fysikoblog.blogspot.com

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "fysikoblog.blogspot.com"

Transcript

1 fysikobog.bogspot.com Πανειστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙI Α. Καρανίκας και Π. Σφήκας Σημειώσεις ΙV: Η Εξίσωση Schoedinge για σωμάτιο σε κεντρικό δυναμικό.. Ακτινική εξίσωση Η εξίσωση Schoedinge για ένα σωμάτιο το οοίο κινείται κάτω αό τη είδραση κεντρικών δυνάμεων θα έχει, σε σφαιρικές συντεταγμένες, τη μορφή : L + ( ) + + V Ψ { α} (, θ, ϕ) = EΨ{ α} (, θ, ϕ) (4.) μ μ Στην εξίσωση αυτή γράψαμε μ τη μάζα του σωματιδίου (για να μην γίνει σύγχυση με τον κβαντικό αριθμό m ), σημειώσαμε με το εριλητικό όνομα {} a το σύνολο των δεικτών ου είναι ααραίτητοι για τον λήρη καθορισμό της κατάστασης του σωματιδίου και γράψαμε: L = + cotθ + (4.) θ θ sin θ ϕ Αφού οι διαφορικοί τελεστές ου εμφανίζονται στην εξ. (4.) δεν μλέκουν την ακτινική με τις γωνιακές μεταβλητές μορούμε να ψάξουμε για λύσεις με τη μορφή Ψ { a} (, θ, ϕ) = R{ a} () ϒ { a} (, θ ϕ) (4.3) Αντικατάσταση στην εξ. (4.) θα μας οδηγήσει στο συμέρασμα ότι οι συναρτήσεις ϒ { a} ρέει να είναι ιδιοσυναρτήσεις του διαφορικού τελεστή (4.) και εομένως θα γράψουμε : L ϒ m, ( θ, ϕ) = ( + ) ϒm, ( θ, ϕ) (4.4) Μετά την εξ. (4.4) είναι ολύ εύκολο να δούμε ότι η ακτινική εξάρτηση της (4.3) θα ροσδιορίζεται αό την εξίσωση : d d μ ( + ) + + ( E V() ) R () 0 E = d d (4.5) Στην εξίσωση αυτή σημειώσαμε ρητά τους δύο δείκτες αό τους οοίους θα καθορίζεται (ροφανώς λόγω της (4.5)) η συνάρτηση R : τον δείκτη E ου αφορά στην ενέργεια και τον δείκτη ου αφορά στο μέτρο της τροχιακής στροφορμής. Να αρατηρήσουμε αμέσως ότι η κυματοσυνάρτηση του σωματίου εξαρτάται αό τον κβαντικό αριθμό m αλλά όχι οι ειτρεόμενες τιμές της ενέργειας (οι οοίες θα ροκύψουν αό την ανάλυση της εξ.(4.5)). Αυτό σημαίνει ότι θα υάρχουν + διαφορετικές μεταξύ τους καταστάσεις οι οοίες θα έχουν την ίδια ενέργεια. Με άλλα λόγια θα έχουμε (το ελάχιστο) εκφυλισμό τάξης + των ενεργειακών ειέδων. Να σημειώσουμε ακόμα ότι το ενεργό δυναμικό ( : αυτό ου τελικά καθορίζει τις δυνάμεις) είναι ( + ) V () = V() + (4.6) μ Ο δεύτερος όρος στην αραάνω σχέση είναι ένα αωστικό κεντροφυγικό δυναμικό το οοίο οφείλεται στην τροχιακή στροφορμή. (α) Η εξ. (4.5) δεν είναι εύκολο να μελετηθεί στη γενική της μορφή. Για το λόγο αυτό θα ξεκινήσουμε αό την ερίτωση του ελευθέρου σωματίου : d d ( + ) + + k R () 0 k = (4.7) d d

2 fysikobog.bogspot.com Εδώ για λόγους ευκολίας γράψαμε οοίος τώρα είναι συνεχής ) της ακτινικής συνάρτησης. k μ = E ( E > 0 ) και αλλάξαμε αντίστοιχα και τον δείκτη (ο Για να λύσουμε την εξ. (4.7) θα ξεκινήσουμε αό την αλή ερίτωση = 0 : d d d ( + + k ) R k0( ) = ( + k )[ R k0( )] = 0 (4.8) d d d Η γενική λύση της τελευταίας εξίσωσης είναι : Rk 0 ( ) = Asin( k) + B cos( k) (4.9) Είναι λογικό να ζητήσουμε η κυματοσυνάρτηση να είναι εερασμένη καθώς 0 και εομένως να διαλέξουμε τη λύση sin( k) Rk 0() = A (4.0) Για να συνεχίσουμε θα κάνουμε την αλλαγή Rk () = χk () (4.) και θα ξαναγράψουμε την εξ.(4.7) : d ( + ) d + + k χ () 0 k = (4.) d d Αν αραγωγίσουμε την εξίσωση αυτή ακόμη μια φορά θα άρουμε d ( + ) d ( + ) d + + k () 0 k d d d χ = (4.3) Η τελευταία εέμβαση ου θα κάνουμε είναι να γράψουμε d χ k () = fk () οότε η εξίσωση d (4.3) θα γίνει: d ( + ) d + + k f () 0 k = d d (4.4) Αν τώρα συγκρίνουμε τις εξισώσεις (4.) και (4.3) βλέουμε ότι fk () = cχk, () k, () c d + χ + = χk () d (4.5) Εφαρμόζοντας εανειλημμένα την τελευταία θα άρουμε d d χk () = c χk 0() Rk () = c Rk 0() d d (4.6) Η τελευταία σχέση αν συνδυαστεί με το αοτέλεσμα (4.0) θα μας δώσει τη ζητούμενη ακτινική συνάρτηση : d sin( k) Rk () = Ac d (4.7) Τις σταθερές ου εμφανίστηκαν θα τις ροσδιορίσουμε αό τη συνθήκη ορθογωνιότητας των ακτινικών συναρτήσεων * drk () Rk() = δ ( k k ) δ (4.8) 0 (εδώ λάβαμε υόψη το ότι ο δείκτης k είναι συνεχής ). Τον συντελεστή A μορούμε να τον υολογίσουμε αό την ερίτωση = 0 :

3 fysikobog.bogspot.com * A k 0 k0 0 0 d R () R () = A d sin( k )sin( k) = d sin( k )sin( k) = = A A + = 4 4 = = A δ ( k k ) A = 4 i( k k ) i ( k k ) d [ cos ( k k ) cos ( k k )] d e e + (4.9) Για τη σταθερά c είναι αρκετό να θεωρήσουμε την ερίτωση =. Ο υολογισμός θα μας οδηγήσει στο αοτέλεσμα c =. Ως συνήθως η κανονικοοίηση δεν μορεί να ροσδιορίσει την k φάση των σταθερών αυτών. Η σύμβαση ου ακολουθείται συνήθως είναι να διαλέξουμε A= και c= (4.0) k Μετά αό την ανάλυση αυτή έχουμε βρει για το ακτινικό μέρος της κυματοσυνάρτησης : k Rk () = j ( k) (4.) όου d sinρ j ( ρ) = ( ) (4.) ρ dρ ρ είναι οι λεγόμενες σφαιρικές συναρτήσεις Besse. Για ληρότητα να αναφέρουμε ότι αν δεν είχαμε θέσει την ααίτηση η λύση μας να είναι εερασμένη στην αρχή (αυτό θα μορούσε να συμβαίνει, για αράδειγμα, αν το σωμάτιο ήταν ελεύθερο αό μια αόσταση και μετά) θα έρεε να κρατήσουμε και τους δύο όρους στη σχέση (4.9) με τους συντελεστές να ροσδιορίζονται αό τις συνοριακές ααιτήσεις του συγκεκριμένου ροβλήματος ου θα αντιμετωίζαμε. Αν αντί για τον ρώτο είχαμε κρατήσει τον δεύτερο όρο το αοτέλεσμα στο οοίο θα καταλήγαμε θα ήταν k Rk () = n ( k) (4.3) όου d cosρ n ( ρ) = ( ) (4.4) ρ dρ ρ είναι οι λεγόμενες σφαιρικές συναρτήσεις Neumann. Μορεί κανείς να εισάγει και τις σφαιρικές συναρτήσεις Hanke ρώτου και δευτέρου είδους ± iρ ( ± ) d e h ( ρ) = n( ρ) ± ij( ρ) = ( ) (4.5) ρ dρ ρ Όλες οι αραάνω συναρτήσεις (εομένως και οι γραμμικοί συνδυασμοί τους) είναι λύσεις της βασικής εξίσωσης (4.7). Ποια αό όλες θα διαλέξουμε σε κάοιο συγκεκριμένο ρόβλημα εξαρτάται αό τις συνοριακές ααιτήσεις ου το συνοδεύουν. Ας ούμε, στην ιο αλή δυνατή ερίτωση του ελευθέρου σωματίου η σωστή ειλογή είναι αυτή ου μας οδήγησε στο αοτέλεσμα (4.). 3

