Θέμα: Ολοκληρώματα. Υπολογισμός ολοκληρωμάτων. Μέθοδοι ολοκλήρωσης. Εμβαδά. Η συνάρτηση που ορίζεται από ολοκλήρωμα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Θέμα: Ολοκληρώματα. Υπολογισμός ολοκληρωμάτων. Μέθοδοι ολοκλήρωσης. Εμβαδά. Η συνάρτηση που ορίζεται από ολοκλήρωμα"

Transcript

1 Θέμ: Ολοκληρώμτ Υολογισμός ολοκληρωμάτων Μέθοδοι ολοκλήρωσης Εμβδά Η συνάρτηση ου ορίζετι ό ολοκλήρωμ Ενλητικές σκήσεις ολοκληρωμάτων

2 ΥΠΟΛΟΓΙΣΜΟΣ ΟΛΟΚΛΗΡΩΜΑΤΩΝ ΜΕ ΕΥΡΕΣΗ ΤΗΣ ΑΡΧΙΚΗΣ ή ΠΑΡΑΓΟΥΣΑΣ ΣΥΝΑΡΤΗΣΗΣ Άσκηση N βρείτε τις ράγουσες των ρκάτω συνρτήσεων: ) ) f ( ) = f 3 ( ) = + 3) f( ) = συν 5 4) f 4 ( ) = 4 5) 6) f( ) = f( ) = ) f( ) = ημ 8) + f( ) = 9) f ( ) = + ) f( ) = 3 ln + ) f( ) = ημ+ συν ) f( ) = συν ημ

3 3) συν ημ f( ) = 4) ημ συν f( ) = ημ 5) f( ) = εφ+ συν 6) ln f( ) = 7) ημ συν f( ) = συν ΜΕΘΟΔΟΙ ΟΛΟΚΛΗΡΩΣΗΣ ΜΕ ΑΝΤΙΚΑΤΑΣΤΑΣΗ ή ΕΥΡΕΣΗ ΤΗΣ ΑΡΧΙΚΗΣ ή ΠΑΡΑΓΟΥΣΑΣ ΣΥΝΑΡΤΗΣΗΣ Άσκηση N υολογίσετε τ ρκάτω ολοκληρώμτ: ) J = ημ συνd ημ(ln ) ) I = d 3) I = + ( ) d ) I= ( 3) d 3 5) I= ( + ) ( 3 + ) d 3 6) I= ( 3 ) d 3

4 3 7) I= d 8) I= d 9) I = d 3 + ) I = + d ) J = ( + ) συν( + + 3) d ) I= + d 3) J = d 4 4) Ι = 4+ d 5) J = 6) Ι = 3 4 ln 7) I = d 8) J = συν 4 4 d συν ημ d 5 3 d 9) I = ( + ) ( ) d ) I= 3 ln 3 ημ d συν + 3 4

5 ) I= (ln ) d ) I= + d (ln + ) εφ 3) I= 3 συν d 4) I= 5) I= 3 σφ 3 d ημ 4 συν ημ d 6) I= συν ημ d 7) I= εφ d 8) Ι= + ln d OΛOKΛHPΩΣH KATA ΠAPAΓONTEΣ Άσκηση 3 N υολογίσετε τ ολοκληρώμτ: ) συν d A: ) ( + ) + d A: 3 4 3) 4) ημ d A: + 5 ln d A: 4 5) d A: συν ln 4 5

6 Άσκηση 4 Δίνετι το ολοκλήρωμ I d ν =, >, κι ν με ν. Ν οδείξετε ότι ν I ν = + ν ( ν ) ν I ν Άσκηση 5 (Θέμ 99) 4 ν Αν θέσουμε Ι = εφ d γι κάθε ν *, τότε: ν i. Αοδείξτε ότι γι κάθε ν> ισχύει Ι ν = Ιν. ν ii. Υολογίστε το Ι 5. OΛOKΛHPΩΣH PHTΩN ΣYNAPTHΣEΩN Άσκηση 6 N υολογίσετε το ρκάτω ολοκληρώμτ: ) Ι= d + ) Ι= + 3+ d 3) Ι= d 3 + 6

