ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου].

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου]."

Transcript

1 ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ:..4 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β Άσκηση. Ν υολογίσετε το ολοκλήρωμ ( + ) d. Εειδή ( ) ( + ) = ( + ) + = +, έχουμε d d = + ( ) ( ) = + + = 6 = 5

2 Άσκηση. Ν υολογίσετε το ολοκλήρωμ + 5 d. Εειδή + = + =, έχουμε d = d = = = 5 5

3 Άσκηση. d. Ν υολογίσετε το ολοκλήρωμ ( ηµ + συν ) Έχουμε ( ηµ + συν ) d = ( ) ηµ + ( ηµ ) d = ( ) ηµ d = ηµ =

4 Άσκηση 4. Ν υολογίσετε το ολοκλήρωμ d e. Έχουμε e e e d = d = d e e e d ( e ) e e = = d e = = e e 4

5 Άσκηση 5. 5 d. Ν υολογίσετε το ολοκλήρωμ ( + ) Έχουμε d d ( + ) = ( + ) 6 = ( ) d ( ) = + = = 5

6 Άσκηση 6. Ν υολογίσετε το ολοκλήρωμ d. + Έχουμε ( + ) = = ( ln + ). + + Εομένως 7 d = ln ( ln7 ln) ln + = =. + 6

7 Άσκηση 7. Ν υολογίσετε το ολοκλήρωμ d. + 8 Εειδή ( 8) + = 8 +, έχουμε = ( + 8) + 8 d 8 d 8 = + = = ( 4 ) =.. Εομένως 7

8 Άσκηση 8. Ν υολογίσετε το ολοκλήρωμ συν + d 6. Έχουμε συν + d = ηµ + d 6 6 = ηµ + = 6 = ηµ + ηµ 6 6 = = 8

9 Άσκηση 9. Ν υολογίσετε το ολοκλήρωμ + e d. Έχουμε e d = e d + + = = + e e e. 9

10 Άσκηση. Ν υολογίσετε το ολοκλήρωμ. 4 d Εειδή ( 4 ) = 4 ln4, έχουμε d = 4 d ln4 =. Εομένως ln4 = 4 = 4 ln4 ln4 = ln4 = ln.

11 Άσκηση. Ν υολογίσετε το ολοκλήρωμ ηµ συν d. Εειδή ηµ = ηµ συν, έχουμε ηµ συν d = ( ηµ ) d = ( ) ηµ = =.

12 Άσκηση. Ν υολογίσετε το ολοκλήρωμ e d. Έχουμε e d = e d = e e d e e d = e e = = ( e ) ( e ) =

13 Άσκηση. Ν υολογίσετε το ολοκλήρωμ συν d. Έχουμε συν d = ηµ d ( ) d = ηµ ηµ d = ηµ ηµ = ηµ + συν = + ( ) =

14 Άσκηση 4. Ν υολογίσετε το ολοκλήρωμ συν e d. Έστω I = συν e d. Έχουμε: I = συν e d = συν e d = συν e συν e d = συν e + ηµ e d = + ηµ e d = + ηµ e ηµ e d = + e συν e d = e I Εομένως I= e I I= e. Άρ I= e. 4

15 Άσκηση 5. Ν υολογίσετε το ολοκλήρωμ e d. Έχουμε e d = e d = e + e d ( e ) d = e e e d = + e = e e e 5 = = e e e 5

16 Άσκηση 6. Ν υολογίσετε το ολοκλήρωμ e ln d. Έχουμε e e ln d = ln ( ) d e e = ln ( ln) d = lne e ln d e e = e d + e = = = e e e e

17 Άσκηση 7. Ν υολογίσετε το ολοκλήρωμ 4 + d. Θέτουμε u = +, οότε u u u = + = κι d = du = u du. Είσης γι = είνι u = κι γι = 4 είνι u =. Εομένως το ολοκλήρωμ γίνετι: + d = u u du 4 u 4 5 ( u u ) du u u 5 = = = =

18 Άσκηση 8. Ν υολογίσετε το ολοκλήρωμ. ( + ) + d u Θέτουμε u = +, οότε = κι d = du. Είσης γι = είνι u = κι γι = είνι u = 5. Εομένως το ολοκλήρωμ γίνετι: 5 5 = = ( + ) u + + u u + 5 d du du u 8 u du u lnu 8 u u 8 u = + = 5 4 = ( 5 ln5 ) ln ( 4 ln5) ln 8 = 8 8 = ln5 + ln = + ln

19 Άσκηση 9. Δίνετι η συνάρτηση + < f() = +,,. i. Ν δείξετε ότι η f είνι συνεχής. ii. Ν υολογίσετε το 6 f ()d. i. Γι < έχουμε f() = + ου είνι συνεχής ως ολυωνυμική συνάρτηση. Είσης, γι > έχουμε f() = + ου είνι συνεχής ως σύνθεση της συνεχούς συνάρτησης g() = + με την είσης συνεχή συνάρτηση h() =. Θ εξετάσουμε τη συνέχει της f στο σημείο =. Έχουμε f () = + = κι lim f () = lim + = lim f () = lim + = + + Οότε η f είνι συνεχής στο =. Άρ η f είνι συνεχής στο. ii. Έχουμε 6 6 f ()d = f ()d + f ()d. f ()d d Είνι 4 = + = + = 6 6 κι f ()d = + d = ( + ) 8 = ( 7 8) = Άρ f ()d = + = = 4. 9

20 Άσκηση. Δίνετι η συνάρτηση, < f() = ln(+ ),. i. Ν δείξετε ότι η f είνι συνεχής. ii. Ν υολογίσετε το f ()d. i. Γι < έχουμε f() = ου είνι συνεχής ως ολυωνυμική συνάρτηση. Είσης, γι > έχουμε f() = ln(+ ) ου είνι συνεχής ως σύνθεση της συνεχούς συνάρτησης g() = + με την είσης συνεχή συνάρτηση h() = ln. Θ εξετάσουμε τη συνέχει της f στο σημείο =. Έχουμε f () = ln = κι lim f () = lim f () =. Άρ η f είνι συνεχής στο. + ii. Έχουμε f ()d = f ()d + f ()d. Είνι f ()d = d = = κι f()d = ln(+ )d = ln(+ ) + d = + ln(+ ) d = ln Άρ f () d = + ln = ln 4.

21 Άσκηση. Ν υολογίσετε το ολοκλήρωμ γεωμετρικά το οτέλεσμ. 4 f ()d, όου f() = + κι ν εξηγήσετε Η f είνι συνεχής κι γράφετι ως εξής: + 4, < f () =, <. 4, Εομένως 4 4 f ()d = ( + 4)d + d + ( 4)d [ ] 4 = = Εειδή f() = + γι κάθε, το f ()d ριστάνει το εμβδόν του ρκάτω σκισμένου χωρίου, ου ερικλείετι ό τη γρφική ράστση της 4 συνάρτησης + 4, < f () =, <, τον άξον κι τις ευθείες = κι = 4. 4, Το εμβδόν υτό, ν το υολογίσουμε γεωμετρικά κτά τ γνωστά είνι ίσο με = 6 6 = (οτέλεσμ ου συμφωνεί φυσικά με υτό ου βρήκμε με τη βοήθει του ολοκληρώμτος).

22 Άσκηση. Ν υολογίσετε το ολοκλήρωμ d. Έχουμε: + d = + d ( ) = ln 8 d + + = ln = ( ln ln8) = ln

23 Άσκηση. Ν υολογίσετε το ολοκλήρωμ d. + + Ο ρονομστής της ράστσης + + γράφετι + + = ( + )( + ). Εομένως =. + + ( + )( + ) A B,,. ( + )( + ) + + Ανζητούμε ριθμούς Α κι Β ώστε ν ισχύει = + { } Ισοδύνμ κι γι {, }, έχουμε = A( + ) + B( + ) ( A+ B) + ( A+ B) = A+ B= A= A + B = B = Εομένως d = d + d [ ] [ ] = ln( + ) + ln( + ) = ln + ln ln = ln 5ln

24 Άσκηση 4. Ν υολογίσετε το ολοκλήρωμ 4 d. Αό τη διίρεση του με το ολυώνυμο + + = + + = Εομένως d = + + d ( + )( ) = + d + d ( + )( ) 4 Είνι 4 έχουμε d = = + + =. Γι τον υολογισμό του ολοκληρώμτος ριθμούς Α κι Β τέτοιους ώστε 4 + d νζητούμε στην ρχή δυο ( + )( ) + A B = +, {, }. + + Έχουμε + A B = = A( ) + B( + ) (A + B) + ( A + B) = + 4

25 A = A+ B= A + B = 8 B = Εομένως + 8 d = d + d = + + [ ln( ) ] [ ln( ) ] = + ( ln5 ln4) ( ln ln) = ln5 + ln 4 9 Άρ d = + ln5 + ln. 5

26 Άσκηση 5. e Έστω το ολοκλήρωμ = ν * ν ν Ν. I ln d, i. Ν οδείξετε ότι Iν = e ν Iν, ν. e ii. Ν υολογίσετε το I = ln d. i. Έχουμε ν e e ν ν = = I ln d ln () d ν e e ν = ( ln) ν ( ln) d e ν = e ν ln d Άρ Iν = e ν Iν. ii. Έχουμε I = e I I = e I I = e e I = e + 6I. Όμως εομένως e e I = ln d = ln d = [ ] e e = ln d = e (e ) = Άρ I = e + 6 = 6 e. 6

27 ΘΕΜΑ Γ Άσκηση. Ν υολογίσετε το ολοκλήρωμ d. Έχουμε. Εομένως το μορεί ν είνι το ημίτονο μις μόνο γωνίς θ με θ. Έτσι μορούμε ν θέσουμε = ηµθ. Τότε είνι θ=, ενώ γι = είνι θ=. Εομένως d = ηµ θ συνθdθ= συνθ συνθdθ d = ηµθ dθ = συνθdθ κι γι = + συνθ = συν θdθ = d θ = d d θ + συν θ θ= + ηµ θ = 4 4 7