4 fysikobog.bogspot.com. Εναλλακτική λύση Το αοτέλεσμα (4.) μορεί να αραχθεί και με άλλους τρόους.εδώ θα αναφέρουμε έναν αό αυτούς ου αρουσιάζει κάοιο ενδιαφέρον. Θα ξεκινήσουμε αό την αλή σκέψη ότι ήδη ξέρουμε τη λύση της ελεύθερης εξίσωσης Schoedinge σε καρτεσιανές συντεταγμένες : ik Ψ ( ) = e (4.6) 3/ ( ) (το άνυσμα k μ έχει μέτρο k = E = k ). Αφού οι συναρτήσεις ου εισάγαμε με τη σχέση (4.3): Ψ km(, θ, ϕ) = Rk () ϒ, m(, θ ϕ) (4.7) φτιάχνουν ένα λήρες σύνολο είναι ροφανές ότι μορούμε να αναλύσουμε τη συνάρτηση (4.6) στη βάση (4.7): ik e = a R () ϒ (, θ ϕ) (4.8) m, km k, m Εειδή το σωμάτιο έχει καθορισμένη ενέργεια είναι φανερό ότι μόνο όροι με καθορισμένο k θα εμφανίζονται στο αραάνω ανάτυγμα. 3/ Αό την εξίσωση αυτή (στην οοία ο αράγοντας κανονικοοίησης ( ) έχει ενσωματωθεί στις σταθερές a ) θα ροσαθήσουμε να ροσδιορίσουμε την ακτινική συνάρτηση. Μορούμε να αλοοιήσουμε λίγο τα ράγματα θεωρώντας ότι το άνυσμα είναι στην κατεύθυνση του άξονα z αφού αυτό δεν ρόκειται να εηρεάσει την ακτινική εξάρτηση. Εομένως ξαναγράφουμε την (4.8) με τη μορφή: ik cosθ + e = akrk () ϒ,0() θ = ak Rk () P (cos θ ) (4.9) 4 για το τελευταίο βήμα χρησιμοοιήσαμε τη γνωστή μορφή των σφαιρικών αρμονικών και γράψαμε ( ) d P ( x) = ( x ) (4.30)! dx Αό τη σχέση ορθογωνιότητας των σφαιρικών αρμονικών * dωϒ,0( θ, ϕ) ϒ,0( θ, ϕ) = δ βγάζουμε το συμέρασμα ότι οι συναρτήσεις (4.30) ολυώνυμα Legende ικανοοιούν τη σχέση ορθογωνιότητας: dθ sin θp (cos θ) P(cos θ) = dxp ( x) P( x) = δ (4.3) + 0 Μορούμε τώρα να εκμεταλλευθούμε τη σχέση αυτή και ηγαίνοντας στην εξίσωση (4.9) να δούμε ότι ikx + dxe P ( x) = ak Rk( ) dxp ( x) P( x) akrk ( ) 4 = (4.3) ( + ) Έχουμε βρει λοιόν ότι : ikx Rk () = (+ ) dxe P () x a (4.33) k Για να συνδεθούμε με τα ροηγούμενα αοτελέσματα ας μελετήσουμε το ολοκλήρωμα ου εμφανίζεται στην τελευταία σχέση : 4

5 fysikobog.bogspot.com ikx ( ) ikx d = ( ) = ( )! dx (4.34) I dxe P x dxe x Αμέσως μορούμε να διαιστώσουμε ότι ikx sin( k) I0 = dxe = = j0( k), k ikx d ikx d sin( k) = = = = ik d d( k) k (4.35) I dxxe dxe i ij ( k),, d sin( k) I = i ( ) ( k) = i j( k) k d( k) k και εομένως i Rk () = 4 (+ ) j ( k) (4.36) ak τον συντελεστή κανονικοοιήσης θα τον ροσδιορίσουμε αό τη συνθήκη ορθογωνιότητας : * 4 (+ ) 4 (+ ) d Rk () Rk() = δ( k k ) = d j ( ) ( ) ( ) k j k = δ k k (4.37) a a k 0 k 0 Για το τελευταίο βήμα χρησιμοοιήσαμε τη σχέση (4.) η οοία οδηγεί στο συμέρασμα : d j( k ) j( k) = ( k k ) δ (4.38) k 0 Εομένως (και διαλέγοντας τη φάση των a έτσι ώστε η ακτινική συνάρτηση να είναι ραγματική) + ak = i (4.39) k Μετά αό αυτά έχουμε βρει ότι η ακτινική συνάρτηση είναι k Rk () = j ( k) ενώ το ανάτυγμα (4.9) έχει άρει την τελική του μορφή: ik cosθ e = i (+ ) j( k) P(cos θ ) (4.40) k 3. Μελέτη των λύσεων Αν και δεν μορούμε να δώσουμε γενικούς κανόνες, είναι χρήσιμο να δούμε τη συμεριφορά της ακτινικής εξίσωσης για μια ευρεία γκάμα δυναμικών. Η αφετηρία μας θα είναι η εξίσωση d d μ + + ( E V() ) RE() = 0 (4.4) d d όου ( + ) V () = V() + (4.4) μ Όταν 0 και αφού V() 0είναι ροφανές ότι το ενεργό δυναμικό θα κυριαρχείται αό το κεντροφυγικό δυναμικό (υό την ροϋόθεση ότι 0) και η λύση της εξ.(4.4) είναι γνωστή: 5

6 fysikobog.bogspot.com k d sin( k) k () ( ) () R = j k = (4.43) k d Η λύση αυτή αφορά στο ρόβλημά μας μόνο όταν 0 και εομένως θα ρέει να βρούμε τη μορφή της στην εριοχή αυτή. Θα γράψουμε n ( ) n+ sin( k) = ( k) n= 0 (n + )! οότε η εξ.(4.43) θα άρει τη μορφή n d ( ) n+ n k () = () ( ) k d n= 0 (n+ )! R k (4.44) Είναι ροφανές ότι στην αραάνω δυναμοσειρά ο ιο σημαντικός όρος θα είναι ο n= αφού οι αραγωγίσεις μηδενίζουν όλους τους ροηγούμενους και όλοι οι εόμενοι θα μηδενίζονται ταχύτερα αό αυτόν. Εομένως όταν 0 η λύση (4.43) θα ροσεγγίζεται αό την : ( )! Rk () () k! R () k k (+ )! (+ )! + + k (4.45) Η αραάνω ανάλυση δεν ισχύει, βέβαια, στην ερίτωση = 0 οότε ο κεντροφυγικός όρος λείει αό το ενεργό δυναμικό και εομένως το ρόβλημα ου ρέει να μελετήσουμε είναι d d μ + + ( E V() ) Rk 0() = 0 (4.46) d d Θα κάνουμε την αλλαγή R = () ξ οότε η ροηγούμενη εξίσωση θα άρει τη μορφή d μ ξ k0 + ( E V ( )) ξk0 = 0 (4.47) d a Αν δοκιμάσουμε λύση της μορφής ξ θα άρουμε μ aa ( ) + ( E V) = 0 (4.48) αφού V 0 η τελευταία εξίσωση θα μας οδηγήσει στο συμέρασμα aa ( ) = 0 Η ειλογή ου κρατάει την ακτινική συνάρτηση εερασμένη για = 0 είναι η a = και εομένως στο όριο 0 η συνάρτηση R k 0 συμεριφέρεται σαν μια σταθερά όως ροβλέεται και αό το αοτέλεσμα (4.45) αν θεωρούσαμε ότι αυτό μορεί να εεκταθεί και στην ερίτωση = 0. Θα εράσουμε τώρα στο όριο. Αν συμβαίνει το δυναμικό να μηδενίζεται ολύ γρήγορα V() 0και αν 0 και άλι το κεντροφυγικό δυναμικό έχει τον ρώτο ρόλο και εομένως το ρόβλημά μας συνίσταται στο να βρούμε τη συμεριφορά της λύσης (4.43) σε μεγάλες αοστάσεις. Αό τη μορφή της είναι φανερό ότι η κυρίαρχη συνεισφορά θα ροέρχεται αό τις αραγωγίσεις του ημιτόνου αφού οι αραγωγίσεις των όρων ου έχουν δυνάμεις της αόστασης στον αρανομαστή θα δίνουν ασθενέστερο αοτέλεσμα. Έτσι : d sin( k) d Rk () = () () sin( k) (4.49) k d k d και αφού d ( ) sin( k) = k cos( k) = k sin( k ), d d ( ) sin( k) = k cos( k ) = k sin( k ), d 6

7 fysikobog.bogspot.com θα έχουμε ότι d ( ) sin( k) = k sin( k ) d sin( k /) Rk () (4.50) Η αραάνω ανάλυση δεν ισχύει στην ερίτωση = 0. Δεν ισχύει είσης εάν το δυναμικό μηδενίζεται μεν καθώς αλλά όχι τόσο γρήγορα όσο υοθέσαμε. Αν δηλαδή V() + α καθώς με α < είναι ροφανές ότι αυτός είναι ο όρος ου χαρακτηρίζει το ενεργό δυναμικό και όχι ο κεντροφυγικός. Για να δούμε τι γίνεται στις εριτώσεις αυτές θα γυρίσουμε στην εξ. (4.47). Θα κάνουμε την αλλαγή ± ik ξ () = e φ() (4.5) και θα την ξαναγράψουμε d d μ φ() ± ik φ() V()() φ = 0 (4.5) d d Το δυναμικό βέβαια μηδενίζεται στο όριο αλλά αυτό δεν σημαίνει κατ ανάγκη, ότι μορούμε να αραλείψουμε τον τελευταίο όρο στην αραάνω εξίσωση. Αν μορούσαμε να το κάνουμε θα καταλήγαμε στο συμέρασμα ότι η συνάρτηση φ είναι μια σταθερά και εομένως ± ik ± ik e ξ () e R() (4.53) σε συμφωνία με το αοτέλεσμα (4.50). Θα μορούσε όμως η συνάρτηση φ να μεταβάλλεται ολύ αργά έτσι ώστε d μ ± ik φ( ) V ( ) φ( ) (4.54) d οότε η δεύτερη αράγωγος στην εξ. (4.5) είναι αμελητέα. Η εξίσωση (4.54) μορεί να λυθεί εύκολα και το αοτέλεσμα είναι iμ φ() φ( 0 )exp dv ( ) k (4.55) 0 Στην αραάνω σχέση 0 είναι μια αυθαίρετη (αλλά μεγάλη) αόσταση. Ας ούμε τώρα ότι c V(). Το ολοκλήρωμα γίνεται αμέσως και θα άρουμε : + α () ( 0)exp i μ c φ φ ( ) φ( 0) α α (4.56) k α 0 Το αοτέλεσμα αυτό μας λέει ότι μορούμε να θεωρήσουμε τη συνάρτηση φ σαν μια σταθερά και, εομένως, ότι όταν το δυναμικό είναι τέτοιο ώστε im V ( ) = 0 η ακτινική συνάρτηση συμεριφέρεται σε μεγάλες αοστάσεις όως δηλώνουν οι σχέσεις (4.50) ή (4.53): σαν ένα c ελεύθερο (σφαιρικό) κύμα το οοίο σβήνει στο άειρο. Αν όμως V() η έκφραση (4.55) θα γίνει: () ( 0)exp i μ φ φ cn (4.57) k 0 και εομένως 7