7 Άσκηση 7 Ν υολογίσετε τ ρκάτω ολοκληρώμτ: ) Ι= ln ( + + ) d A: ln ( + ) + ) Ι= ln + 3 d Α: 4 4ln 3 3) Ι= 3 ημ d Α: + 3ln συν + 3 συν 4) Ι= d ημ 5ημ+ 6 Α: 4 ln 3 5) I= d Α: ) J= d Α: ) I= ( ) ( + ) 8) I= 9) J= 6 d Α: d Α: + ln ln ( + ) + d Α: + ( + ) 63 ln ln 4 ) Ι= ημ d Α: Άσκηση 8 i. Αν η συνάρτηση είνι συνεχής στο [,], ν οδείξετε ότι ( ) = ( ) f d f d. ii. Αν, β>, ν οδείξετε ότι ( ) β β = ( ) d d. 7

8 Άσκηση 9 Η συνάρτηση f είνι συνεχής στο κι γι κάθε ισχύει f() + β f( ) = γ, με + β. Αοδείξετε ότι f 4 ( ) d γ =. + β Άσκηση Αν η συνάρτηση f είνι συνεχής κι άρτι στο [, ], ν οδείξετε ότι: i. ( ) f d = f ( ) d + ii. ( ) = ( ) f d f d Άσκηση i. Ν χρησιμοοιήσετε την ντικτάστση u = γι ν οδείξετε ότι f (ημ ) d = f (συν ) d ν ν ημ συν ii. Ν οδείξετε ότι d d ν ν ημ συν ν ν + = ημ + συν κοινή τιμή των δύο ολοκληρωμάτων. κι ν υολογίσετε την iii. Ν υολογίσετε το I = συν συν + ημ 3 d

9 ΕΜΒΑΔΑ Άσκηση Δίνετι η συνάρτηση ( ) 3 f = 3 +. ) Ν μελετήσετε το ρόσημό της. β) Ν βρείτε το εμβδόν του χωρίου ου ερικλείετι ό τη γρφική ράστση της f i. Τον άξον ' κι τις ευθείες = κι = ii. Τους άξονες ', yy ' κι την ευθεί = iii. Τον άξον ' κι τις ευθείες = κι = 3 iv. Τον άξον ' κι την ευθεί = v. Τον άξον ' κι την ευθεί = 3 vi. Τον άξον ' Άσκηση 3 Ν υολογίσετε το εμβδό του χωρίου ου ερικλείετι i. ό την ρβολή y =, την ευθεί +y =. ii. ό την ρβολή y =, την ευθεί +y = κι τον θετικό ημιάξον Ο iii. ό τις ρβολές y = κι y =. A: i. 9 τ.μ.,ii. 5 6, iii. Άσκηση 4 (Θέμ Δέσμες) Έστω C f η γρφική ράστση της συνάρτησης f( ) = ηµ +,, 4. Ν βρεθεί το εμβδό του χωρίου ου ερικλείετι ό την C f, την εφτομένη της στο = κι τους ημιάξονες O, Oy. 8 9

10 Άσκηση 5 Δίνετι η συνάρτηση f () = ln. i. Ν μελετήσετε την f ως ρος την μονοτονί κι τ κρόττ. ii. N οδείξετε ότι το εμβδό E(t) του χωρίου ου ερικλείετι ό τη γρφική ράστση της συνάρτησης f τον άξον κι τις ευθείες = κι =t >, δίνετι ό την σχέση: E(t) = lnt t + t. iii. Ν βρείτε τις σύμτωτες της συνάρτησης E(t), t >. iv. N υολογίσετε το lim E(t). t + A.: iii. y=, iv. Άσκηση 6 Δίνετι η συνάρτηση f : (, + ) (, + ) με f()= 4 κι f()= f (). i. Δείξτε ότι: f()= 4. ii. Ν βρείτε το εμβδό του χωρίου ου ερικλείετι ό την γρφική ράστση της συνάρτησης g με g()= f (), τον άξον κι τις ευθείες =, =..

11 ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΣΥΝΑΡΤΗΣΗΣ ΠΟΥ ΟΡΙΖΕΤΑΙ ΑΠΟ ΟΛΟΚΛΗΡΩΜΑ ( ( ) () ( ) g( ) () ( ) g( ) F = f t dt F = f t dt F f () t dt = h( ) ) Έστω ότι η συνάρτηση f είνι συνεχής στο εδίο ορισμού της A f κι στθερό σημείο του A f. ) Αν η F είνι της μορφής F( ) = f () t dt κι το A f είνι διάστημ, τότε: εδίο ορισμού της F είνι ολόκληρο το A f. ln t Π.χ. γι την F( ) = dt t + είνι F (, ) Α = +. ) Αν η F είνι της μορφής F( ) = f () t dt κι το A f είνι ένωση διστημάτων, τότε: εδίο ορισμού της F είνι το ευρύτερο διάστημ υοσύνολο του εδίου ορισμού της f στο οοίο εριέχετι το. Π.χ. γι την ( ) = είνι F (, ] F t dt Α =. t γι την G( ) = dt t είνι G (, ) Α =.