28 Άσκηση. Ν υολογίσετε το ολοκλήρωμ + e d. Θέτουμε u du du = e d d = du e = u. Είσης, ότν = τότε u =, ότν = κι το ολοκλήρωμ γίνετι: = e. Τότε = τότε u e d du = = du + e + u u u + u e e = u = + + u [ ] [ ] e e e e du du lnu ln( u) = [ lne ln] [ ln( + e) ln] = + ln ln( + e) 8

29 Άσκηση. Ν υολογίσετε το ολοκλήρωμ e ln d. Θέτουμε u Εομένως: = ln. Τότε e du = d κι τ άκρ ολοκλήρωσης γίνοντι ντίστοιχ κι. ln d = u du = u =. 9

30 Άσκηση 4. Α. Αν f είνι μι συνεχής συνάρτηση στο, ν δείξετε ότι f ()d = f ( )d ηµ Β. Ν υολογίσετε το ολοκλήρωμ I = d. ηµ + συν. Α. Θ δείξουμε ότι το δεύτερο μέλος της ζητούμενης ισότητς είνι ίσο με το ρώτο. Θέτουμε u =. Εομένως du = d κι ότν = τότε u =, ενώ ότν = τότε u =. Έτσι έχουμε: f( )d = f(u) ( du) = f (u) du = f (u)du = f ()d Β. Αν ηµ f() =, τότε ηµ + συν ηµ f =. ηµ + συν Εφρμόζοντς το (Α) ερώτημ, έχουμε: ηµ ηµ συν ηµ + συν συν + ηµ ηµ + συν I = d = d d = Εομένως ηµ συν ηµ + συν ηµ + συν συν + ηµ ηµ + συν I = d + d d = = d = = ηµ Άρ I = d =. ηµ + συν 4

31 Άσκηση 5. Αν μι συνάρτηση f είνι συνεχής στο κι ισχύει f( +β ) = f(),, ν οδείξετε β +β β ότι f ()d = f ()d. Θ δείξουμε ότι το ρώτο μέλος της ζητούμενης ισότητς είνι ίσο με το δεύτερο. Θέτουμε u =+β. Εομένως du = d κι ότν = τότε u = β, ενώ ότν = β τότε u =. Έτσι έχουμε: β I = f()d = ( +β u) f(u)( du) β = ( +β u) f(u)du = = β ( +β ) β f (u)du u f (u)du = ( +β β ) f (u)du β u f (u)du β = ( +β β ) f ()d β f ()d β +β β Εομένως I = ( +β) f () d, άρ I f ()d =.

32 Άσκηση 6. Υοθέτουμε ότι μι συνάρτηση f είνι ργωγίσιμη στο με f (4) = κι Ν υολογίσετε το 4 f ()d. f () = + 9. Έχουμε 4 [ ] f()d = f() () d = f() f () d 4 4 = 4 f (4) + 9 d = d d Γι τον υολογισμό του θέτουμε du = d = d + 9 u είνι u = 5. Εομένως: u = + 9. Τότε, δηλδή d = u du. Είσης ότν = είνι u = κι ότν = d = u u du = u du u = = = 4 98 Άρ f ()d = 4 =.

33 Άσκηση 7. κ Έστω το ολοκλήρωμ I( κ ) = d, κ>. + i. Ν βρείτε το ολοκλήρωμ συνρτήσει του κ. ii. Ν βρείτε το lim I( κ ). κ + i. Έχουμε κ κ κ I( κ ) = d = d = d + ( + ) ( + ) = d d = ln ln( + ) + [ ] [ ] κ κ κ κ = κ κ+ ( ln ln) ( ln ln4) κ = ln + ln κ+ ii. Έχουμε κ lim I( κ ) = lim ln + ln κ + κ + κ+ κ = ln + lim ln κ + κ+ = ln + ln = ln

34 Άσκηση 8. Έστω f: μι συνεχής συνάρτηση με συνεχή ράγωγο κι τέτοι ώστε f() f ()d = κι 4 f() f ()d. f () f ()d = 8. Ν υολογίσετε το ολοκλήρωμ Έχουμε f() f ()d ( f () = ) d. Κι εειδή f() f ()d ( f () = ) d =. Άρ f () f () = f () = f () () Είσης: ( f ()) f () d 8 ( f () = ) d = 8. Άρ f () f () = 54 () Η ισότητ () συνεάγετι ότι f() = f() ή f() = f(). Αν όμως ήτν f() = f(), τότε ό τη () θ είχμε = 54, άτοο. Άρ f() = f() κι η () γίνετι: Ακόμ Έχουμε f () = 54 f () = 7 f () =, οότε f () = f() f ()d f () d = f 5 () f 5 () = = ( + ) =

35 Άσκηση 9. Αν η συνάρτηση f είνι συνεχής στο κι εριοδική με ερίοδο Τ>, ν οδείξετε ότι γι κάθε ριθμό ισχύει: +Τ f ()d = Τ f ()d Είνι +Τ Τ +Τ f ()d = f ()d + f ()d + f ()d () T +Τ Είσης ν στο ολοκλήρωμ f ()d θέσουμε = u+ T τότε u = T κι du = d ενώ Τ γι = T έχουμε u = κι γι =+ T έχουμε u = οότε +Τ f ()d = f (u)du = f ()d κι η σχέση () γίνετι Τ +Τ Τ f ()d = f ()d + f ()d + f ()d = f ()d + Τ f ()d Τ = f ()d. 5

36 Άσκηση. Μι συνάρτηση f είνι συνεχής στο διάστημ [,8] κι τέτοι ώστε κάθε [,8]. Αν 8 f ()d =, ν υολογίσετε το 8 I = f ()d. f 6 = f(), γι 8 Στο ολοκλήρωμ I = f ()d, θέτουμε u = 6. Τότε du = d κι γι = είνι u = 8, ενώ γι = 8 είνι u =. 8 I = f()d = (6 u) f(6 u)( du) 8 8 = (6 u) f (u)du 8 8 = 6 f (u)du u f (u)du 8 8 = 6 f ()d f ()d = 6 I. Εομένως I = 6 I, άρ I =. 6

37 Άσκηση. Μι συνάρτηση f είνι συνεχής στο κι τέτοι ώστε f() +β f( ) = γ, γι κάθε κι +β. Ν οδείξετε ότι λ λγ f ()d =. λ +β Έχουμε f() +β f( ) = γ λ λ λ f ()d + β f ( )d = γd λ λ λ λ f ()d +β f ( )d = λγ λ λ () λ λ Αν στο ολοκλήρωμ f ( ) d θέσουμε = u, τότε d = du κι γι = λ, τότε u = λ λ κι γι = λ, τότε u = λ, έχουμε: λ λ f( )d = f(u)( du) = f (u)du = f ()d λ Εομένως η () γίνετι: λ λ f ()d +β f ()d = λγ λ λ λ λ ( +β ) f ()d λ λ λ λγ f ()d = +β = λγ λ λ λ λ 7

38 Άσκηση. f() + f( + ) d = f()d. Έστω f συνεχής συνάρτηση στο. Ν οδείξετε ότι Έχουμε f ()d = f ()d + f ()d. Αν στο ολοκλήρωμ f ()d θέσουμε u =, έχουμε du = d κι γι = είνι u =, ενώ γι = είνι u =. Εομένως f ()d = f (u + )du = f ( + )d. Άρ f ()d = f ()d + f ( + )d ή = ( + + ) f()d f() f( ) d. 8

39 Άσκηση. Η συνάρτηση f είνι δυο φορές ργωγίσιμη κι με συνεχή δεύτερη ράγωγο στο = κι f () ηµ d =. Ν υολογίσετε το [, ]. Ειλέον ισχύουν f () =, f ολοκλήρωμ f () ηµ d. Έχουμε f () ηµ d = f () συν d [ ] = f() συν + f () συνd = f () συν f ( ) συν + f () συν d = f () + f ( ) + f () συν d = 4 + f () ( ηµ ) d [ ] = 4+ f () ηµ f () ηµ d = 4 9

40 Άσκηση 4. ( ) Δίνετι η συνάρτηση f () =, (, + ) 4 i. Ν βρείτε δυο ργμτικούς ριθμούς κ κι λ ώστε ν ισχύει κ λ f () = +,, + 4 ( ) ( ).. ii. Ν υολογίσετε το ολοκλήρωμ f ()d. i. Έχουμε κ λ = + ( ) ( ) ( ) 4 4 =κ( ) +λ =κ + ( λ κ ) κ= κι λ κ= Άρ κ=, λ=. ( ) ( ) ii. Έχουμε f () = +, (, + ) Εομένως 4. f ()d = + ( ) ( ) = d + ( ) ( ) 4 4 d d = ( ) ( ) = = 4 8 4

41 Άσκηση 5. Ν οδείξετε ότι e d + εϕ d e εϕ d Έχουμε e d + εϕ d e εϕ d e d + εϕ d e εϕ d e d + εϕ d e εϕ d 4 4 e + εϕ e εϕ d ( εϕ ) e d Η τελευτί νισότητ ισχύει, φού e εϕ, γι κάθε. 4

42 Άσκηση 6. i. Αν μι συνάρτηση f είνι συνεχής κι άρτι στο, ν οδείξετε ότι f ()d = f ()d. ii. Αν μι συνάρτηση f είνι συνεχής κι εριττή στο, ν οδείξετε ότι f ()d =. i. Έχουμε f ()d = f ()d + f ()d. Στο f ()d, θέτουμε u =, οότε du = d, ενώ τ άκρ ολοκλήρωσης γίνοντι κι ντίστοιχ. Εομένως f ()d = f ( u)du = f (u)du = f ()d. Άρ f ()d = f ()d + f ()d = f ()d. ii. Έχουμε f ()d = f ()d + f ()d. Στο f ()d, θέτουμε u =, οότε du = d, ενώ τ άκρ ολοκλήρωσης γίνοντι κι ντίστοιχ. Εομένως f ()d = f ( u)du = f ( u)du = f (u)du = f ()d. Άρ f ()d = f ()d + f ()d = f ()d + f ()d =. 4