8 fysikobog.bogspot.com μ R () exp i k cn ± (4.58) k 0 Το αοτέλεσμα αυτό μας λέει κάτι αξιοσημείωτο : Όσο και αν αομακρυνθεί ένα σωμάτιο αό την αρχή δεν θα αελευθερωθεί αό την είδραση ενός δυναμικού Couomb. 4. Φυσική σημασία της ακτινικής συνάρτησης Κλείνοντας, θα κοιτάξομε τη φυσική σημασία της ακτινικής συνάρτησης. Είναι κατ αρχή ροφανές ότι η οσότητα Rn () θα ρέει να σχετίζεται με την υκνότητα ιθανότητας να βρεθεί το σωμάτιο σε αόσταση μεταξύ και + d αό την αρχή (και με ενέργεια ου χαρακτηρίζεται αό τον αριθμό n και μέτρο της στροφορμής ου χαρακτηρίζεται αό τον αριθμό ). Εν τούτοις δεν είναι ακριβώς η υκνότητα ιθανότητας. Αυτό μορούμε να το διαιστώσουμε αό τη συνθήκη κανονικοοίησης : * dr R() () n n = δnn δ d Rn = (4.59) 0 0 Η σχέση αυτή μας λέει ότι η οσότητα ου μορεί να ερμηνευθεί ως υκνότητα ιθανότητας είναι η n () Rn () ρ = (4.60) και η ιθανότητα να βρεθεί το σωμάτιο σε αόσταση μεταξύ και + d είναι n () ρn () n () dp = d = R d (4.6) Αν το ενεργειακό φάσμα είναι συνεχές η σχέση κανονικοοίησης είναι * d R () R () ( ) k k = δ k k δ (4.6) 0 Είναι ροφανές ότι εειδή η μεταβλητή k είναι συνεχής η οσότητα Rk () δεν είναι ολοκληρώσιμη και εομένως δεν είναι δυνατόν να ερμηνευθεί ως υκνότητα ιθανότητας.στην ερίτωση αυτή μορούμε να εισάγουμε τη συνάρτηση k+δk/ Rk () = dkrk () def Δ k (4.63) k Δk/ τη μέση τιμή, δηλαδή, της συνάρτησης R σε μια ζώνη ενέργειας εύρους Δ k.για τη συνάρτηση αυτή ισχύει ότι k+δ k/ k+δk/ d Rk = dk dkδ ( k k) = Δk (4.64) 0 k Δk/ k Δk/ και εομένως η οσότητα Rk () μορεί να ερμηνευθεί ως η υκνότητα ιθανότητας να βρεθεί το σωμάτιο σε αόσταση μεταξύ και + d και με ενέργεια σε μια ζώνη εύρους Δ k. Σύμφωνα με τη λογική αυτή και σε ότι αφορά στο συγκεκριμένο ρόβλημα η ιθανότητα να βρούμε το σωμάτιο ολύ κοντά στην αρχή και μέσα σε μια «στενή» ενεργειακή ζώνη dk είναι! + dpk () = ( k) ddk ( + )! (4.65) και όως θα εριμέναμε είναι τόσο μικρότερη όσο μεγαλύτερη είναι η στροφορμή ενώ δεν υάρχει ερίτωση να βρεθεί το σωμάτιο στην αρχή. Αντίστοιχα η ιθανότητα να βρεθεί το σωμάτιο ολύ μακριά αό την αρχή είναι dpk () = sin( k ) ddk (4.66) 8

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής. Σημειώσεις ΙI: Η Εξίσωση Schrödinger για σωμάτιο σε κεντρικό δυναμικό.

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής. Σημειώσεις ΙI: Η Εξίσωση Schrödinger για σωμάτιο σε κεντρικό δυναμικό. Πανειστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙI Α. Καρανίκας και Π. Σφήκας Σημειώσεις ΙI: Η Εξίσωση Schöinge για σωμάτιο σε κεντρικό δυναμικό.. Ακτινική εξίσωση Η εξίσωση Schöinge για ένα σωμάτιο το

Διαβάστε περισσότερα

[1] ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 2012 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. z : Παρατηρούμε ότι sin

[1] ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 2012 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. z : Παρατηρούμε ότι sin [] ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ. Τμήμα Α (α) Για τη συνάρτηση f () : Παρατηρούμε ότι si u= y x και v x u = ycos x, u = si x, v =, v =. x y x y = οότε Οι ανωτέρω ρώτες μερικές

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2014 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2014 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Δείτε στις «Σημειώσεις Μιγαδικού Λογισμού» β) Το ραγματικό και το φανταστικό μέρος της f ( ) γράφονται uy (, ) = y και v(, y) = y Οι ρώτες μερικές

Διαβάστε περισσότερα

xsin ydxdy (α) Εάν το χωρίο R είναι φραγμένο αριστερά και δεξιά από τις ευθείες x=α και x=β και από πάνω και κάτω από τις καμπύλες dr = dxdy

xsin ydxdy (α) Εάν το χωρίο R είναι φραγμένο αριστερά και δεξιά από τις ευθείες x=α και x=β και από πάνω και κάτω από τις καμπύλες dr = dxdy ΔΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Εφαρμογή Να υολογιστεί το ολοκλήρωμα : cos sin dd Ολοκληρώνουμε ρώτα ως ρος θεωρώντας το σαν σταθερά (αρατηρούμε ότι το «εσωτερικό» ολοκλήρωμα είναι ως ρος, δηλαδή ρώτα εμφανίζεται το

Διαβάστε περισσότερα

Μερικές Διαφορικές Εξισώσεις

Μερικές Διαφορικές Εξισώσεις Πανειστήμιο Πατρών, Τμήμα Μαθηματικών Μερικές Διαφορικές Εξισώσεις Χειμερινό εξάμηνο ακαδημαϊκού έτους 17-18, Διδάσκων: Α.Τόγκας 3ο φύλλο ροβλημάτων Ονοματεώνυμο - ΑΜ: ΜΔΕ 3ο φύλλο ροβλημάτων Α. Τόγκας

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΟΡΙΑ. ,δηλαδή ορίζεται τουλάχιστον σ ένα από τα σύνολα (α, x. lim. lim g(x) , λ σταθερά lim g(x) (ισχύει και για περισσότερες από 2

ΒΑΣΙΚΑ ΟΡΙΑ. ,δηλαδή ορίζεται τουλάχιστον σ ένα από τα σύνολα (α, x. lim. lim g(x) , λ σταθερά lim g(x) (ισχύει και για περισσότερες από 2 ΒΑΣΙΚΑ ΟΡΙΑ Έστω μια συνάρτηση f η οοία ορίζεται όσο κοντά θέλουμε στο,δηλαδή ορίζεται τουλάχιστον σ ένα αό τα σύνολα (α, ) (,β) ή (α, ) ή (,β). Όταν οι τιμές της f()ροσεγγίζουν όσο θέλουμε τον ραγματικό

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ

ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΘΕΜΑ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ α) Η f ( ) έχει ραγματικό μέρος φανταστικό μέρος u( x, y) xcos y και v( x, y) xsi y Αό την θεωρία γνωρίζουμε

Διαβάστε περισσότερα

ιαφορικές Εξισώσεις µε Μερικές Παραγώγους, Απαντήσεις-Παρατηρήσεις στην Τελική Εξέταση Περιόδου Ιουνίου.

ιαφορικές Εξισώσεις µε Μερικές Παραγώγους, Απαντήσεις-Παρατηρήσεις στην Τελική Εξέταση Περιόδου Ιουνίου. ιαφορικές Εξισώσεις µε Μερικές Παραγώγους, Ααντήσεις-Παρατηρήσεις στην Τελική Εξέταση Περιόδου Ιουνίου. Ανδρέας Ζούας 8 Σετεµβρίου Οι λύσεις αλώς ροτείνονται και σαφώς οοιαδήοτε σωστή λύση είναι αοδεκτή!

Διαβάστε περισσότερα

Σειρές συναρτήσεων. Τα μαθηματικά συγκρίνουν τα πιο διαφορετικά φαινόμενα και ανακαλύπτουν τις μυστικές αναλογίες, που τα ενώνουν.