12 3) Αν η F είνι της μορφής g( ) F( ) = f () t dt, τότε: η F έχει ως εδίο ορισμού το ευρύτερο υοσύνολο του, το οοίο ροκύτει ό τις ιτήσεις: Ag a κι g ( ) νήκουν στο ίδιο διάστημ, υοσύνολο του A f. Π.χ. γι την F( ) t 5 = dt είνι Α (,5) F =. t γι την γι την είνι [ 4, ) F F( ) = t dt Α = +. είνι Α = (,, + ) F F( ) = t 4dt. 4) Αν η F είνι της μορφής g( ) F ( ) = f () t dt, τότε: h( ) η F έχει ως εδίο ορισμού το ευρύτερο υοσύνολο του, το οοίο ροκύτει ό τις ιτήσεις: Ag Ah g ( ) κι h ( ) νήκουν στο ίδιο διάστημ, υοσύνολο του A f. Π.χ. γι την F ( ) = t 9 dt 3 είνι Α [ 4, ], ) 9 F = +. γι την ( ) = F t dt είνι Α F =,.

13 Εξήγηση: Στο o ράδειγμ είνι f t () t 9 = με (, 3] [ 3, ) A = +. Ακόμη είνι f h ( ) 9 = κι g ( ) = 3. Θ ρέει λοιόν ν ισχύει: h ( ) 3 h ( ) 3 κι ή κι g ( ) 3 g ( ) 3 δηλδή κι ή κι κι ή κι 4 4 η ή κι κι ( 4 ή ). 3

14 Άσκηση 7 Ν βρείτε την ράγωγο των ρκάτω συνρτήσεων: i. ( ) = ημ 3 5 f t dt f = dt ln t ii. ( ) 4 t f = dt ln t iii. ( ) Άσκηση 8 Ν βρείτε την ράγωγο των ρκάτω συνρτήσεων: i. ( ) 5 f = συν t dt 5 ii. f ( )= t 3t dt ln t iii. ( ) = ln ( ) f dt iv. f ( )= t 4 dt. Άσκηση 9 Ν βρείτε την ράγωγο των ρκάτω συνρτήσεων: i. ( ) ( t ) ln f = dt 5 t f = t dt ln ii. ( ) + f = t 4 t dt iii. ( ) 4

15 Άσκηση Ν βρείτε την ράγωγο των ρκάτω συνρτήσεων: i. ii. iii. 3 t, f ( ) = dt, 3 t, f ( ) = ημ dt, 3 3 ( ) = συν( + ) f t dt,, iv. f () = f (t) 3 d dt,. Άσκηση Ν βρείτε τη ράγωγο των ρκάτω συνρτήσεων: i. ( ) = + ημ ( ) f t t dt, ii. ( ) ( ) f = + συν t dt, iii. ( ) ( ) f = + ln t dt, >. Άσκηση Ν βρείτε τη δεύτερη ράγωγο των ρκάτω συνρτήσεων: f = ημ t dt, i. ( ) 5 ii. ( ) = + ( ) t f t dt 5 t 5 iii. ( ) ( ημ ) f u du dt, =, 5

16 Ολοκλήρωμ της συνάρτησης F()= f (t)dt Άσκηση 3 t i. Εάν F ( ) = dt, ν βρείτε το ολοκλήρωμ ( ) F d ii. Εάν F ( ) = ημt dt, ν βρείτε το ολοκλήρωμ ( ) iii. Εάν F ( ) = F d 3 dt, ν βρείτε το ολοκλήρωμ ( ) + t F d Όρι στ ολοκληρώμτ Άσκηση 4 N βρείτε τ ρκάτω όρι: ημt A = lim+ dt t B = lim + dt lnt (A =) (B=) Γ =lim ln(3t 3t + t 3 ( ) )dt (Γ=) 3 Δ = lim + ln(+ ) dt +t (Δ=) 6