43 ΘΕΜΑ Δ Άσκηση. A. Ν υολογίσετε την ράγωγο της f () ln ( ) = + +. B. Ν υολογίσετε το ολοκλήρωμ I = + d. Α. Έχουμε ( ) f () = ln + + = = + = = + Β. Έχουμε Ι= + d + d = + d= + + d + = d = d = d + d + + ( ) = + d + ln + + d (A) = ln d 4

44 = + ln ( + ) Ι Εομένως Ι= + ln ( + ). + ln + Άρ + d =. 44

45 Άσκηση. e Ν υολογίσετε το ολοκλήρωμ I = ηµ ln d. Θέτουμε u u = ln = e, οότε du = (ln) d = d = d κι εομένως u e d u = e du. Είσης ότν = είνι u = κι ότν = e είνι u =. Έτσι έχουμε: e u u I = ηµ ln d = ηµ u e du = ηµ u (e ) du u u e = ηµ συν u u e du u e u (e ) du = ηµ συν u u e e u u e du = ηµ συν ηµ = ηµ e ( e συν ) I Άρ + ηµ e e συν I = + ηµ e e συν Ι =. 45

46 Άσκηση. Η συνάρτηση f είνι συνεχής στο διάστημ [, 5 ] κι ισχύει f() + f(6 ) = c γι κάθε [, 5], όου c στθερός ργμτικός ριθμός. 5 i. Ν δείξετε ότι f()d = ( f() + f(5) ). ii. Ν δείξετε ότι 5 f ()d = 4f (). i. Αν στην ισότητ f() + f(6 ) = c θέσουμε = ίρνουμε: f() + f(6 ) = c f() + f(5) = c Εομένως f() + f(6 ) = f() + f(5). Έτσι έχουμε 5 5 (f() + f(6 ))d= f() + f(5) d ή + = ( + ) f()d f(6 )d f() f(5) d 5 5 ή f()d+ f(6 )d= 4( f() + f(5) ) () 5 Όμως, ν στο f (6 )d θέσουμε u = 6, τότε du = d κι γι = είνι u = 5, ενώ γι = 5 είνι u =. Έτσι έχουμε: f (6 )d = f (u) du = f (u)du = f ()d 5 Έτσι η () γίνετι: 5 5 f()d= f() + f(5) d 5 5 f()d= f() + f(5) d 5 f()d= 4 f() + f(5) 46

47 5 f()d = f() + f(5) ii. Αν στην ισότητ f() + f(6 ) = c θέσουμε f () + f () = c f () = c Εομένως f() + f(6 ) = f(). Έτσι έχουμε 5 5 [ ] f () + f (6 ) d = f ()d + 5 = = ίρνουμε: f ()d + f (6 )d = f ()d κι εργζόμενοι όως ροηγουμένως έχουμε: f ()d = f ()d f ()d = f () d 5 5 Άρ f ()d = 4f (). 47

48 Άσκηση 4. Α. Μι συνάρτηση f είνι ργωγίσιμη στο κι γνησίως ύξουσ στο. Ειλέον η f κι είνι συνεχής στο. Ν οδείξετε ότι: f β f( β) f()d+ f ()d=β f( β) f f Β. Δίνετι η συνάρτηση f() = Ν οδείξετε ότι η f ντιστρέφετι κι ν 5 υολογίσετε το ολοκλήρωμ f ()d. 7 Α. Μι γεωμετρική ερμηνεί του ροβλήμτος κι της λύσης του στην ερίτωση ου έχουμε f(), (ν f(), τότε το σχήμ είνι συμμετρικό ως ρος τον άξον ) είνι η εξής: Το ολοκλήρωμ f( β) f( β) = f f β f ()d ριστάνει το εμβδόν Ε, το ολοκλήρωμ f () d f (y) dy ριστάνει το εμβδόν Ε, ενώ το εμβδόν των δυο σχημτιζόμενων ορθογωνίων είνι ντιστοίχως β f( β ) του μεγλύτερου κι f( ) του μικρότερου. Προφνώς η διφορά των εμβδών των δυο ορθογωνίων είνι ίση με το άθροισμ Ε +Ε. Δηλδή ισχύει: β f( β) f()d+ f ()d=β f( β) f f Γενικότερ έχουμε: β β β f ()d = [ f() ] f()d, δηλδή β f ()d =β f( β) f f()d () β 48

49 Εειδή η f είνι συνεχής (φού είνι ργωγίσιμη) κι μονότονη, έετι ότι υάρχει η f ()d = f f() f ()d. β β οότε ό τη σχέση f ( f() ) =, έχουμε f, Θέτουμε u = f(), οότε du = f ()d κι ότν =, τότε u= f( ), ενώ ότν = β, τότε u= f( β ). Εομένως β β f ()d = f f() f ()d β f( β) f = f u du = f d f f β f( β) Δηλδή = f () d f d (). f f( β) Αό τις () κι () ροκύτει ότι f d=β f( β) f f()d, άρ f β f( β) f()d+ f ()d=β f( β) f f β Β. Η συνάρτηση f() = έχει άρ είνι κι κι ντιστρέφετι. Έχουμε =. Είσης έχουμε f () = + >, εομένως είνι γνησίως ύξουσ, f () = = 5 + =. Η μονδική λύση της εξίσωσης υτής είνι η f() = + + 5= 7 + =. Η μονδική λύση της εξίσωσης υτής είνι η =. Εομένως με βάση την ισότητ έχουμε β f( β) f()d+ f ()d=β f( β) f f 5 f ()d + f ()d = f () f () 7 = 5 7 = Άρ 5 = 7 f ()d f ()d = d 49

50 4 = = 6 = 4 4 5

51 Άσκηση 5. Α. Αν f κι g είνι συνεχείς συνρτήσεις στο [ β, ] κι γι κάθε [, ] f() g(), ν δείξετε ότι: β f ()d g()d β β ισχύει Β. Υοθέτουμε ότι μι συνάρτηση f είνι συνεχής στο διάστημ [, ]. Ν δείξετε ότι υάρχει ξ [,], τέτοιο ώστε f()d= f( ξ). Α. Έχουμε f() g() g() f(), β. [, ] Εομένως: β β β g() f() d g()d f()d β g()d f ()d β f ()d g()d β β Β. Εειδή η f είνι συνεχής στο κλειστό διάστημ [, ], ίρνει στο διάστημ υτό ελάχιστη τιμή έστω ε κι μέγιστη τιμή έστω M. Εομένως γι κάθε [,] έχουμε: ε f() M ε f() M ε d f () d M d ε M f ()d f ()d M ε Πρτηρούμε ότι ο ριθμός f ()d νήκει στο σύνολο τιμών της συνεχούς συνάρτησης f. Άρ υάρχει ξ [,], τέτοιο ώστε f()d= f( ξ) f()d f = ξ. 5

52 Άσκηση 6. Μι συνάρτηση f είνι δυο φορές ργωγίσιμη στο κι έχει συνεχή κι θετική δεύτερη ράγωγο στο διάστημ [, ]. Ν οδείξετε ότι f () συν d >. Έχουμε f () συν d = f () ηµ d [ ] = f() ηµ f () ηµ d = f () συν d [ ] = f () συν f () συν d = f f () f () συν d = f ()d f () συν d = f () συν d Όμως f () > στο [, ] κι συν, φού στ άκρ του διστήμτος [, ]. Εομένως γι κάθε [, ] χωρίς ν είνι ντού f ()( συν ) =. Άρ συν κι με το ίσον ν ισχύει μόνο είνι f ()( συν), f () συν d >. 5

53 Άσκηση 7. ν ν ηµ συν Αν A = d κι B = d ν ν ηµ + συν, ν ν ηµ + συν * ν Ν, τότε: i. Ν οδείξετε ότι Α=Β. ii. Ν υολογίσετε τ ολοκληρώμτ Α+Β, Α, Β. ν ηµ i. Στο ολοκλήρωμ A = d θέτουμε u =, οότε d = du, ενώ τ ν ν ηµ + συν άκρ ολοκλήρωσης γίνοντι κι ντίστοιχ. Εομένως ηµ u ν ν ηµ A = d = du ν ν ηµ + συν ν ν ν συν u = du = Β ν ν συν u+ ηµ u ηµ u + συν u ii. Έχουμε ν ν ηµ συν Α+Β= d + d ν ν ν ν ηµ + συν ηµ + συν ν ν ηµ + συν d = = d = ν ν ηµ + συν Εειδή Α=Β κι Α+Β=, έχουμε Α=Β=. 4 Ημερομηνί τροοοίησης: 5/9/ 5

3x 2x 1 dx. x dx. x x x dx.

