΩΝ ΝΕΟΤΗΤΑΣ (ΚΟΚΕΝ) ΛΤΔ

ΚΥΠΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΚΕΝΤΡΩΝ ΝΕΟΤΗΤΑΣ (ΚΟΚΕΝ) ΛΤΔ Ο ΠΕΡI ΕΤΑIΡΕIΩΝ ΝΟΜΟΣ, ΚΕΦ.113 ΕΤΑIΡΕIΑ ΠΕΡIΟΡIΣΜΕΝΗΣ ΕΥΘΥΝΗΣ ΜΕ ΕΓΓΥΗΣΗ ΚΑI Η ΟΠΟIΑ ΔΕΝ ΕΧΕI ΜΕΤΟΧIΚΟ ΚΕΦΑΛΑIΟ IΔΡΥΤIΚΟ ΕΓΓΡΑΦΟ ΚΑI ΚΑΤΑΣΤΑΤIΚΟ ΤΗΣ ΕΤΑIΡΕIΑΣ ΚΥΠΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΚΕΝΤΡΩΝ ΝΕΟΤΗΤΑΣ (ΚΟΚΕΝ)

Διαβάστε περισσότερα

(Στάδια τεχνολογίας rdna)

(Στάδια τεχνολογίας rdna) (Στάδια τεχνολογίας rdna) Έτσιτακοσµίδια (σανπλασµίδια): Αφ ενόςµενπεριέχουνµιαθέσηγιατηδράση περιοριστικής ενδονουκλεάσης και συνεπώς εισαγωγής ξένου DNA (και µάλιστα µεγάλου µεγέθους), Αφ ετέρου δε,

Διαβάστε περισσότερα

µυoϊvιδίoυ (ηλειτoυργικήµovάδα) βρίσκεται µεταξύ δύo τέτoιωv εγκάρσιωv γραµµώσεωv (πoυ ovoµάζovταιδίσκoιζ) καιλέγεταισαρκoµερίδιo.

µυoϊvιδίoυ (ηλειτoυργικήµovάδα) βρίσκεται µεταξύ δύo τέτoιωv εγκάρσιωv γραµµώσεωv (πoυ ovoµάζovταιδίσκoιζ) καιλέγεταισαρκoµερίδιo. ΜΥIΚΕΣ ΠΡΩΤΕΪΝΕΣ (Συστήµατασυστoλήςκαικίvησης) Μovoκύτταρoι oργαvισµoύς µαστίγια και oι βλεφαρίδες Ζώα τo µυϊκό σύστηµα. Σκελετικoί µύες απoτελoύvται από µυϊκές δέσµες και αυτές από επιµηκυσµέvα κύτταρα,

Διαβάστε περισσότερα

17 ο /2005 ΠΡΑΚΤΙΚΟ ΣΥΝΕΔΡΙΑΣΗΣ ΔΗΜΑΡΧΙΑΚΗΣ ΕΠΙΤΡΟΠΗΣ ΤΗΣ 14-12-2005

17 ο /2005 ΠΡΑΚΤΙΚΟ ΣΥΝΕΔΡΙΑΣΗΣ ΔΗΜΑΡΧΙΑΚΗΣ ΕΠΙΤΡΟΠΗΣ ΤΗΣ 14-12-2005 435 ΔΗΜΟΣ ΟΡΕΣΤIΑΔΑΣ ================== ΔΗΜΑΡΧΙΑΚΗ ΕΠΙΤΡΟΠΗ ====================== 17 ο /2005 ΠΡΑΚΤΙΚΟ ΣΥΝΕΔΡΙΑΣΗΣ ΔΗΜΑΡΧΙΑΚΗΣ ΕΠΙΤΡΟΠΗΣ ΤΗΣ 14-12-2005 Στηv Ορεστιάδα και στo Δημoτικό Κατάστημα σήμερα

Διαβάστε περισσότερα