17 Άσκηση 5 Η συνάρτηση f είνι ργωγίσιμη στο. Ν βρείτε τον τύο της ν γνωρίζετε ότι ισχύει: f () = + t f ( t )dt γι κάθε. A: f () = + Άσκηση 6 Γι την συνεχή συνάρτηση f : N βρείτε τον ισχύει + f (t)dt λ, γι κάθε. * λ + ν η γρφική της ράστση C f διέρχετι ό την ρχή των ξόνων. Άσκηση 7 N δείξετε ότι γι κάθε, είνι εφ t σφ dt dt + = + t t( + t ). 7

18 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Άσκηση 8 Έστω f μι συνάρτηση δυο φορές ργωγίσιμη στο διάστημ [, β] με f ( ) >, f ( β ) > β κι f ( ) d =. Ν δείξετε ότι: i. Υάρχει γ (, β) τέτοιο, ώστε f ( γ ) =. ii. Υάρχει δ (, β) τέτοιο, ώστε f ( δ ) <. iii. Υάρχουν ξ, ξ (, β) τέτοιοι, ώστε f ( ξ ) f ( ξ ) <. =. iv. Υάρχει ξ (, β) τέτοιο, ώστε f ( ξ ) Πρόκληση! Αοδείξτε το τελευτίο ερώτημ (iv) εξιρώντς ό τ δεδομέν την ύρξη δεύτερης ργώγου, θεωρήστε, δηλδή, γνωστό ότι η f είνι λά ργωγίσιμη. Μορείτε ν βρείτε δυο διφορετικούς τρόους όδειξης γι υτό; Τρεις; Άσκηση 9 Αν η συνάρτηση f είνι συνεχής στο [, β], με f ( ) d β, ν δείξετε ότι υάρχει τουλάχιστον έν σημείο ξ (, β) τέτοιο ώστε ν ισχύει f ( ) d + f ( ) d = + β ξ β ξ ξ. β 8

19 Άσκηση 3 Έστω η ργωγίσιμη στο συνάρτηση f γι την οοί ισχύει β δ f ()d = f()d, όου γ β =δ γ> κι β<γ. i. Αν h() = f(t)dt,, ν οδείξετε ότι υάρχει έν τουλάχιστον μετξύ των +β κι γ ώστε h ( ) =. ii. Ν οδείξετε ότι η εξίσωση f () = έχει μι τουλάχιστον ρίζ στο διάστημ (, β ) +. Άσκηση 3 Έστω η συνεχής συνάρτηση f στο διάστημ [, ]. N δείξετε ότι η εξίσωση: f (t) dt = f () έχει τουλάχιστον μι λύση στο (, ). Άσκηση 3 Έστω οι θετικοί ριθμοί, β, γ με < β κι η συνεχής συνάρτηση f : (, + ), ώστε β ( ) f ( γ ) d = γ β διάστημ (γ, βγ).. N δείξετε ότι η εξίσωση f()= έχει μί τουλάχιστον ρίζ στο Άσκηση 33 Oι συνρτήσεις f, g είνι συνεχείς στο κι γι κάθε ισχύει t f (t)dt g(t)dt. Δείξτε ότι η εξίσωση: 3 f () = g() + έχει μι τουλάχιστον ρίζ στο διάστημ (,). 9

20 Άσκηση 34 Έστω η συνεχής συνάρτηση f στο [,] κι ργωγίσιμη στο (,), ώστε f () = f () + f (t) dt. Ν οδείξετε ότι : i. υάρχει (,) τέτοιο ώστε f ( ) = f (t)dt, ii. υάρχει (,) τέτοιο ώστε f ( ) = f ( ). Άσκηση 35 Έστω η ργωγίσιμη συνάρτηση f : [,] με f()=, γι την οοί ισχύει: f (t)dt γι κάθε [,]. Ν οδείξετε ότι: i. f()=, ii. υάρχει, ( ) τέτοιο ώστε: f (t)dt =, iii. υάρχει (,) τέτοιο ώστε: f ( ) =, iv. υάρχει εφτομένη της C f της οοίς η κλίση είνι ίση με. Άσκηση 36 Ν βρείτε τον τύο μις συνεχούς στο συνάρτησης f, γι την οοί ισχύει f()= t + f ( t) dt, γι κάθε. Α: 3 f( ) = + 3