3x 2x 1 dx. x dx. x x x dx. ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση (Υολογισμός του f () d Βσιζόμενος σε Ιδιότητες Ή στην Αρχική της f, η οοί Βρίσκετι ό Κνόνες Πργώγισης) Ν υολογίσετε το ολοκλήρωμ ( + ) d (Θέμ Β) Άσκηση (Υολογισμός του f () d

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: 3. 3.4 Μέρος Β του σχολικού ιλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Πράδειγμ. Ν υολογισθούν τ ορισμέν ολοκληρώμτ: ΘΕΜΑ Β i. ii. (

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 11: ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ [Κεφ 2.8: Κυρτότητα Σημεία Καμπής του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 11: ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ [Κεφ 2.8: Κυρτότητα Σημεία Καμπής του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ [Κεφ.8: Κυρτότητ Σημεί Κμής του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β Άσκηση. Δίνοντι οι συνρτήσεις f, g ορισμένες στο [, ]

Διαβάστε περισσότερα

Θέμα: Ολοκληρώματα. Υπολογισμός ολοκληρωμάτων. Μέθοδοι ολοκλήρωσης. Εμβαδά. Η συνάρτηση που ορίζεται από ολοκλήρωμα

Θέμα: Ολοκληρώματα. Υπολογισμός ολοκληρωμάτων. Μέθοδοι ολοκλήρωσης. Εμβαδά. Η συνάρτηση που ορίζεται από ολοκλήρωμα Θέμ: Ολοκληρώμτ Υολογισμός ολοκληρωμάτων Μέθοδοι ολοκλήρωσης Εμβδά Η συνάρτηση ου ορίζετι ό ολοκλήρωμ Ενλητικές σκήσεις ολοκληρωμάτων ΥΠΟΛΟΓΙΣΜΟΣ ΟΛΟΚΛΗΡΩΜΑΤΩΝ ΜΕ ΕΥΡΕΣΗ ΤΗΣ ΑΡΧΙΚΗΣ ή ΠΑΡΑΓΟΥΣΑΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

Ορισμένο ολοκλήρωμα συνάρτησης Η συνάρτηση F( x ) = ( )

Ορισμένο ολοκλήρωμα συνάρτησης Η συνάρτηση F( x ) = ( ) 9 Ορισμένο ολοκλήρωμ συνάρτησης Η συνάρτηση F( = f t dt Θεωρούμε τη συνεχή συνάρτηση f:a R με A = [,] Χωρίζουμε το [,] σε ν ισομήκη υοδιστήμτ ου το κθέν έχει μήκος Δ = Σε κάθε υοδιάστημ ου σχημτίζετι ν

Διαβάστε περισσότερα

Απάντηση: όπου c R. Δίνεται όμως ότι f(0) = 1, άρα η προηγούμενη για x = 0, δίνει c = ½. Παίρνουμε λοιπόν την

Απάντηση: όπου c R. Δίνεται όμως ότι f(0) = 1, άρα η προηγούμενη για x = 0, δίνει c = ½. Παίρνουμε λοιπόν την _ Θέμ Γ Θεωρούμε τις συνρτσεις,:rr, με την ργωγίσιμη κι τέτοιες, ώστε: () = κι, γι κάθε R, Γ Ν οδείξετε ότι, R Γ Ν βρείτε το λθος των ργμτικών ριζών της εξίσωσης Γ Ν οδείξετε ότι υάρχει τουλάχιστον ένς,

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ 1. x-2 x 5x x -3 x dx, ε. 20x 3- x dx, στ. dx. εφx+εφ3x dx, δ. e dx, ε. ηµ - +3 dx. 2 3

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ 1. x-2 x 5x x -3 x dx, ε. 20x 3- x dx, στ. dx. εφx+εφ3x dx, δ. e dx, ε. ηµ - +3 dx. 2 3 - 6 - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. Ν υολογίσετε τ ρκάτω ολοκληρώµτ:. - ( -ηµ+συν)d, β. - +συνd, γ. d, δ. - 5 - d, ε. - d, στ. d.. Ν υολογίσετε τ ρκάτω ολοκληρώµτ: ηµ -συν +5. Α= d, β. Β= ( + )

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : Η ΣΥΝΑΡΤΗΣΗ F( = (d [Kεφ:.5 H Συνάρτηση F( = (d Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. lim e d. Ν υπολογίσετε το όριο: ( Έχουμε ( e d

Διαβάστε περισσότερα

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ. Αόριστο ολοκλήρωμα. Ερωτήσεις θεωρίας

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ. Αόριστο ολοκλήρωμα. Ερωτήσεις θεωρίας ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Αόριστο ολοκλήρωμ Ερωτήσεις θεωρίς Ποι ρολήμτ οδήγησν στην νάγκη ορισμού της ρχικής συνάρτησης ; Δώστε τον ορισμό της ρχικής συνάρτησης ή ράγουσς f στο Δ κι έν ράδειγμ Πολλές φορές

Διαβάστε περισσότερα

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ [4] ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΡΧΙΚΗ ΣΥΝAΡΤΗΣΗ Ορισµός Έστω µι συνάρτηση f ορισµένη σε έν διάστηµ Αρχική ή ράγουσ συνάρτηση της f στο, ονοµάζετι κάθε συνάρτηση F, ργωγίσιµη στο, τέτοι

Διαβάστε περισσότερα

[f(x)] [f(x)] [f (x)] (x 2 + 2) x 2-2 x 2.

[f(x)] [f(x)] [f (x)] (x 2 + 2) x 2-2 x 2. 99 ΘΕΜΑΤΑ. α) ίνεται η συνάρτηση f ορισµένη και δύο φορές αραγωγίσιµη στο διάστηµα µε τιµές στο (, + ). Να δειχθεί ότι η συνάρτηση g µε g() = lnf(),, έχει την ιδιότητα «g (), για κάθε» αν και µόνο αν ισχύει

Διαβάστε περισσότερα

Τάξη Γ. Κεφάλαιο. Εμβαδόν Επιπέδου Χωρίου Θεωρία-Μεθοδολογία-Ασκήσεις. Ολοκληρωτικός Λογισμός

Τάξη Γ. Κεφάλαιο. Εμβαδόν Επιπέδου Χωρίου Θεωρία-Μεθοδολογία-Ασκήσεις. Ολοκληρωτικός Λογισμός Τάξη Γ Κεφάλιο Ολοκληρωτικός Λογισμός Θεωρί-Μεθοδολογί-Ασκήσεις Κεφάλιο 3 Ολοκληρωτικός Λογισμός Σε κάθε μί πό τις πρκάτω περιπτώσεις ορίζετι πό τη γρφική πράστση μις τουλάχιστον συνάρτησης κι πό κάποιες

Διαβάστε περισσότερα

ΟΛΟΚΛΗΡΩΜΑΤΑ-ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ

ΟΛΟΚΛΗΡΩΜΑΤΑ-ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ εθοδολογί Πρδείγµτ σκήσεις πιµέλει.: άτσιος ηµήτρης ΡΩ-Ρ ΡΩ διότητες: Ρ Πρδείγµτ:. υπολογίσετε τ πρκάτω ολοκληρώµτ: 5 d d συν π ( + ) d 4 Π ΡΩ ΡΩΩ. d c 6. d. d. d 4. d 5. συνd f '( ) d f ( ) + c. ηµ συν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο : Έστω z, z C με (z ) = κι (z ) = Αν f() ( z )( z )( z )( z ) = κι f(i ) = 64 8i, τότε ν ποδείξετε ότι: ) f( i )

Διαβάστε περισσότερα

ολοκληρωτικος λογισμος

ολοκληρωτικος λογισμος γ λυκειου ` κεφλιο κεφλιο κεφλιο κεφλιο κεφλιο κεφλιο ολοκληρωτικος λογισμος επιμελει : τκης τσκλκος 7 ... ρχικη συνρτηση... ορισμενο ολοκληρωμ... η συνρτηση F()= f()d... εμδον επιπεδου χωριου γιτι...

Διαβάστε περισσότερα

Γ Λυκείου. ανάλυση. Μαθηματικά Προσανατολισμού Mίλτος Παπαγρηγοράκης Χανιά. Ολοκληρώματα. Ταξινομημένες ασκήσεις για λύση.

Γ Λυκείου. ανάλυση. Μαθηματικά Προσανατολισμού Mίλτος Παπαγρηγοράκης Χανιά. Ολοκληρώματα. Ταξινομημένες ασκήσεις για λύση. Γ Λυκείου Μθημτικά Προσντολισμού 6-7 Mίλτος Πγρηγοράκης Χνιά νάλυση Τξινομημένες σκήσεις γι λύση Ολοκληρώμτ & Γενικές Ασκήσεις Τξη: Γ Γενικού Λυκείου Μθημτικά ροσντολισμού Θετικών Σουδών & οικονομίς κι

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 52 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 8 η ΕΚΑ Α

ΜΑΘΗΜΑ 52 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 8 η ΕΚΑ Α ΜΑΘΗΜΑ 5 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 8 η ΕΚΑ Α 7. Έστω συνάρτηση f : R R, η οποί είνι πργωγίσιµη κι κυρτή στο R µε f() κι f () i) Ν ποδείξετε ότι f() γι κάθε R f (t)dt Ν ποδείξετε ότι ηµ Αν επιπλέον ισχύει f () (f()

Διαβάστε περισσότερα

1. Έςτω f:r R, ςυνεχήσ ςυνάρτηςη και α,b,c R. Αποδείξτε ότι

1. Έςτω f:r R, ςυνεχήσ ςυνάρτηςη και α,b,c R. Αποδείξτε ότι Έςτω :RR, ςυνεχήσ ςυνάρτηςη κι,,cr Αποδείξτε ότι ) d d β) d d γ) d c c d c c δ) d c c c d ε) d στ) d Απάντηση:, εάν η είνι περιττή d, εάν η είνι άρτι Πρόκειτι γι πολύ βσική άσκηση, που είνι εφρμογή της

Διαβάστε περισσότερα

3.7 EΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ

3.7 EΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ OΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ 7 EΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ Στην ράγρφο είδμε ότι, ν μι συνάρτηση f είνι συνεχής σε έν διάστημ [, ] κι f ( γι κάθε [, ], τότε το εμδόν του χωρίου Ω ου ορίζετι ό τη γρφική ράστση της

Διαβάστε περισσότερα

( 1) ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ A A 1. Σχολικό σελ. 260 Α 2. Σχολικό σελ. 169 Α 3 Α 4 ΘΕΜΑ Β Β1. Άρα. Β2. Άρα από την δεύτερη σχέση έχω: = 1

( 1) ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ A A 1. Σχολικό σελ. 260 Α 2. Σχολικό σελ. 169 Α 3 Α 4 ΘΕΜΑ Β Β1. Άρα. Β2. Άρα από την δεύτερη σχέση έχω: = 1 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΚΥΡΙΑΚΗ 7//- ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ KAI ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΚΑ () ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ A

Διαβάστε περισσότερα

Α) Να αποδείξετε ότι η νιοστή παράγωγος της συνάρτησης f µπορεί να πάρει. )e όπου α ν, β ν είναι συντελεστές

Α) Να αποδείξετε ότι η νιοστή παράγωγος της συνάρτησης f µπορεί να πάρει. )e όπου α ν, β ν είναι συντελεστές . ίνετι η συνάρτηση f() e. Α) Ν ποδείξετε ότι η νιοστή πράγωγος της συνάρτησης f µπορεί ν πάρει τη µορφή (ν) f () ( + ν + ν )e όπου ν ν είνι συντελεστές εξρτηµένοι πό το ν τους οποίους κι ν υπολογίσετε.