Σειρές συναρτήσεων. Τα μαθηματικά συγκρίνουν τα πιο διαφορετικά φαινόμενα και ανακαλύπτουν τις μυστικές αναλογίες, που τα ενώνουν. ΚΕΦΑΛΑΙΟ 9 Σειρές συναρτήσεων Καθώς το εερασμένο ερικλείει μία άειρη σειρά Και στο αεριόριστο εμφανίζονται όρια Έτσι και η ψυχή της αεραντοσύνης φωλιάζει στις μικρές λετομέρειες Και μέσα στα ιο στενά όρια,

Διαβάστε περισσότερα

είναι γραµµικώς ανεξάρτητοι, αποτελούν βάση του υποχώρου των πινάκων Β άρα η διάστασή του είναι 2. και 2

είναι γραµµικώς ανεξάρτητοι, αποτελούν βάση του υποχώρου των πινάκων Β άρα η διάστασή του είναι 2. και 2 ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 5 Ιουλίου 6 Αό τα κάτωθι Θέµατα καλείσθε να λύσετε το ο ου εριλαµβάνει ερωτήµατα αό όλη την ύλη του µαθήµατος, ενώ αό τα Θέµατα,, 4 και 5 µορείτε να ειλέξετε

Διαβάστε περισσότερα

Δίνονται οι συναρτήσεις: f ( x)

Δίνονται οι συναρτήσεις: f ( x) http://eler.mths.gr/, mths@mths.gr, Τηλ: 697905 Ενδεικτικές ααντήσεις 6 ης Γρατής Εργασίας ΠΛΗ 00-0: Άσκηση (5 μον.) (Για το ερώτημα (α) συμβουλευθείτε τα εδάφια. και. και για το (β) το εδάφιο. του συγγράμματος

Διαβάστε περισσότερα

ΜΔΕ Άσκηση 6 Α. Τόγκας

ΜΔΕ Άσκηση 6 Α. Τόγκας Πρόβλημα 15. Για κάθε μια αό τις ακόλουθες αρχικές τιμές θερμοκρασίας i) να βρεθεί η λύση στην μορφή μια σειράς Fourier της εξίσωσης της θερμότητας με εριοδικές συνοριακές συνθήκες u t = u x x < x

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2014 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. β) Το πραγματικό και το φανταστικό μέρος της f1( z ) γράφονται. Οι πρώτες μερικές παράγωγοι

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2014 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. β) Το πραγματικό και το φανταστικό μέρος της f1( z ) γράφονται. Οι πρώτες μερικές παράγωγοι ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 4 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Δείτε στο e-course στις «Περιλητικές Σημειώσεις» σελ7 και σελ5 β) Το ραγματικό και το φανταστικό μέρος της f( ) γράφονται uxy (, ) = si( x) και

Διαβάστε περισσότερα

Εργασία 1 η & Λύσεις 2009/10 Θεματική Ενότητα ΦΥΕ14 " ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ "

Εργασία 1 η & Λύσεις 2009/10 Θεματική Ενότητα ΦΥΕ14  ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Άσκηση Εργασία η & Λύσεις 9/ Θεματική Ενότητα ΦΥΕ4 Παράδοση 6//9 Αν υοθέσουμε ως στο τρισορθογώνιο σύστημα αξόνων yz ο άξονας των z συμίτει με τη διεύθυνση της κατακόρυφου, να γράψετε αναλυτικά (με την

Διαβάστε περισσότερα

F = y n cos xˆx + sin xŷ. W OABO = F d r. ds + sin(x)dy ds. dy ds = 1 π. ) n 1 cos(s) + sin(s)ds. dy ds = 0. ds = 1 &

F = y n cos xˆx + sin xŷ. W OABO = F d r. ds + sin(x)dy ds. dy ds = 1 π. ) n 1 cos(s) + sin(s)ds. dy ds = 0. ds = 1 & Μηχανική Ι Εργασία #4 Μουζλάνοβ Γεώργιος Αριθμός Μητρώου:478 3 Οκτωβρίου 6 Άσκηση Αό τα δεδομένα της άσκησης έχουμε τα εξής: F = y n cos ˆ + sin ŷ Το έργο στην κλειστή διαδρομή O A B O είναι το κλειστό

Διαβάστε περισσότερα

Λύσεις μερικών ασκήσεων του τέταρτου φυλλαδίου.

Λύσεις μερικών ασκήσεων του τέταρτου φυλλαδίου. Λύσεις μερικών ασκήσεων του τέταρτου φυλλαδίου.. Βρείτε τον μετασχηματισμό Fourier της συνάρτησης x, αν x xχ [,] (x) =, αν x < ή < x Λύση. Εειδή η συνάρτηση είναι τμηματικά συνεχής και μηδενίζεται έξω

Διαβάστε περισσότερα

fysikoblog.blogspot.com

fysikoblog.blogspot.com fysikobog.bogspot.co Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙI Α. Καρανίκας και Π. Σφήκας Σημειώσεις ΙΙΙ: Σφαιρικές Αρμονικές Στις σημειώσεις αυτές δίνομε την αναπαράσταση των ιδιοανυσμάτων της

Διαβάστε περισσότερα

Απόδειξη Αποδεικνύουμε το θεώρημα στην περίπτωση που είναι f (x) 0.

Απόδειξη Αποδεικνύουμε το θεώρημα στην περίπτωση που είναι f (x) 0. Αόδειξη Αοδεικνύουμε το θεώρημα στην ερίτωση ου είναι f () 0. Έστω, με. Θα δείξουμε ότι f( ) f( ). 1 1 1 Πράγματι, στο διάστημα [, ] η f ικανοοιεί τις ροϋοθέσεις του Θ.Μ.Τ. δηλαδή 1 είναι συνεχής στο 1,.

Διαβάστε περισσότερα

ΣΕΙΡΕΣ FOURIER. ο µετασχηµατισµός αυτός δίνεται από την σχέση x = ). Έτσι, χωρίς βλάβη της γενικότητας,

ΣΕΙΡΕΣ FOURIER. ο µετασχηµατισµός αυτός δίνεται από την σχέση x = ). Έτσι, χωρίς βλάβη της γενικότητας, ΣΕΙΡΕΣ FOURIER. Η ροσέγγιση συναρτήσεων µέσω ολυωνύµων, την οοία µελετήσαµε στην ροηγούµενη Ενότητα, αρά την αοτελεσµατικότητα και την, σχετική, αλότητά της, αοδεικνύεται ανεαρκής για την εριγραφή/ροσέγγιση

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ Χαρακτηριστικά μεγέθη της αλής αρμονικής ταλάντωσης είναι: Α) Αομάκρυνση (x ή y): ονομάζεται η αόσταση του σώματος κάθε χρονική στιγμή αό την θέση ισορροίας (x= ή y=) Β) Το λάτος της

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΣΜΟΙΩΣΗΣ 1, 23/03/2018 ΘΕΜΑ Α

ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΣΜΟΙΩΣΗΣ 1, 23/03/2018 ΘΕΜΑ Α Λύσεις των θεμάτων ροσομοίωσης //8 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΣΜΟΙΩΣΗΣ //8 ΘΕΜΑ Α Α. Μια συνάρτηση f θα λέμε ότι είναι συνεχής σε ένα κλειστο διάστημα a β όταν είναι συνεχής σε κάθε σημείο του a β και ειλέον:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αοστολής στους Φοιτητές: 7 Αριλίου 9 Ημερομηνία αράδοσης της Εργασίας: 9 Μαΐου 9 Πριν αό την λύση

Διαβάστε περισσότερα

f p = lim (1 a n ) < n=0

f p = lim (1 a n ) < n=0 Πανειστήμιο Κρήτης Τμήμα Μαθηματικών Συντελεστές Taylor συναρτήσεων σε χώρους Hardy Καλλιόη Παολίνα Κουτσάκη Ειβλέων Καθηγητής: Μιχαήλ Πααδημητράκης Ειτροή: Μιχαήλ Κολουντζάκης, Θεμιστοκλής Μήτσης και

Διαβάστε περισσότερα

Δ Ι Π Λ Α Ο Λ Ο Κ Λ Η Ρ Ω Μ Α Τ Α

Δ Ι Π Λ Α Ο Λ Ο Κ Λ Η Ρ Ω Μ Α Τ Α Α. Διλά ολοκληρώματα Θεωρούμε τη συνάρτηση z f, ου είναι ορισμένη και συνεχής σε ένα κλειστό και φραγμένο χωρίο Τ του ειέδου O. Υοθέτουμε ότι εμβαδόν του χωρίου Τ είναι ίσο με Α. ΔΑ i Διαμερίζουμε το χωρίο

Διαβάστε περισσότερα

ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ Ηµιαγωγοί και Ηµιαγώγιµες οµές (7 ο Εξάµηνο Σπουδών)

ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ Ηµιαγωγοί και Ηµιαγώγιµες οµές (7 ο Εξάµηνο Σπουδών) ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ Ηµιαγωγοί και Ηµιαγώγιµες οµές (7 ο Εξάµηνο Σουδών) η Σειρά Ασκήσεων //7 Ι. Σ. Ράτης Ειστροφή µέχρι //7. Η σχέση διασοράς για τη ζώνη αγωγιµότητας Ε c c () ενός κυβικού ηµιαγώγιµου

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΛΗ : ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι ΛΥΣΕΙΣ 5 ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ Άσκηση. ( µον.) Λύση: f ( ) ( ) ( ) ( )! f α) Ο τύος της σειράς µε κέντρο