21 Άσκηση 37 Έστω f : συνεχής συνάρτηση γι την οοί ισχύει f ( ) = + f ( t ) dt γι κάθε. Ν οδείξετε ότι: i. f ( ) = ii. Εάν β γ β f d f d. < < τότε ( γ β) ( ) < ( β ) ( ) γ β Άσκηση 38 Έστω η συνεχής συνάρτηση f:, ώστε ν ισχύει η σχέση: f() f(+)=6+, γι κάθε. N δείξετε ότι: i. H συνάρτηση F() = f () t dt 3 είνι στθερή κι ν βρεθεί ο τύος της. ii. Ισχύει f(t)dt = 9. + A: i. F()= 5 Άσκηση 39 Έστω συνεχής συνάρτηση f : (, + ) (, + ) γι την οοί ισχύει ότι ( t ) f ( t) f ( ) = dt γι κάθε >. Ν βρείτε τον τύο της Α: f( ) = 3

22 Άσκηση 4 ln 3 Έστω η δύο φορές ργωγίσιμη συνάρτηση f:(,+ ), ώστε f ( ) = γι κάθε > κι η εφτομένη της C f στο σημείο της A(,) είνι ράλληλη στην ευθεί y=+. i. N δείξετε ότι ο τύος της f είνι: f() = (ln) + ln +. ii. N δείξετε ότι η f() έχει μέγιστο το οοίο κι ν βρείτε. Άσκηση 4 Δίνετι η δύο φορές ργωγίσιμη συνάρτηση f στο με f () > γι κάθε. Έστω η συνάρτηση g με τύο g() = f (t)dt,. + 5 Ν οδείξετε ότι: i. H συνάρτηση g είνι ργωγίσιμη στο κι γι κάθε ισχύει: g ( + ) = g ( ). ii. H εξίσωση f (+ ) + f (5 ) = f (t)dt έχει λύση στο διάστημ (,). 5 + iii. H γρφική ράστση της συνάρτησης g έχει έν μόνο σημείο κμής, το οοίο κι ν βρείτε. Α: iii. Α(,) Άσκηση 4 Έστω η συνάρτηση f : γι την οοί ισχύουν οι σχέσεις: ( ) f( ) f ( ) = + γι κάθε κι f()=. N βρείτε τον τύο της. Α: = ( + ) f( )

23 Άσκηση 43 t Δίνετι η συνεχής στο συνάρτηση f γι την οοί ισχύει f ( t) dt = f ( ) Ν βρείτε τον τύο της f.. Α: ( ) ( f = + ) Άσκηση 44 Ν βρείτε τη συνάρτηση f γι την οοί ισχύει ( ) ημ ( ) f = t t dt γι κάθε. Α: f( ) = ημ συν Άσκηση 45 Έστω μι ργωγίσιμη συνάρτηση f :[, ) ( ) ( ) ( ) + γι την οοί ισχύει f ' = f + f t dt γι κάθε. Εάν η γρφική ράστση της f τέμνει τον άξον y' y σε σημείο με τετγμένη, ν βρείτε τον τύο της. Α: f( ) = 4+ Άσκηση 46 Η συνάρτηση f είνι συνεχής κι γι κάθε είνι f() κι ισχύει η σχέση t f () t dt i. Δείξτε ότι f () =. ii. t Ν οδείξετε ότι γι κάθε > ισχύει f () t dt <. 3

24 Άσκηση 47 Αν η συνάρτηση f είνι ργωγίσιμη κι στρέφει τ κοίλ άνω στο διάστημ [,], με f () >, ν δείξετε ότι η συνάρτηση g( ) = f () t dt είνι γνησίως ύξουσ στο (,]. Άσκηση 48 Αν η συνάρτηση f είνι συνεχής κι γνησίως ύξουσ στο διάστημ [,], ν δείξετε ότι η συνάρτηση g( ) = f () t dt είνι γνησίως ύξουσ στο (,]. Άσκηση 49 Έστω η συνάρτηση f () = t t + λ dt, λ>. i. N μελετήσετε την f ως ρος τ κοίλ. ii. Aν <β<γ, ν δείξετε ότι β. β t t + λ dt < γ β. γ t t + λ dt. β Άσκηση 5 Aν η f είνι γνησίως φθίνουσ στο [5,5], ν μελετήσετε ως ρος τη μονοτονί στο [5, ] την g()= +5 f (t) dt 5 f (). Άσκηση 5 Αν γι τις συνεχείς συνρτήσεις f, g ισχύει: f (t )dt + g() < f ()+ g(t) dt γι κάθε [, + ), ν οδείξετε ότι f()>g() γι κάθε [, ) 4 +.