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 3 Μ Α Θ Η Μ Α Τ Ι Κ Α Κ Α T E Y Θ Υ Ν Σ Η Σ

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 3 Μ Α Θ Η Μ Α Τ Ι Κ Α Κ Α T E Y Θ Υ Ν Σ Η Σ Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 3 Μ Α Θ Η Μ Α Τ Ι Κ Α Κ Α T E Y Θ Υ Ν Σ Η Σ Ε ι μ ε λ ε ι : Τ κ η ς Τ σ κ λ κ ο ς o ΘΕΜΑ Π ν ε λ λ δ ι κ ε ς Ε ξ ε τ σ ε ι ς ( 3 ) A. Εστω f μι συνεχης συνρτηση σε εν διστημ [, β].

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 12: ΑΣΥΜΠΤΩΤΕΣ - ΚΑΝΟΝΕΣ DE L HOSPITAL - ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 12: ΑΣΥΜΠΤΩΤΕΣ - ΚΑΝΟΝΕΣ DE L HOSPITAL - ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΑΣΥΜΠΤΩΤΕΣ - ΚΑΝΟΝΕΣ DE L HOSPITAL - ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ [Κεφ..9: Ασύμτωτες Κανόνες de l Hospital Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ Άσκηση. ΘΕΜΑ Β Να βρείτε

Διαβάστε περισσότερα

ίνονται οι πραγµατικές συναρτήσεις f, g που έχουν πεδίο ορισµού το σύνολο

ίνονται οι πραγµατικές συναρτήσεις f, g που έχουν πεδίο ορισµού το σύνολο 996 ΘΕΜΑΤΑ. ίνοντι οι πργµτικές συνρτήσεις f, g που έχουν πεδίο ορισµού το σύνολο. Αν οι f κι g έχουν συνεχείς πρώτες πργώγους κι συνδέοντι µετξύ τους µε τις σχέσεις f = g, g = - f τότε ν ποδείξετε ότι:

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο)

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 6 Α) Αν η συνάρτηση f είνι πργωγίσιµη σε έν σηµείο του πεδίου ορισµού της, ν γρφεί η εξίσωση της εφπτοµένης της γρφ πρ/σης της f στο σηµείο A(,f ( )) Α) Ν ποδείξετε ότι ν µι συνάρτηση f

Διαβάστε περισσότερα

1995 ΘΕΜΑΤΑ ίνονται οι πραγµατικοί αριθµοί κ, λ µε κ < λ και η συνάρτηση f(x)= (x κ) 5 (x λ) 3 µε x. Να αποδείξετε ότι:, για κάθε x κ και x λ.

1995 ΘΕΜΑΤΑ ίνονται οι πραγµατικοί αριθµοί κ, λ µε κ < λ και η συνάρτηση f(x)= (x κ) 5 (x λ) 3 µε x. Να αποδείξετε ότι:, για κάθε x κ και x λ. 995 ΘΕΜΑΤΑ. ίνοντι οι πργµτικοί ριθµοί κ, λ µε κ < λ κι η συνάρτηση f() ( κ) 5 ( λ) µε. Ν ποδείξετε ότι: ) f () f() 5 κ, γι κάθε κ κι λ. λ ) Η συνάρτηση g() ln f() στρέφει τ κοίλ προς τ κάτω στο διάστηµ

Διαβάστε περισσότερα

β ] και συνεχής στο ( a, β ], τότε η f παίρνει πάντοτε στο [ a,

β ] και συνεχής στο ( a, β ], τότε η f παίρνει πάντοτε στο [ a, ΕΡΩΤΗΣΕΙΣ Σ Λ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΑΔΙΚΩΝ - Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς στο τετράδιό σς την ένδειξη σωστό ή λάθος δίπλ στο γράμμ που ντιστοιχεί σε κάθε πρότση

Διαβάστε περισσότερα

Μαθηµατικά Κατεύθυνσης Γ Λυκείου Θέµατα Θεωρίας

Μαθηµατικά Κατεύθυνσης Γ Λυκείου Θέµατα Θεωρίας Μθηµτικά Κτεύθυνσης Γ Λυκείου Θέµτ Θεωρίς ΑΠΟΔΕΙΞΕΙΣ. N ποδείξετε ότι οι γρφικές πρστάσεις C κι C των συνρτήσεων κι - είνι συµµετρικές ως προς την ευθεί y που διχοτοµεί τις γωνίες Oy κι Oy Aς πάρουµε µι

Διαβάστε περισσότερα

(Ενδεικτικές Απαντήσεις) ΘΕΜΑ Α. Α1. Βλέπε απόδειξη Σελ. 262, σχολικού βιβλίου. Α2. Βλέπε ορισμό Σελ. 141, σχολικού βιβλίου

(Ενδεικτικές Απαντήσεις) ΘΕΜΑ Α. Α1. Βλέπε απόδειξη Σελ. 262, σχολικού βιβλίου. Α2. Βλέπε ορισμό Σελ. 141, σχολικού βιβλίου ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 18 ΜΑΪΟΥ 16 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΚΑΤΕΥΘΥΝΣΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) (Ενδεικτικές Ααντήσεις)

Διαβάστε περισσότερα

Ασκήσεις σχ. βιβλίου σελίδας

Ασκήσεις σχ. βιβλίου σελίδας 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ( ΟΜΑ ΑΣ) Ασκήσεις σχ. ιλίου σελίδς 19 19 1. Ν λύσετε την η εξίσωση ηµ ηµσυν συν ηµ ηµσυν συν ηµ ηµσυν συν (ηµ + συν ) ηµ ηµσυν συν + ηµ + συν 0 (1 + )ηµ ηµσυν + ( 1)συν 0 Αν συν

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ ΚΩΛΕΤΤΗ 9- -68 8464 84767 www.iraklitos.gr ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β') ΤΕΤΑΡΤΗ 8 ΜΑΪΟΥ 6 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ

Διαβάστε περισσότερα

η οποία ονομάζεται εκθετική συνάρτηση με βάση α. Αν α 1, τότε έχουμε τη σταθερή συνάρτηση f x 1.

η οποία ονομάζεται εκθετική συνάρτηση με βάση α. Αν α 1, τότε έχουμε τη σταθερή συνάρτηση f x 1. Εκθετική συνάρτηση Αν θετικός πργμτικός ριθμός, σε κάθε ντιστοιχεί η δύνμη. Έτσι ορίζετι η συνάρτηση : f : με f, 0 η οποί ονομάζετι εκθετική συνάρτηση με βάση. Αν, τότε έχουμε τη στθερή συνάρτηση f. Ας

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 27 MAΪΟΥ 2013 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 27 MAΪΟΥ 2013 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΕΥΤΕΡΑ 7 MAΪΟΥ 3 Λύσεις των θεμάτων Έκδοση 3

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. συνάρτηση φ: α,β. Ορισμός Έστω f συνάρτηση ορισμένη στο., αν. κάθε xo.

Μαθηματικά Προσανατολισμού Γ Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. συνάρτηση φ: α,β. Ορισμός Έστω f συνάρτηση ορισμένη στο., αν. κάθε xo. Ορισμός συντελεστή διεύθυνσης ευθείς Έστω συνάρτηση κι M, έν σημείο της γρφικής της πράστσης. υπάρχει το κι είνι πργμτικός ριθμός λ, τότε ορίζουμε ως εφπτομένη της στο σημείο M, την ευθεί (ε) που διέρχετι

Διαβάστε περισσότερα

( 0) = lim. g x - 1 -

( 0) = lim. g x - 1 - ν ν ΘΕΜΑ Η πολυωνυµική συνάρτηση ν + ν + + + έχει όριο στο R κι ισχύει lim ν ν Έχουµε lim + + + lim ν ν ν ν lim ν + lim ν + ν ν ν lim + ν lim + + lim + lim ν ν ν + ν + + Εποµένως, lim ΘΕΜΑ Η ρητή συνάρτηση

Διαβάστε περισσότερα

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 008 ( ΠΡΟΚΗΡΥΞΗ Π /008) ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΟΥ Κλάδος: ΠΕ 0 ΜΑΘΗΜΑΤΙΚΩΝ ΕΞΕΤΑΣΗ ΣΤΗΝ ΠΡΩΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ (Γνωστικό ντικείμενο)

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Ο μθητής που έχει μελετήσει το κεφάλιο υτό θ πρέπει ν είνι σε θέση:. Ν γνωρίζει τις έννοιες πράγουσ ή ρχική συνάρτηση, όριστο ολοκλήρωμ κι ν μπορεί ν υπολογίζει πλά όριστ ολοκληρώμτ με τη οήθει των μεθόδων

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής - Τεχνολογικής κατεύθυνσης Γ Λυκείου

ΜΑΘΗΜΑΤΙΚΑ Θετικής - Τεχνολογικής κατεύθυνσης Γ Λυκείου ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΣΤΡΙΤΣΙΟΥ ΕΠΙΜΕΛΕΙΑ: Κωνστντόπουλος Κων/νος Μθημτικός ΜSc ΜΑΘΗΜΑΤΙΚΑ Θετικής - Τεχνολογικής κτεύθυνσης Γ Λυκείου ΑΠΑΝΤΗΣΕΙΣ -ΥΠΟΔΕΙΞΕΙΣ ΤΟΥ ου ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΘΕΜΑ Α Α. (i) Βλέπε σχολικό