Διαβάστε περισσότερα

Το θεώρηµα Αλλαγής µεταβλητής και οι µετασχηµατισµοί συντεταγµένων

Το θεώρηµα Αλλαγής µεταβλητής και οι µετασχηµατισµοί συντεταγµένων 8 Το θεώρηµα λλαγής µεταβλητής και οι µετασχηµατισµοί συντεταγµένων Όως έχουµε ήδη αναφέρει η δεύτερη βασική µέθοδος υολογισµού ολλαλών ολοκληρωµάτων είναι αυτή της αλλαγής µεταβλητής, την οοία έχουµε

Διαβάστε περισσότερα

ΘΕΜΑ Ο Μιγαδικοί 5 Έστω w i w wi, όου w i,, R α. Να ρεθούν τα Rw και Im w. Να ρεθεί ο γεωμετρικός τόος των σημείων Μw στο μιγαδικό είεδο γ. Να ρεθεί τ

ΘΕΜΑ Ο Μιγαδικοί 5 Έστω w i w wi, όου w i,, R α. Να ρεθούν τα Rw και Im w. Να ρεθεί ο γεωμετρικός τόος των σημείων Μw στο μιγαδικό είεδο γ. Να ρεθεί τ ΘΕΜΑ Ο Μιγαδικοί i Δίνεται ο μιγαδικός και έστω w α. Να ρεθεί ο μιγαδικός w όταν w. Να δείετε ότι w i γ. Αν η εικόνα του κινείται στον κύκλο κέντρου, και ακτίνας και Μ είναι η εικόνα του w στο μιγαδικό

Διαβάστε περισσότερα

Διαφοριϰές Εξισώσεις (ΜΕΜ 271) Λύσεις Θεμάτων Εξέτασης Ιούνη 2019

Διαφοριϰές Εξισώσεις (ΜΕΜ 271) Λύσεις Θεμάτων Εξέτασης Ιούνη 2019 Διαφοριϰές Εξισώσεις ΜΕΜ 71 Λύσεις Θεμάτων Εξέτασης Ιούνη 19 Εστω η μη γραμμιϰή διαφοριϰή εξίσωση ρώτης τάξης Α 1. Δείξτε ότι η διαφοριϰή εξίσωση δεν είναι αϰριβής. Λύση. Η αντίστοιχη διαφοριϰή μορφή είναι

Διαβάστε περισσότερα

ΕΑΠ ΣΠΟΥ ΕΣ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Θ.Ε. ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΠΛΗ-12)

ΕΑΠ ΣΠΟΥ ΕΣ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Θ.Ε. ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΠΛΗ-12) ΕΑΠ ΣΠΟΥ ΕΣ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Θ.Ε. ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΠΛΗ-) ΛΥΣΕΙΣ 5 ΗΣ ΕΡΓΑΣΙΑΣ, - Eνότητες: 8,9,,,, αό το βιβλίο «ΛΟΓΙΣΜΟΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ» Γ. άσιου. Παράδοση της εργασίας µεχρι τις 9 /4/

Διαβάστε περισσότερα

z έχει µετασχ-z : X(z)= 2z 2

z έχει µετασχ-z : X(z)= 2z 2 ΨΕΣ-Μετασχ- Λύσεις Ασκήσεων Σ.Φωτόουλος ΑΣΚΗΣΗ 4. Βρείτε τον µετασχηµατισµό- των σηµάτων ου φαίνονται στο αρακάτω σχήµα Α4. εκφράζοντάς τους σε όσο το δυνατόν αλούστερη-συµαγέστερη µορφή. a a a -->...

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 6 Αό τα κάτωθι Θέµατα καλείσθε να λύσετε το ο ου εριλαµβάνει ερωτήµατα αό όλη την ύλη του

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 12. = e dt. Να αποδείξετε ότι: ΛΥΣΗ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 12. = e dt. Να αποδείξετε ότι: ΛΥΣΗ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΘΕΜΑ Α) Να αοδείξετε ότι: α) Η συνάρτηση f() = ln, [,] αντιστρέφεται και να ορίσετε την f. β) ln d + d =. Β) Δίνεται η συνάρτηση α) h() h(), για κάθε [, + ). = d. Να αοδείξετε

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα στα Μαθηματικά Προσανατολισμών Γ

Επαναληπτικό Διαγώνισμα στα Μαθηματικά Προσανατολισμών Γ ΘΕΜΑ Α Α1. Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα. Ποια συνάρτηση ονομάζεται αρχική ή αράγουσα της f στο ; Μονάδες 4 Α. Να διατυώσετε το θεώρημα Rolle. Μονάδες (1+1+1+1)4 Α3. Να διατυώσετε και να

Διαβάστε περισσότερα

ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΚΥΚΛΟΣ

ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΚΥΚΛΟΣ Περιοδικό ΕΥΚΛΕΙΔΗΣ Β E.M.E. (τεύχος 4) ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΚΥΚΛΟΣ Κώστα Βακαλόουλου ΕΙΣΑΓΩΓΗ Αν κάοιος θέλει να άψει να φοβάται το κεφάλαιο της Τριγωνομετρίας, ρέει ν αοφασίσει να διαβάσει ροσεκτικά τους

Διαβάστε περισσότερα

Εξετάσεις 9 Ιουνίου Μαθηματικά Προσανατολισμού Γ Λυκείου ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

Εξετάσεις 9 Ιουνίου Μαθηματικά Προσανατολισμού Γ Λυκείου ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ Εξετάσεις 9 Ιουνίου 7 Μαθηματικά Προσανατολισμού Γ Λυκείου (Θετικών Σουδών και Σουδών Οικονομίας-Πληροφορικής) ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΤΣΙΜΙΣΚΗ & ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 777 59 ΑΡΤΑΚΗΣ - Κ. ΤΟΥΜΠΑ THΛ:

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017 Στασίνου 6, Γραφ., Στρόβολος, Λευκωσία Τηλ. 57-78 Φαξ: 57-79 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 7 Μάθημα: ΜΑΘΗΜΑΤΙΚΑ Παρασκευή, 9/5/7 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΑΠΟ ΤΗΝ ΜΕΡΟΣ Α ln( x). Να υολογίσετε

Διαβάστε περισσότερα

Seirèc Fourier A. N. Giannakìpouloc, Tm ma Statistik c OPA

Seirèc Fourier A. N. Giannakìpouloc, Tm ma Statistik c OPA Seirèc Fourier A. N. Giannakìpouloc, Tm ma Statistik c OPA 1 Eisagwg Οι σειρές Fourier είναι ένα ιδιαίτερα χρήσιμο εργαλείο του Λογισμού ου βρίσκει ολλές εφαρμογές σε διάφορα εδία της ειστήμης, χ στις

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυο Yοβολής Αξιολόγησης ΓΕ O φοιτητής συμληρώνει την ενότητα «Υοβολή Εργασίας» και αοστέλλει το έντυο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος συμληρώνει

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι ΛΥΣΕΙΣ 4 ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. 1 (γ) lim. 1/ x

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι ΛΥΣΕΙΣ 4 ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. 1 (γ) lim. 1/ x ΠΛΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΠΛΗΡΟΦΟΡΙΚΗ Ι 00-00 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΛΗ : ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι ΛΥΣΕΙΣ 4 ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. (0 µον.) Να υολογισθούν τα όρια:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ Άσκηση (8 µον) Χρησιµοοιώντας την αντικατάσταση acosθ, ή ataθ, για µια κατάλληλη

Διαβάστε περισσότερα

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι. Πρόχειρο ιαγώνισµα: 11 Νοεµβρίου 2008 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης 1 ώρα.

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι. Πρόχειρο ιαγώνισµα: 11 Νοεµβρίου 2008 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης 1 ώρα. Μάθηµα 6 ο, Νοεµβρίου 8 (9:-:). ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Πρόχειρο ιαγώνισµα: Νοεµβρίου 8 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης ώρα. ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΑΡΙΘΜΟΣ ΜΗΤΡΩΟΥ: ΕΤΟΣ ΣΠΟΥ ΩΝ: ΘΕΜΑ [4] Σωµάτιο εριγράφεται

Διαβάστε περισσότερα

Στραγγίσεις (Θεωρία)

Στραγγίσεις (Θεωρία) Ελληνική Δημοκρατία Τεχνολογικό Εκαιδευτικό Ίδρυμα Ηείρου Στραγγίσεις (Θεωρία) Ενότητα 1 : Η ασταθής στράγγιση των εδαφών ΙΙ Δρ. Μενέλαος Θεοχάρης 6... Πρώτος τρόος γραμμικοοίησης Η μη γραμμικότητα της

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 5- ΛΥΣΕΙΣ Οι ασκήσεις της Εργασίας αυτής βασίζονται στην ύλη των Ενοτήτων 9 του συγγράµατος «Λογισµός Μιας Μεταβλητής»

Διαβάστε περισσότερα

1. Διδιάστατοι πίνακες συνάφειας χωρίς τη χρήση γενικευμένων γραμμικών μοντέλων

1. Διδιάστατοι πίνακες συνάφειας χωρίς τη χρήση γενικευμένων γραμμικών μοντέλων Διδιάστατοι ίνακες συνάφειας χωρίς τη χρήση γενικευμένων γραμμικών μοντέλων Έστω Χ, Υ δύο κατηγορικές μεταβλητές αόκρισης με Ι και στάθμες αντίστοιχα Οι αοκρίσεις (Χ,Υ ενός τυχαία ειλεγμένου ατόμου αό

Διαβάστε περισσότερα

Διάλεξη 2: Κεντρικά Δυναμικά. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για κεντρικά δυναμικά

Διάλεξη 2: Κεντρικά Δυναμικά. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για κεντρικά δυναμικά Διάλεξη : Κεντρικά Δυναμικά Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schöing για κεντρικά δυναμικά Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 03 Κεντρικά δυναμικά Εξάρτηση δυναμικού