Διαβάστε περισσότερα

Γ Λυκείου. 4 ο ΓΛΧ M. Ι. Παπαγρηγοράκης Χανιά. [Μαθηματικά] Προσανατολισμού

Γ Λυκείου. 4 ο ΓΛΧ M. Ι. Παπαγρηγοράκης Χανιά. [Μαθηματικά] Προσανατολισμού Γ Λυκείου ο ΓΛΧ 5-6 M. Ι. Πγρηγοράκης Χνιά [Μθημτικά] Προσντολισμού Τξη: Γ Γενικού Λυκείου Μθημτικά Προσντολισμού Μέρος Γ: Ολοκληρωτικός Λογισμός Έκδοση 5.9 Η συλλογή υτή δινέμετι δωρεάν σε ψηφική μορφή

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 16 Μάθημ: ΜΑΘΗΜΑΤΙΚΑ Ημερομηνί κι ώρ εξέτσης: Δευτέρ, 6/6/16 8: 11: ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ

Διαβάστε περισσότερα

Βασικό θεώρηµα της παράγουσας Θ.Θ του ολοκληρωτικού λογισµού Μέθοδοι ολοκλήρωσης

Βασικό θεώρηµα της παράγουσας Θ.Θ του ολοκληρωτικού λογισµού Μέθοδοι ολοκλήρωσης ΜΑΘΗΜΑ.5 Η ΣΥΝΑΡΤΗΣΗ F() ΘΕΩΡΙΑ. Θεώρηµ f ()d Βσικό θεώρηµ της πράγουσς Θ.Θ του ολοκληρωτικού λογισµού Μέθοδοι ολοκλήρωσης Θεωρί - Σχόλι - Μέθοδοι Ασκήσεις Αν η f είνι µι συνεχής συνάρτηση σε διάστηµ κι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ. Σύνολο τιμών της f λέμε το σύνολο που έχει για στοιχεία του τις τιμές της f σε όλα τα.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ. Σύνολο τιμών της f λέμε το σύνολο που έχει για στοιχεία του τις τιμές της f σε όλα τα. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ Β Γενικό μέρος των συνρτήσεων Τι λέμε σύνολο τιμών μις συνάρτησης με πεδίο ορισμού το σύνολο A ; Σύνολο τιμών της λέμε το σύνολο που έχει γι στοιχεί του τις τιμές

Διαβάστε περισσότερα

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιμέλεια: Τομέας Μαθηματικών της Ώθησης

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιμέλεια: Τομέας Μαθηματικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 5 ρρ ΑΠΑΝΤΗΣΕΙΣ Επιμέλει: Τομές Μθημτικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 5 ευτέρ, 5 Μ ου 5 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α A. Έστω μι συνάρτηση, η οποί είνι ορισμένη σε έν κλειστό

Διαβάστε περισσότερα

Χαράλαμπος Στεργίου Χρήστος Νάκης ΜΑΘΗΜΑΤΙΚΑ Γ2. Υποδείξεις Απαντήσεις των προτεινόμενων ασκήσεων

Χαράλαμπος Στεργίου Χρήστος Νάκης ΜΑΘΗΜΑΤΙΚΑ Γ2. Υποδείξεις Απαντήσεις των προτεινόμενων ασκήσεων Χράλμπος Στεργίου Χρήστος Νάκης ΜΑΘΗΜΑΤΙΚΑ Γ Υποδείξεις Απντήσεις των προτεινόμενων σκήσεων 5.65 5.8 Ενότητ 5 Συμπληρωμτικές σκήσεις κι θέμτ 5.65 ) Από τ δεδομέν της άσκησης έχουμε: f () + f() = ( f ())

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΑΠΟ ΟΛΟΚΛΗΡΩΜΑΤΑ. ΣΧΕΤΙΚΑ ΘΕΜΑΤΑ

ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΑΠΟ ΟΛΟΚΛΗΡΩΜΑΤΑ. ΣΧΕΤΙΚΑ ΘΕΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΑΠΟ ΟΛΟΚΛΗΡΩΜΑΤΑ ΣΧΕΤΙΚΑ ΘΕΜΑΤΑ ΑΝΤΩΝΗΣ ΚΥΡΙΑΚΟΠΟΥΛΟΣ Μθηµτικός Συγγρφές µέλος του Σ της ΕΜΕ Πρόεδρος της Συντκτικής Επιτροπής του περιοδικού «Ευκλείδης Β» ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΟΡΙΖΟΝΤΑΙ

Διαβάστε περισσότερα

ΟΛΟΚΛΗΡΩΜΑ ΚΑΙ ΙΑΤΑΞΗ

ΟΛΟΚΛΗΡΩΜΑ ΚΑΙ ΙΑΤΑΞΗ ΟΛΟΚΛΗΡΩΜΑ ΚΑΙ ΙΑΤΑΞΗ ΘΕΩΡΗΜΑ : Α µι συάρτηση f είι ορισµέη κι συεχής στο διάστηµ [, ] µε f() γι κάθε [, ] τότε: f()d ΘΕΩΡΗΜΑ : Α f, g είι συρτήσεις ορισµέες κι συεχείς στο [, ] κι f() g(), γι κάθε [,

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009.

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009. ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 9. ΘΕΜΑ ο Α. Έστω, Δ. Δικρίνουμε τις περιπτώσεις: Αν =, τότε f( ) = f( ). Αν

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα στα Μαθηματικά Προσανατολισμών Γ

Επαναληπτικό Διαγώνισμα στα Μαθηματικά Προσανατολισμών Γ ΘΕΜΑ Α Α1. Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα. Ποια συνάρτηση ονομάζεται αρχική ή αράγουσα της f στο ; Μονάδες 4 Α. Να διατυώσετε το θεώρημα Rolle. Μονάδες (1+1+1+1)4 Α3. Να διατυώσετε και να

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ -8 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑ Αν η συνάρτηση f είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της, ν γρφεί η εξίσωση της εφπτομένης της γρφικής πράστσης της f στο σημείο Α(,f( ))

Διαβάστε περισσότερα

ίνονται οι πραγµατικές συναρτήσεις f, g µε πεδίο ορισµού το έχουν πρώτη και δεύτερη παράγωγο και g(x) f(α) g(α) f(x) g (x) για κάθε x { α}

ίνονται οι πραγµατικές συναρτήσεις f, g µε πεδίο ορισµού το έχουν πρώτη και δεύτερη παράγωγο και g(x) f(α) g(α) f(x) g (x) για κάθε x { α} 1997 ΘΕΜΑΤΑ 1 ίνοντι οι πργµτικές συνρτήσεις f, g µε πεδίο ορισµού το έχουν πρώτη κι δεύτερη πράγωγο κι πργµτικός ριθµός Θέτουµε Α f() g(), που γι κάθε Έστω κι Β f () Α g () Αν φ g() είνι πργµτική συνάρτηση

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» Η συνάρτηση f() =, 0 Υπερβολή Δύο ποσά λέγοντι ντιστρόφως νάλογ, εάν μετβάλλοντι με τέτοιο τρόπο, που ότν οι τιμές του ενός πολλπλσιάζοντι με ένν ριθμό, τότε κι οι ντίστοιχες τιμές του άλλου ν διιρούντι

Διαβάστε περισσότερα

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Προτεινόμενα θέματα Πανελλαδικών εξετάσεων Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης o ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Ααντήσεις ΘΕΜΑ ο Α. Σχολικό βιβλίο, σελίδα 6. B. Σχολικό βιβλίο, σελίδες 97 και

Διαβάστε περισσότερα

4.1 δες αντίστοιχη θεωρία 4.2. Α) ναι. Β) όχι. 4.3 δες αντίστοιχη θεωρία. 4.4 δες αντίστοιχη θεωρία 4.5 Α Λ Β Σ Γ Σ Δ Σ ,8 θεωρία.

4.1 δες αντίστοιχη θεωρία 4.2. Α) ναι. Β) όχι. 4.3 δες αντίστοιχη θεωρία. 4.4 δες αντίστοιχη θεωρία 4.5 Α Λ Β Σ Γ Σ Δ Σ ,8 θεωρία. ΑΠΑΝΤΗΣΕΙΣ - ΛΥΣΕΙΣ 4. δες ντίστοιχη θεωρί 4. Α) νι Β) όχι 4. δες ντίστοιχη θεωρί 4.4 δες ντίστοιχη θεωρί 4.5 Α Λ Β Σ Γ Σ Δ Σ 4. 6 f d f ()g()d f()g() f()g ()d f()d f () f()d f () () () f(g())d f(g( ())

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 7 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέματα και Ααντήσεις Ειμέλεια: Ομάδα Μαθηματικών http://www.othisi.gr ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 7 Παρασκευή, 9 Ιουνίου 7 Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Διαβάστε περισσότερα

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto.

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto. 1 Τ πρκάτω είνι τ κυριότερ θεωρήμτ κι ορισμοί πό το σχολικό βιβλίο κολουθούμεν πό δικά μς σχόλι. 1 ο ΠΡΩΤΟ 2 Συνρτήσεις Γνησίως μονότονη συνάρτηση Μι γνησίως ύξουσ ή γνησίως φθίνουσ συνάρτηση λέμε ότι

Διαβάστε περισσότερα

α) Στο μιγαδικό επίπεδο οι εικόνες δύο συζυγών μιγαδικών είναι σημεία συμμετρικά ως προς τον πραγματικό άξονα

α) Στο μιγαδικό επίπεδο οι εικόνες δύο συζυγών μιγαδικών είναι σημεία συμμετρικά ως προς τον πραγματικό άξονα Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν Π Α Ν Ε Λ Λ Α Δ Ι Κ Ω Ν Ε Ξ Ε Τ Α Σ Ε Ω Ν ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ 8.5. ΘΕΜΑ Α A. Έστω μι συνάρτηση f η οποί είνι συνεχής σε έν διάστημ Δ.