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις 4 Φεβρουαρίου 005 ιάρκεια εξέτασης: 3 ώρες (15:00-18:00) ΘΕΜΑ 1 ο (.5) Αναλύστε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόπουλου ΠΡΟΒΛΗΜΑΤΑ ΕΥΡΕΣΗΣ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ ΜΙΑΣ ΣΥΝΑΡΤΗΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόπουλου ΠΡΟΒΛΗΜΑΤΑ ΕΥΡΕΣΗΣ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ ΜΙΑΣ ΣΥΝΑΡΤΗΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόουλου ΠΡΟΒΛΗΜΑΤΑ ΕΥΡΕΣΗΣ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ ΜΙΑΣ ΣΥΝΑΡΤΗΣΗΣ Α. ΕΙΣΑΓΩΓΗ Ολοκληρώνοντας το 1 ο κεφάλαιο στα Μαθηματικά της Γενικής Παιδείας

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ http://eepgr/pli/pli/studetshtm ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ), - ΕΡΓΑΣΙΑ ΣΤ Τα κάτωθι ροβλήµατα ροέρχονται αό την ύλη και των συγγραµµάτων της

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12)

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ηµεροµηνία Αοστολής στον Φοιτητή: 9 Mαίου 7 Ηµεροµηνία Παράδοσης της Εργασίας αό τον Φοιτητή: Ιουνίου 7 Άσκηση. ( µον.) ίνεται το σύστηµα

Διαβάστε περισσότερα

( 1) G MT. g RT 1.3. Η τιμή της εκκεντρότητας είναι: όπου E είναι η νέα μηχανική ενέρεγεια του δορυφόρου. Έτσι έχουμε

( 1) G MT. g RT 1.3. Η τιμή της εκκεντρότητας είναι: όπου E είναι η νέα μηχανική ενέρεγεια του δορυφόρου. Έτσι έχουμε 6 th Intenationa Physics Oypiad. Saaanca (España) 5 ΘΕΜΑ : «ΜΟΙΡΑΙΟΣ» ΔΟΡΥΦΟΡΟΣ. και. GM g R M G g R 4 R g / 4.. /s. g R g R E M g R G E. Η τιμή της κάθετης αόστασης αό το δορυφόρο στο μεγάλο άξονα της

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ...7 ΕΝΟΤΗΤΑ 1: ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ... 9 Θεωρία... 9 Ερωτήσεις... 9 Μεθοδολογία Παραδείγματα Ασκήσεις...

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ...7 ΕΝΟΤΗΤΑ 1: ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ... 9 Θεωρία... 9 Ερωτήσεις... 9 Μεθοδολογία Παραδείγματα Ασκήσεις... ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ...7 ΕΝΟΤΗΤΑ 1: ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ... 9 Θεωρία... 9 Ερωτήσεις... 9 Μεθοδολογία... 16 Παραδείγματα... 6 Ασκήσεις... 33 ΕΝΟΤΗΤΑ : ΔΥΝΑΜΙΚΗ ΠΡΟΣΕΓΓΙΣΗ... 39 Θεωρία... 39 Ερωτήσεις...

Διαβάστε περισσότερα

ΘΕΜΑ 1. θ (0, ). 4 α) Να δείξετε ότι οι ρίζες της εξίσωσης αυτής είναι μη πραγματικοί αριθμοί. β) Έστω z,z. Δ = 4εφ θ 4= 4(εφ θ 1) < 0 γιατί π

ΘΕΜΑ 1. θ (0, ). 4 α) Να δείξετε ότι οι ρίζες της εξίσωσης αυτής είναι μη πραγματικοί αριθμοί. β) Έστω z,z. Δ = 4εφ θ 4= 4(εφ θ 1) < 0 γιατί π ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΘΕΜΑ Δίνεται η εξίσωση: z (εφθ)z + =, θ (, ). 4 α) Να δείξετε ότι οι ρίζες της εξίσωσης αυτής είναι μη ραγματικοί αριθμοί. β) Έστω z,z οι ρίζες της αραάνω εξίσωσης. Αν ισχύει

Διαβάστε περισσότερα

Μία σύντομη εισαγωγή στην Τριγωνομετρία με Ενδεικτικές Ασκήσεις

Μία σύντομη εισαγωγή στην Τριγωνομετρία με Ενδεικτικές Ασκήσεις Μία σύντομη εισαγωγή στην Τριγωνομετρία με Ενδεικτικές Ασκήσεις. Ονομασίες Ορισμοί Ο τριγωνομετρικός κύκλος έχει ακτίνα R. Αρχή μέτρησης των τόξων (γωνιών) είναι το Α, είτε κατά τη θετική φορά (αριστερόστροφα)

Διαβάστε περισσότερα

Α=5 m ω=314 rad/sec=100π rad/sec

Α=5 m ω=314 rad/sec=100π rad/sec ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΠΡΩΤΟΥ ΚΕΦΑΛΑΙΟΥ 1. Ασκήσεις με τα χαρακτηριστικά της κίνησης. Μικρές ασκήσεις ου αναφέρονται στους ορισμούς της εριόδου, της συχνότητας, του λάτους και της ενέργειας της ταλάντωσης.

Διαβάστε περισσότερα

, x > 0. Β) να µελετηθεί η µονοτονία και τα ακρότατα της f. Γ) να δείξετε ότι η C f είναι κυρτή και ότι δεν υπάρχουν τρία συνευθειακά σηµεία

, x > 0. Β) να µελετηθεί η µονοτονία και τα ακρότατα της f. Γ) να δείξετε ότι η C f είναι κυρτή και ότι δεν υπάρχουν τρία συνευθειακά σηµεία f ( t ) ίνεται η συνεχής συνάρτηση f : [, + ) R µε: f ( ) = + ( + ), > t Α ) να δείξετε ότι: α) f ( ) = ln +, > β) f ( ) = Β) να µελετηθεί η µονοτονία και τα ακρότατα της f Γ) να δείξετε ότι η C f είναι

Διαβάστε περισσότερα

Δομή Διάλεξης. Εύρεση ακτινικού μέρους εξίσωσης Schrödinger. Εφαρμογή σε σφαιρικό πηγάδι δυναμικού απείρου βάθους. Εφαρμογή σε άτομο υδρογόνου

Δομή Διάλεξης. Εύρεση ακτινικού μέρους εξίσωσης Schrödinger. Εφαρμογή σε σφαιρικό πηγάδι δυναμικού απείρου βάθους. Εφαρμογή σε άτομο υδρογόνου Κεντρικά Δυναμικά Δομή Διάλεξης Εύρεση ακτινικού μέρους εξίσωσης Schrödinger Εφαρμογή σε σφαιρικό πηγάδι δυναμικού απείρου βάθους Εφαρμογή σε άτομο υδρογόνου Ακτινική Συνιστώσα Ορμής Έστω Χαμιλτονιανή

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ ΜΕΡΟΣ A ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 36, Γραφ. 1, Στρόβολος 3, Λευκωσία Τηλ. 357-37811 Φαξ: 357-3791 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 13 ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Πέμτη, 3/5/13

Διαβάστε περισσότερα

( ) ( ) + N( ) σ γνωστό και διακριτό prior. π ϑ = = = Παράδειγμα. 1. Να βρεθεί το marginal probability density του y (the prior predictive)

( ) ( ) + N( ) σ γνωστό και διακριτό prior. π ϑ = = = Παράδειγμα. 1. Να βρεθεί το marginal probability density του y (the prior predictive) Παράδειγμα ( ϑσ ) amplg dsrbuo: y ϑ~ N, ϑ ~ όου = ( ϑ = ) με σ γνωστό και διακριτό pror. Να βρεθεί το margal probably desy του y (he pror predcve). Να εριγραφεί το samplg scheme αό την pror predcve. 3.

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΤΑΛΑΝΤΩΣΗ ΧΟΡΔΗΣ

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΤΑΛΑΝΤΩΣΗ ΧΟΡΔΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΤΑΛΑΝΤΩΣΗ ΧΟΡΔΗΣ Συγγραφή Ειμέλεια: Παναγιώτης Φ. Μοίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 946778 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ. A1. Έστω f μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α, β), με εξαίρεση ίσως ένα σημείο

ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ. A1. Έστω f μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α, β), με εξαίρεση ίσως ένα σημείο ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 8 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α A. Έστω f μια

Διαβάστε περισσότερα

(Π1) Θετικό Κόστος Εισόδου (F>0)

(Π1) Θετικό Κόστος Εισόδου (F>0) (Π) Θετικό Κόστος Εισόδου (>0) - Το δυναμικό αίγνιο μεταξύ των ειχειρήσεων, έχει την εξής χρονική διάρθρωση: Στάδιο : Η (υφιστάμενη) ειχείρηση ειλέγει την αραγωγική δυναμικότητα k. Στάδιο : Η ειχείρηση

Διαβάστε περισσότερα

7. Επαναλαµβανόµενα υναµικά Παίγνια.