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ..7 Μέρος Β του σχολικού ιλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. Ν ρεθεί το εμδόν του χωρίου Ω που περικλείετι πό τη γρφική πράστση

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 1 ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 1. ) Πότε µι συνάρτηση µε Πεδίο ορισµού το Α ονοµάζετι περιοδική; β) Ποιο είνι το πεδίο ορισµού κι η περίοδος των συνρτήσεων ηµx, συνx, εφx κι σφx;. Περιοδική ονοµάζετι

Διαβάστε περισσότερα

ΠΛΗΡ/ΚΗΣ: τηλ -8856 ΕΠΑ.Λ.: τηλ -694 Κ.Ε.Κ. ERGOWAY: τηλ -647 Αό το 975 στο Μαρούσι ERGOWAY ΠΛΗΡΟΦΟΡΙΚΗ: τηλ -647 ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΛΑ Β ) ΤΕΤΑΡΤΗ 8

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 2002 ΚΛΑΔΟΣ ΠΕ 03 ΜΑΘΗΜΑΤΙΚΩΝ. EΞΕΤΑΣΗ ΣΤΗΝ ΠΡΩΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ «Γνωστικό Αντικείμενο» Kυριακή 8-12-2002

ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 2002 ΚΛΑΔΟΣ ΠΕ 03 ΜΑΘΗΜΑΤΙΚΩΝ. EΞΕΤΑΣΗ ΣΤΗΝ ΠΡΩΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ «Γνωστικό Αντικείμενο» Kυριακή 8-12-2002 ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΟΥ ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 00 ΚΛΑΔΟΣ ΠΕ 0 ΜΑΘΗΜΑΤΙΚΩΝ EΞΕΤΑΣΗ ΣΤΗΝ ΠΡΩΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ «Γνωστικό Αντικείμενο» Kυρική 8--00 Η

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ ΜΑΪΟΥ 9 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέµ 1ο Α. Έστω µι συνεχής συνάρτηση f ορισµένη σε έν διάστηµ.

Διαβάστε περισσότερα

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ Το ορισμένο ολοκλήρωμ ή ολοκλήρωμ Riema μις πργμτικής συνάρτησης f με διάστημ ολοκλήρωσης το πεπερσμένο διάστημ [, ], υπάρχει ότν: η f είνι συνεχής στο διάστημ υτό, κθώς

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (27 /5/ 2004)

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (27 /5/ 2004) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (7 /5/ 4) ΘΕΜΑ ο Α. Έστω μι συνάρτηση f ορισμένη σ' έν διάστημ Δ κι έν εσωτερικό σημείο του Δ. Αν η f προυσιάζει τοπικό κρόττο στο κι είνι πργωγίσιμη

Διαβάστε περισσότερα

είναι γραµµικώς ανεξάρτητοι, αποτελούν βάση του υποχώρου των πινάκων Β άρα η διάστασή του είναι 2. και 2

είναι γραµµικώς ανεξάρτητοι, αποτελούν βάση του υποχώρου των πινάκων Β άρα η διάστασή του είναι 2. και 2 ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 5 Ιουλίου 6 Αό τα κάτωθι Θέµατα καλείσθε να λύσετε το ο ου εριλαµβάνει ερωτήµατα αό όλη την ύλη του µαθήµατος, ενώ αό τα Θέµατα,, 4 και 5 µορείτε να ειλέξετε

Διαβάστε περισσότερα

222 Επιλεγμένα Λυμένα Θέματα

222 Επιλεγμένα Λυμένα Θέματα Ειλεγμέν Λυμέν Θέμτ Σώλος Γιάννης . Αν η εξίσωση z i z i z 6 i έχει μι φντστική ρίζ ν ρεθούν οι ρίζες της. Έστω η φντστική ρίζ i με. Τότε i i i i i 6 i i i ii 6 i i i i 6 i i 6 i- i- -6-i 6 -i i 6I -i

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017 Στασίνου 6, Γραφ., Στρόβολος, Λευκωσία Τηλ. 57-78 Φαξ: 57-79 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 7 Μάθημα: ΜΑΘΗΜΑΤΙΚΑ Παρασκευή, 9/5/7 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΑΠΟ ΤΗΝ ΜΕΡΟΣ Α ln( x). Να υολογίσετε

Διαβάστε περισσότερα

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i.

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i. . Πολυώνυμ η Μορφή Ασκήσεων: Ασκήσεις στις βσικές έννοιες του πολυωνύμου. Ποιες πό τις πρκάτω πρστάσεις είνι πολυώνυμ του i. ii. iii. iv. v. vi. 5 Σύμφων με τον ορισμό πολυώνυμ του είνι οι πρστάσεις i,

Διαβάστε περισσότερα

Μαθηματικά Γ Λυκείου Προσανατολισμού

Μαθηματικά Γ Λυκείου Προσανατολισμού Σ 6-7 Μθημτικά Γ Λυκείου Προσντολισμού Σημειώσεις μθημτικών ου ευθύνοντι σε μθητές της Γ Λυκείου. Χωρισμένες σε ενότητες γι την κλύτερη κτνόηση της ύλης Δούδης Δημήτρης ο Ενιίο Λύκειο Αλεξνδρούολης 6-7

Διαβάστε περισσότερα

Ορισμός: Άρα ένα σημείο Μ του επιπέδου είναι σημείο της έλλειψης, αν και μόνο αν 2. Εξίσωση έλλειψης με Εστίες στον άξονα χ χ και κέντρο την αρχή Ο

Ορισμός: Άρα ένα σημείο Μ του επιπέδου είναι σημείο της έλλειψης, αν και μόνο αν 2. Εξίσωση έλλειψης με Εστίες στον άξονα χ χ και κέντρο την αρχή Ο Μθημτικά Β Κτ/νσης ΕΛΛΕΙΨΗ Ορισμός: Έλλειψη με εστίες Ε κι Ε λέγετι ο γεωμ τόπος των σημείων του επιπέδου των οποίων το άθροισμ των ποστάσεων πό τ Ε κι Ε είνι στθερό κι μεγλύτερο του ΕΈ Το στθερό υτό άθροισμ

Διαβάστε περισσότερα

γραπτή εξέταση στo μάθημα ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

γραπτή εξέταση στo μάθημα ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ δυδικό η εξετστική περίοδος πό 9/0/5 έως 9/04/5 γρπτή εξέτση στo μάθημ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ ΛΥΚΕΙΟΥ Τμήμ: Βθμός: Ονομτεπώνυμο: Κθηγητές: Θ Ε Μ Α Α Α. Έστω μι συνάρτηση

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ Άσκηση.

Διαβάστε περισσότερα

1 η δεκάδα θεµάτων επανάληψης

1 η δεκάδα θεµάτων επανάληψης 1 1 η δεκάδα θεµάτων εανάληψης 1. ίνεται το ολυώνυµο Ρ(x) = x 3 x 2 4x + 4 Να αοδείξετε ότι ο αριθµός ρ = 1 είναι ρίζα του ολυωνύµου i Να βρείτε το ηλίκο της διαίρεσης του ολυωνύµου Ρ(x) µε το ολυώνυµο

Διαβάστε περισσότερα

Τριγωνομετρικές συναρτήσεις Τριγωνομετρικές εξισώσεις

Τριγωνομετρικές συναρτήσεις Τριγωνομετρικές εξισώσεις 6 Τριγωνομετρικές συναρτήσεις Τριγωνομετρικές εξισώσεις 1. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Περιοδική συνάρτηση Μια συνάρτηση f με εδίο ορισμού Α λέγεται εριοδική, όταν υάρχει T τέτοιος ώστε για κάθε x A να

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑ o ΕΚΦΩΝΗΣΕΙΣ A Έστω µι συνεχής συνάρτηση σ' έν διάστηµ [, β] Αν G είνι µι πράγουσ της στο [, β], τότε ν δείξετε ότι β d Gβ G

Διαβάστε περισσότερα

Πανελλαδικές Εξετάσεις 2017

Πανελλαδικές Εξετάσεις 2017 Πανελλαδικές Εξετάσεις 7 Μαθηματικά Προσανατολισμού 9/6/7 ΘΕΜΑ Α Προτεινόμενες λύσεις Α. Έστω, Δ, με

Διαβάστε περισσότερα

4.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ

4.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ - ΑΣΚΗΣΕΙΣ. ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ η ΜΟΡΦΗ ΑΣΚΗΣΕΩΝ: Μς ζητούν ν κάνουμε την μελέτη ή την γρφική πράστση μις συνάρτησης ΜΕΘΟΔΟΛΟΓΙΑ Ότν μς ζητούν κάνουμε την γρφική πράστση

Διαβάστε περισσότερα

Η συνάρτηση F(x)= 13/3/2010 ΘΕΩΡΗΜΑ Αν f είναι συνάρτηση συνεχής σε διάστημα Δ και α είναι ένα σημείο του Δ, τότε

Η συνάρτηση F(x)= 13/3/2010 ΘΕΩΡΗΜΑ Αν f είναι συνάρτηση συνεχής σε διάστημα Δ και α είναι ένα σημείο του Δ, τότε Μθημτικός Η συνάρτηση F()= //200 ΘΕΩΡΗΜΑ Αν f είνι συνάρτηση συνεχής σε διάστημ Δ κι είνι έν σημείο του Δ, τότε η συνάρτηση F()=, Δ είνι μι πράγουσ της f στο Δ. Δηλδή ισχύει: = f() γι κάθε Δ. (H πργώγιση

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισµα Μαθηµατικών Γ Λυκείου ΕΠΑΛ