7. Επαναλαµβανόµενα υναµικά Παίγνια. 7 Εαναλαµβανόµενα υναµικά Παίγνια Τα εαναλαµβανόµενα υναµικά αίγνια αοτελούν συνυασµό ταυτόχρονου και υναµικού αιγνίου, είτε στην ερίτωση ου ένα ταυτόχρονο αίγνιο εαναλαµβάνεται ιαχρονικά, είτε εανάληψη

Διαβάστε περισσότερα

Πανελλαδικές Εξετάσεις 2017

Πανελλαδικές Εξετάσεις 2017 Πανελλαδικές Εξετάσεις 7 Μαθηματικά Προσανατολισμού 9/6/7 ΘΕΜΑ Α Προτεινόμενες λύσεις Α. Έστω, Δ, με

Διαβάστε περισσότερα

Λύση Θεμάτων Πιθανοτήτων-Στατιστικής (Φλεβάρης 17) Σειρά Α

Λύση Θεμάτων Πιθανοτήτων-Στατιστικής (Φλεβάρης 17) Σειρά Α Λύση Θεμάτων Πιθανοτήτων-Στατιστικής (Φλεβάρης 17) Σειρά Α Ζήτημα 1 ο : Στο μάθημα της Στατιστικής έρασαν ερισσότεροι αό φοιτητές. Ο διλανός ίνακας δίνει (σε κλάσεις) τα αοτελέσματα ενός μικρού δείγματος.

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΝΑΥΤΙΚΗΣ ΚΑΙ ΘΑΛΑΣΣΙΑΣ ΥΔΡΟΔΥΝΑΜΙΚΉΣ ΘΕΩΡΙΑ ΛΕΠΤΩΝ ΥΔΡΟΤΟΜΩΝ

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΝΑΥΤΙΚΗΣ ΚΑΙ ΘΑΛΑΣΣΙΑΣ ΥΔΡΟΔΥΝΑΜΙΚΉΣ ΘΕΩΡΙΑ ΛΕΠΤΩΝ ΥΔΡΟΤΟΜΩΝ ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΝΑΥΤΙΚΗΣ ΚΑΙ ΘΑΛΑΣΣΙΑΣ ΥΔΡΟΔΥΝΑΜΙΚΉΣ ΘΕΩΡΙΑ ΛΕΠΤΩΝ ΥΔΡΟΤΟΜΩΝ Γραμμική θεωρία υδροτομών Θεωρούμε υδροτομή στο είεδο x,, και ομοιόμορφη ροή με ταχύτητα U. Η ροή είναι αράλληλη ρος τον θετικό

Διαβάστε περισσότερα

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοοίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 207-208 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Εικ. Καθηγητής v.kouras@fme.aegea.gr

Διαβάστε περισσότερα

Ράβδος σε σκαλοπάτι. = Fημθ και Fy

Ράβδος σε σκαλοπάτι. = Fημθ και Fy Ράβδος σε σκαλοάτι Ράβδος μήκους ύψους ακουμά σε σκαλοάτι όως φαίνεται στο σχήμα. Το κάτω άκρο της είναι σε εαφή με λείο κατακόρυφο εμόδιο το οοίο μορεί να κρατείται σταερό σε οοιαδήοτε έση. Μεταξύ ράβδου

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΚΑΤΟΙΚΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ

ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΚΑΤΟΙΚΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΘΕΜΑ Α ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΚΑΤΟΙΚΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ A. Έστω f μια συνάρτηση αραγωγίσιμη σε ένα διάστημα (α, β), με εξαίρεση ίσως ένα σημείο του o, στο οοίο όμως η f είναι συνεχής.

Διαβάστε περισσότερα

Tριγωνομετρικές εξισώσεις

Tριγωνομετρικές εξισώσεις Tριγωνομετρικές εξισώσεις Εχουμε μάθει να λύνουμε εξισώσεις ρώτου βαθμού και δευτέρου βαθμού ου είναι ισότητες ου εριέχουν έναν άγνωστο και ροσαθούμε να βρούμε για οιά (ή οιές) τιμές αυτού του αγνώστου

Διαβάστε περισσότερα

ΘΕΜΑ Α. Α1. Θεωρία Θεώρημα σελ. 145 σχολικού βιβλίου. Α2. Θεωρία Ορισμός σελ. 15 σχολικού βιβλίου

ΘΕΜΑ Α. Α1. Θεωρία Θεώρημα σελ. 145 σχολικού βιβλίου. Α2. Θεωρία Ορισμός σελ. 15 σχολικού βιβλίου Σελίδα αό ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 8 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Φροντιστήρια Ρούλα Μακρή

Διαβάστε περισσότερα

7.1. Το ορισµένο ολοκλήρωµα

7.1. Το ορισµένο ολοκλήρωµα Κ Χριστοδουλίδης: Μαθηµατικό Συµλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 7 Το ορισµένο ολοκλήρωµα 7 Το ορισµένο ολοκλήρωµα Για το αόριστο ολοκλήρωµα βρήκαµε ότι: Αν η συνάρτηση F ( είναι µια αρχική συνάρτηση

Διαβάστε περισσότερα

Στο κεφάλαιο που ακολουθεί θα ασχοληθούμε με την ( μη ομογενή ) εξίσωση Helmholtz σε D χωρικές διαστάσεις :

Στο κεφάλαιο που ακολουθεί θα ασχοληθούμε με την ( μη ομογενή ) εξίσωση Helmholtz σε D χωρικές διαστάσεις : Η Εξίσωση Helmholtz Στο κεφάλαιο που ακολουθεί θα ασχοληθούμε με την ( μη ομογενή εξίσωση Helmholtz σε χωρικές διαστάσεις : ( + k Ψ ( r f( r ( k (6 Η εξίσωση αυτή συνοδεύεται (συνήθως από συνοριακές συνθήκες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 Η ηµιτονοειδής συνάρτηση

ΚΕΦΑΛΑΙΟ 9 Η ηµιτονοειδής συνάρτηση 8 ΚΕΦΑΛΑΙΟ 9 Η ηµιτονοειδής συνάρτηση 9. Γενικά για την ηµιτονοειδή συνάρτηση Η συνάρτηση αυτή χρησιµοοιείται ολύ στην Ηλεκτρολογία αλλά και σε άλλες Τεχνικές Ειστήµες. Οι λόγοι είναι οι ακόλουθοι: α Με

Διαβάστε περισσότερα

Λύσεις θεμάτων προσομοίωσης-1 ο /2017 ΛΥΣΕΙΣ

Λύσεις θεμάτων προσομοίωσης-1 ο /2017 ΛΥΣΕΙΣ Λύσεις θεμάτων ροσομοίωσης- ο /7 ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΣΑΒΒΑΤΟ, ΜΑΡΤΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ

Διαβάστε περισσότερα

z=± Η εξίσωση αυτή μας λέει αμέσως ότι η συνάρτηση Green σε δύο διαστάσεις είναι

z=± Η εξίσωση αυτή μας λέει αμέσως ότι η συνάρτηση Green σε δύο διαστάσεις είναι στο άπειρο το αποτέλεσμα απειρίζεται λογαριθμικά. Αυτή η συμπεριφορά του δυναμικού Coulomb σε δύο διαστάσεις δεν μπορεί να εξαλειφθεί με τον ίδιο τρόπο όπως η απόκλιση (86 διότι έχει φυσική αφετηρία :

Διαβάστε περισσότερα

ανάλυση, σχόλια και προεκτάσεις με αφορμή απαντήσεις μαθητών σε ερωτήματα μαθηματικών που διατυπώθηκαν για εργασία στη σχολική τάξη

ανάλυση, σχόλια και προεκτάσεις με αφορμή απαντήσεις μαθητών σε ερωτήματα μαθηματικών που διατυπώθηκαν για εργασία στη σχολική τάξη ανάλυση, σχόλια και ροεκτάσεις με αφορμή ααντήσεις μαθητών σε ερωτήματα μαθηματικών ου διατυώθηκαν για εργασία στη σχολική τάξη (αραδείγματα αό τα μαθηματικά του λυκείου) του Δημητρίου Ντρίζου σχολικού

Διαβάστε περισσότερα

Μια εναλλακτική θεμελίωση των κυμάτων

Μια εναλλακτική θεμελίωση των κυμάτων Μια εναλλακτική θεμελίωση των κυμάτων Τα κύµατα δεν είναι η συνέχεια των ταλαντώσεων, όως για διδακτικούς λόγους κάνουµε 1. Η διάδοση ενός αλµού. Έστω ότι έχουµε ένα ελαστικό µέσο,.χ. µια τεντωµένη οριζόντια

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΕΡΩΤΗΣΕΩΝ. ii) Στις τρεις διαστάσεις, η ισχύς κατανέµεται σε σφαιρικές επιφάνειες, οπότε θα ισχύει: απ όπου προκύπτει για την ένταση Ι: 1

ΑΠΑΝΤΗΣΕΙΣ ΕΡΩΤΗΣΕΩΝ. ii) Στις τρεις διαστάσεις, η ισχύς κατανέµεται σε σφαιρικές επιφάνειες, οπότε θα ισχύει: απ όπου προκύπτει για την ένταση Ι: 1 η Ερώτηση ΑΠΑΝΤΗΣΕΙΣ ΕΡΩΤΗΣΕΩΝ Όταν ρίξουµε µια έτρα στην ειφάνεια µιας ήρεµης λίµνης, τότε στο σηµείο της ειφάνειας ου έεσε η έτρα ροκαλείται µια διατάραξη της ειφανειακής µάζας του νερού στην ειφάνεια

Διαβάστε περισσότερα

1. Ένα σώμα εκτελεί ταυτόχρονα δύο απλές αρμονικές ταλαντώσεις ίδιας διεύθυνσης και ίδιας συχνότητας,

1. Ένα σώμα εκτελεί ταυτόχρονα δύο απλές αρμονικές ταλαντώσεις ίδιας διεύθυνσης και ίδιας συχνότητας, ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ ΜΕ ΤΗΝ ΙΔΙΑ ΚΥΚΛΙΚΗ ΣΥΧΝΟΤΗΤΑ. Ένα σώμα εκτελεί ταυτόχρονα δύο αλές αρμονικές ταλαντώσεις ίδιας διεύθυνσης και ίδιας συχνότητας, οι οοίες εξελίσσονται γύρω αό την ίδια θέση ισορροίας.