Επαναληπτικό Διαγώνισµα Μαθηµατικών Γ Λυκείου ΕΠΑΛ ΘΕΜΑ Α Επνληπτικό Διγώνισµ Μθηµτικών Γ Λυκείου ΕΠΑΛ Α. Ν δώσετε τον ορισµό της συχνότητς κι της σχετικής συχνότητς µις πρτήρησης x i. (7 Μονάδες) Α. Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς

Διαβάστε περισσότερα

Λύσεις θεμάτων προσομοίωσης-1 ο /2017 ΛΥΣΕΙΣ

Λύσεις θεμάτων προσομοίωσης-1 ο /2017 ΛΥΣΕΙΣ Λύσεις θεμάτων ροσομοίωσης- ο /7 ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΣΑΒΒΑΤΟ, ΜΑΡΤΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: 3. 3.4 Μέρος Β του σχολικού ιλίου]. ΣΗΜΕΙΩΣΕΙΣ ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ Εμδό προλικού χωρίου Έστω ότι θέλουμε ρούμε

Διαβάστε περισσότερα

4. ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

4. ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Ι ΤΡΙΓΩΝΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Περιοδική συνάρτηση Μια συνάρτηση f με εδίο ορισμού το Α ονομάζεται εριοδική, όταν υάρχει ραγματικός αριθμός Τ > 0 τέτοιος ώστε: για κάθε A να ισχύει T A και T A, ισχύει f

Διαβάστε περισσότερα

( ) 2.3. ΣΥΝΑΡΤΗΣΕΙΣ Ορισμός συνάρτησης:

( ) 2.3. ΣΥΝΑΡΤΗΣΕΙΣ Ορισμός συνάρτησης: Πγκόσμιο χωριό γνώσης.3. ΣΥΝΑΡΤΗΣΕΙΣ.3.1. Ορισμός συνάρτησης: 6 Ο ΜΑΘΗΜΑ Συνάρτηση f / A B, ονομάζετι η διδικσί (νόμος ) που ντιστοιχίζει κάθε στοιχείο του συνόλου Α ( πεδίο ορισμού ) σε έν μόνο στοιχείο

Διαβάστε περισσότερα

ΘΕΜΑ Ο Μιγαδικοί 5 Έστω w i w wi, όου w i,, R α. Να ρεθούν τα Rw και Im w. Να ρεθεί ο γεωμετρικός τόος των σημείων Μw στο μιγαδικό είεδο γ. Να ρεθεί τ

ΘΕΜΑ Ο Μιγαδικοί 5 Έστω w i w wi, όου w i,, R α. Να ρεθούν τα Rw και Im w. Να ρεθεί ο γεωμετρικός τόος των σημείων Μw στο μιγαδικό είεδο γ. Να ρεθεί τ ΘΕΜΑ Ο Μιγαδικοί i Δίνεται ο μιγαδικός και έστω w α. Να ρεθεί ο μιγαδικός w όταν w. Να δείετε ότι w i γ. Αν η εικόνα του κινείται στον κύκλο κέντρου, και ακτίνας και Μ είναι η εικόνα του w στο μιγαδικό

Διαβάστε περισσότερα

Θεωρήματα, Προτάσεις, Εφαρμογές

Θεωρήματα, Προτάσεις, Εφαρμογές Θεωρήμτ, Προτάσεις, Εφρμογές Μιγδικοί Ιδιότητες συζυγών: Αν z i κι z γ δi είνι δυο μιγδικοί ριθμοί, τότε: Μέτρο: z z z z z z z z 3 z z z z 4 z z z z Αν z, z είνι μιγδικοί ριθμοί, τότε z z z z z z z z 3

Διαβάστε περισσότερα

( y) ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ ΘΕΜΑ Α Α1. Σχολικό βιβλίο, σελίδα 135

( y) ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ ΘΕΜΑ Α Α1. Σχολικό βιβλίο, σελίδα 135 ΘΕΜΑ Α Α. Σχολικό βιβλίο, σελίδα 5 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ 07 Α. α. Ψ β. Δίνεται αντιαράδειγμα στο σχολικό βιβλίο σελίδα 99, αράγραφος: «Παράγωγος και συνέχεια». Α.

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ε_.ΜλΓΑ() ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α.. Α.. Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνί: Κυρική 7 Απριλίου ιάρκει Εξέτσης: ώρες ΑΠΑΝΤΗΣΕΙΣ Βλέπε πόδειξη () σελ.75 σχολικού βιβλίου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Έστω η πργωγίσιμη συνάρτηση f: (, + ) R γι την οποί ισχύει η σχέση f() yf(y) = yf + y y γι κάθε, y (, + ) i. Ν δειχθεί ότι η f είνι στθερή στο (, + ). ii. Εάν iii.

Διαβάστε περισσότερα

ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ ( ) = +. ( ) ( ) ( ) ( ) ( ) x x ( ) ( ) ΙΑΜΑΝΤΟΠΟΥΛΟΣ ΘΥΜΙΟΣ 1

ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ ( ) = +. ( ) ( ) ( ) ( ) ( ) x x ( ) ( ) ΙΑΜΑΝΤΟΠΟΥΛΟΣ ΘΥΜΙΟΣ 1 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ Υπενθυµίζουµε ότι ν στ σηµεί Α, Β ενός άξον ντιστοιχίζοντι οι πργµτικοί ριθµοί, ντίστοιχ τότε: ( ΑΒ) = Β Α Α Β Σχετικά µε την πόστση δύο σηµείων στο κρτεσινό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 5 : Δίνετι η πργωγίσιμη συνάρτηση, με πεδί ρισμύ κι σύνλ τιμών

Διαβάστε περισσότερα

1.1 Τριγωνομετρικές Συναρτήσεις

1.1 Τριγωνομετρικές Συναρτήσεις 11 Τριγωνομετρικές Συναρτήσεις Ποια συνάρτηση ονομάζουμε εριοδική; ΑΠΑΝΤΗΣΗ Μια συνάρτηση f με εδίο ορισμού το σύνολο Α λέγεται εριοδική, όταν υάρχει ραγματικός αριθμός Τ > 0 τέτοιος, ώστε για κάθε x A

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α Άσκηση i. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα Δ. Αν F είναι μια παράγουσα της στο Δ, τότε να αποδείξετε ότι: όλες οι συναρτήσεις της

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3.1 Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3.1 Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3. Μέρος Β του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Πράγουσ συνάρτηση ΟΡΙΣΜΟΣ Έστω f μι συνάρτηση ορισμένη σε έν διάστημ.

Διαβάστε περισσότερα

f(x)=f(x+λ), Τότε η συνάρτηση καλείται περιοδική, ο δε ελάχιστος αριθμός λ για τον οποίο ισχύει η παραπάνω σχέση καλείται αρχική περίοδος της f.

f(x)=f(x+λ), Τότε η συνάρτηση καλείται περιοδική, ο δε ελάχιστος αριθμός λ για τον οποίο ισχύει η παραπάνω σχέση καλείται αρχική περίοδος της f. ΣΕΙΡΕΣ FOURIER Θεωρία (σειρές Fourier) Εάν μιά συνάρτηση f ορίζεται σε όλο το και υάρχει αριθμός λ> τέτοιος ώστε να ισχύει: f(x)f(x+λ), x Τότε η συνάρτηση καλείται εριοδική, ο δε ελάχιστος αριθμός λ για

Διαβάστε περισσότερα

f( ) + f( ) + f( ) + f( ). 4 γ) υπάρχει x 2 (0, 1), ώστε η εφαπτοµένη της γραφικής παράστασης της

f( ) + f( ) + f( ) + f( ). 4 γ) υπάρχει x 2 (0, 1), ώστε η εφαπτοµένη της γραφικής παράστασης της ΘΕΜΑΤΑ. Η συνάρτηση f είναι παραγωγίσιµη στο κλειστό διάστηµα [, ] και ισχύει f () > για κάθε (, ). Αν f() και f(), να δείξετε ότι: α. η ευθεία y τέµνει τη γραφική παράσταση της f σ' ένα ακριβώς σηµείο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑο Α Έστω µι συνάρτηση f ορισµένη σ' έν διάστηµ κι έν εσωτερικό σηµείο του Αν η f προυσιάζει τοπικό κρόττο στο κι είνι πργωγίσιµη

Διαβάστε περισσότερα

Ένα εξαιρετικό υποψήφιο 3 ο ή 4 ο θέµα. Να µελετηθεί προσεκτικά. µιγαδικό επίπεδο είναι σηµεία του κύκλου. z z z z

Ένα εξαιρετικό υποψήφιο 3 ο ή 4 ο θέµα. Να µελετηθεί προσεκτικά. µιγαδικό επίπεδο είναι σηµεία του κύκλου. z z z z Έν εξιρετικό υποψήφιο ο ή 4 ο θέµ Ν µελετηθεί προσεκτικά ίνοντι οι µη µηδενικοί µιγδικοί ριθµοί,, των οποίων οι εικόνες A, Β, Γ στο µιγδικό επίπεδο είνι σηµεί του κύκλου y ( ( ( Ν ποδείξετε ότι Ν ποδείξετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ΘΕΜΑο Α Έστω µι συνάρτηση f ορισµένη σ' έν διάστηµ κι έν εσωτερικό σηµείο του Αν η f προυσιάζει τοπικό κρόττο στο κι είνι πργωγίσιµη στο σηµείο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Έστω η πργωγίσιμη συνάρτηση f: (, + ) R γι την οποί ισχύει η σχέση f() yf(y) = yf + y y γι κάθε, y (, + ) i. Ν δειχθεί ότι η f είνι στθερή στο (, + ). ii. Εάν iii.

Διαβάστε περισσότερα

1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ

1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ 5 ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονί συνάρτησης Οι έννοιες γνησίως ύξουσ συνάρτηση, γνησίως φθίνουσ συνάρτηση είνι γνωστές πό προηγούμενη τάξη Συγκεκριμέν,

Διαβάστε περισσότερα