Διαβάστε περισσότερα

ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ

ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ Θεωρία της στροφορμής Στέλιος Τζωρτζάκης 1 3 4 Υπενθύμιση βασικών εννοιών της στροφορμής κυματοσυνάρτηση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ηµεροµηνία Αοστολής στον Φοιτητή: Mαΐου 6 Ηµεροµηνία Παράδοσης της Εργασίας αό τον

Διαβάστε περισσότερα

( ) Λ αφού αν διαιρέσουμε με το 2 τους όρους του 2 ης εξίσωσης το σύστημα γίνεται Ρ =

( ) Λ αφού αν διαιρέσουμε με το 2 τους όρους του 2 ης εξίσωσης το σύστημα γίνεται Ρ = 17 ο Γενικό Λύκειο Αθηνών Σχολικό έτος 01-015 ΤΑΞΗ:B' Λυκείου ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΙΟΥΝΙΟΥ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΣΤΗΝ ΑΛΓΕΒΡΑ :Αθήνα 8-6-015 ΘΕΜΑ 1ο Α. Nα αοδείξετε ότι αν ένα ολυώνυμο

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΠΥΚΝΩΤΗΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Πυκνωτή ονομάζουμε ένα σύστημα δυο αγωγών οι οοίοι βρίσκονται σε μικρή αόσταση μεταξύ τους και φέρουν ίσα και αντίθετα ηλεκτρικά φορτία. Χαρακτηριστικό μέγεθος των υκνωτών

Διαβάστε περισσότερα

Προτεινόμενες λύσεις. , β) και η f είναι συνεχής στο x. , η f είναι γνησίως αύξουσα στο (α,x. 0]. Έτσι έχουμε: f(x) f(x

Προτεινόμενες λύσεις. , β) και η f είναι συνεχής στο x. , η f είναι γνησίως αύξουσα στο (α,x. 0]. Έτσι έχουμε: f(x) f(x Προτεινόμενες λύσεις Πανελλήνιες 6 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 8/5/6 Θέμα A A. Εειδή f () > για κάθε Î (α, ) και η f είναι συνεχής στο, η f είναι γνησίως αύξουσα στο (α, ]. Έτσι έχουμε: f() f( ), για κάθε

Διαβάστε περισσότερα

ειναι η υπαρξη σημειων ευσταθειας (stationary points) που αναλυονται παρακατω. f ειναι παραγωγισιμη, τοτε η ( x)

ειναι η υπαρξη σημειων ευσταθειας (stationary points) που αναλυονται παρακατω. f ειναι παραγωγισιμη, τοτε η ( x) 4 Κλασσικες Μεθοδοι Βελτιστοοιησης Στο κεφαλαιο αυτο αρουσιαζονται τα ροβληματα βελτιστοοιησης: () χωρις εριορισμους, () με εριορισμους ισοτητας, () με εριορισμους ανισοτητας, και (4) με Rewto-Rapso..

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος Κεφάλαιο 1 Βασικές έννοιες Κεφάλαιο 2 Ταξινόμηση των διαφορικών εξισώσεων πρώτης τάξης... 20

Περιεχόμενα. Πρόλογος Κεφάλαιο 1 Βασικές έννοιες Κεφάλαιο 2 Ταξινόμηση των διαφορικών εξισώσεων πρώτης τάξης... 20 Περιεχόμενα Πρόλογος... 7 Κεφάλαιο Βασικές έννοιες... Διαφορικές εξισώσεις... Συμβολισμοί... Λύσεις... Προβλήματα αρχικών και συνοριακών τιμών... Κεφάλαιο Ταξινόμηση τν διαφορικών εξισώσεν ρώτης τάξης...

Διαβάστε περισσότερα

3.1 Αλυσίδες Markov διακριτού χρόνου

3.1 Αλυσίδες Markov διακριτού χρόνου Κεφάλαιο 3 Συστήµατα Markov Μια διαδικασία Markov µε διακριτό χώρο καταστάσεων ονοµάζεται αλυσίδα Markov Ένα σύνολο αό τυχαίες µεταβλητές { } αοτελούν µια αλυσίδα Markov όταν η ιθανότητα η εόµενη τιµή

Διαβάστε περισσότερα

Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 )

Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 ) vs of Io vs of Io D of Ms Scc & gg Couo Ms Scc ική Θεωλης ική Θεωλης ιδάσκων: Λευτέρης Λοιδωρίκης Π 746 dok@cc.uo.g cs.s.uo.g/dok ομηχ ομηχ δ ά τρεις διαστ Εξίσωση Schödg σε D Σε μία διάσταση Σε τρείς

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ. εφχ = εφθ χ = κ + θ χ = κ π + θ ( τύποι λύσεων σε ακτίνια )

ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ. εφχ = εφθ χ = κ + θ χ = κ π + θ ( τύποι λύσεων σε ακτίνια ) ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ηµχ = ηµθ χ = 0 0 κ + θ ή χ = 0 0 κ + 80 0 - θ ( τύοι λύσεων σε µοίρες ) χ = κ + θ ή χ = κ + - θ ( τύοι λύσεων σε ακτίνια ) κ ακέραιος συνχ = συνθ χ = 0 0 κ ± θ ( τύοι λύσεων

Διαβάστε περισσότερα

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Κίνηση σε κεντρικά δυναµικά 1.1.1 Κλασική περιγραφή Η Χαµιλτωνιανή κλασικού συστήµατος που κινείται

Διαβάστε περισσότερα

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Προτεινόμενα θέματα Πανελλαδικών εξετάσεων Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης o ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Ααντήσεις ΘΕΜΑ ο Α. Σχολικό βιβλίο, σελίδα 6. B. Σχολικό βιβλίο, σελίδες 97 και

Διαβάστε περισσότερα

Αχ, πονεμένη μου συνάρτηση ολοκλήρωμα

Αχ, πονεμένη μου συνάρτηση ολοκλήρωμα Αχ, ονεμένη μου συνάρτηση ολοκλήρωμα F() f (t)dt! ) Μια σύντομη αναδρομή Ειμέλεια: Μάκης Χατζόουλος Όλα ξεκίνησαν στις 7 Ιουνίου 5 όταν ανακοινώθηκε η διδακτέα εξεταστέα ύλη για τους μαθητές της Γ Λυκείου

Διαβάστε περισσότερα

1. Τριγωνομετρικοί αριθμοί οξείας γωνίας

1. Τριγωνομετρικοί αριθμοί οξείας γωνίας v.5 «Αυτό το ρόβλημα, τούτ η μεγάλη συμφορά για να λυθεί χρειάζεται, δίχως αμφιβολία, όως κοιτάζω α τη δική σου την λευρά, να δεις κι εσύ α τη δική μου τη γωνία».. Τριγωνομετρικοί αριθμοί οξείας γωνίας

Διαβάστε περισσότερα

Κβαντική Θεωρία του Ατόμου του Η

Κβαντική Θεωρία του Ατόμου του Η Κβαντική Θεωρία του Ατόμου του Η ΑΤΟΜΟ ΥΔΡΟΓΟΝΟΥ: Ηλεκτρόνιο υλοκύμα ου έχει εγκλωβιστεί σε εερασμένο ακτινικό φρέαρ δυναμικού V m V ε E V Σφαιρικές συντεταγμένες: α ακτινική αόσταση του σημείου αό το

Διαβάστε περισσότερα

Κεφάλαιο Σειρές Fourier

Κεφάλαιο Σειρές Fourier Κεφάλαιο 7 7. Σειρές Fourier Λίγο ριν το 8, ο Γάλλος μαθηματικός/φυσικός/μηχανικός Jean Baptiste Joseph Fourier έκανε μια εκληκτική ανακάλυψη. Μέσω των ενδελεχών αναλυτικών ερευνών του στις Μερικές Διαφορικές

Διαβάστε περισσότερα

ΟΙ ΠΕΡΙΟΡΙΣΜΟΙ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ

ΟΙ ΠΕΡΙΟΡΙΣΜΟΙ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΟΙ ΠΕΡΙΟΡΙΣΜΟΙ ΣΗΝ ΡΙΓΩΝΟΜΕΡΙΑ Νικ. Ιωσηφίδης, Μαθηµατικός Φροντιστής, ΒΕΡΟΙΑ e-mail: iossifid@yahoo.gr Η εργασία αυτή γράφτηκε για τους µαθητές της Β Λυκείου όταν (δεκαετία 98-990) η ριγωνοµετρία δεν

Διαβάστε περισσότερα

[f(x)] [f(x)] [f (x)] (x 2 + 2) x 2-2 x 2.

[f(x)] [f(x)] [f (x)] (x 2 + 2) x 2-2 x 2. 99 ΘΕΜΑΤΑ. α) ίνεται η συνάρτηση f ορισµένη και δύο φορές αραγωγίσιµη στο διάστηµα µε τιµές στο (, + ). Να δειχθεί ότι η συνάρτηση g µε g() = lnf(),, έχει την ιδιότητα «g (), για κάθε» αν και µόνο αν ισχύει

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κεντρικά Δυναμικά Διδάσκων : Επίκ. Καθ. Μ. Μπενής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κεντρικά Δυναμικά Διδάσκων : Επίκ. Καθ. Μ. Μπενής ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγxρονη Φυσική II Κεντρικά Δυναμικά Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Ceative Coons.

Διαβάστε περισσότερα