25 Άσκηση 5 Έστω κι η συνάρτηση f με τύο f () = 8ln +, >. i. Ν οδείξετε ότι η f έχει ελάχιστο το οοίο κι ν βρείτε. ii. Ν μελετήσετε την f ως ρος τ κοίλ. iii. Ν βρείτε τον ώστε ν ισχύει: f ()d =. iv. Ν οδείξετε ότι f ( 5) + f ( 3) > f ( 4) Α: ii) κυρτή, iii) = 3 5 3( ) Άσκηση 53 Δίνετι η συνάρτηση ( ) f ( ) = ,. i. Ν μελετήσετε ως ρος την μονοτονί κι τ κρόττ. ii. Ν υολoγίσετε το όριο t ( t )( ) lim dt. + Α: i. ΤΜ: στο, το, TE: στο, το +5, ii. Άσκηση 54 Έστω η συνεχής συνάρτηση f στο διάστημ [ ), +, γι την οοί ισχύει: f () > f (t )dt γι κάθε. Ν οδείξετε ότι η συνάρτηση h( ) = f () t dt είνι γνησίως ύξουσ στο διάστημ [, + ), κι κτόιν ότι f()> γι κάθε. 5

26 Άσκηση 55 Θεωρούμε την συνάρτηση f () = + t dt,. i. Ν μελετήσετε την f ως ρος την μονοτονί κι το ρόσημο γι κάθε. ii. N οδείξετε ότι f () + f = γι κάθε >. iii. Ν υολογίσετε το εμβδό του χωρίου ου ερικλείετι ό την C f, τον άξον κι τις ευθείες =, =. Άσκηση 56 Έστω η συνάρτηση f : (, ) + με f () = + ln, η οοί έχει τοικό κρόττο το. i. Ν βρείτε το. ii. Ν οδείξετε ότι η εξίσωση f()= έχει κριβώς δύο λύσεις στο διάστημ (, + ). iii. Ν βρείτε την ργωγίσιμη συνάρτηση g : (, + ), με g()= ώστε g () = f () γι κάθε >. Άσκηση 57 i. Έστω η ργωγίσιμη κι γνησίως ύξουσ συνάρτηση f στο διάστημ [,β], η οοί έχει σύνολο τιμών το [γ,δ]. Αν η f είνι συνεχής στο [,β], ν οδείξετε ότι: β δ f ()d + f ()d = βδ γ. γ ii. Αν η συνάρτηση f είνι ργωγίσιμη στο κι ισχύει: 6

27 f 5 () + 5 f () = γι κάθε, τότε φού οδείξετε ότι η f ντιστρέφετι, ν βρείτε τον τύο της f κι ν υολογίσετε το β f ()d ότν f()= κι f(β)=. Άσκηση 58 Δίνετι η συνάρτηση f : (, ) Είνι ργωγίσιμη στο (, + ), f ( ) > γι κάθε >, f ( ) f ( ) ' + = γι κάθε >, + γι την οοί ισχύουν τ εξής: Η γρφική της ράστση διέρχετι ό το σημείο Α(, ). i. Ν οδείξετε ότι η f ' είνι συνεχής στο (, + ) κι ν βρείτε την f. ii. Ν οδείξετε ότι ( ) ( ) f t f < dt < γι κάθε >. t f t dt t με iii. Ν βρείτε τη συνάρτηση F με τύο F ( ) = + ( ) >. iv. Ν οδείξετε ότι t dt < γι κάθε >. (Δέσμες 998) 7

28 Άσκηση 59 Έστω η συνάρτηση f ορισμένη στο [ β, ] γι την οοί ισχύουν ) η f είνι ργωγίσιμη με f ()< γι κάθε [ β, ] β β) f ()d = κ. i) Aν η γρφική ράστση C f της f τέμνει τις ευθείες = κι =β στ σημεί A κι B ντιστοίχως κι ό έν σημείο M (, ( )) f της C f φέρουμε την ευθεί y=f( ) ου τέμνει τις ευθείες = κι =β στ σημεί Γ κι Δ, ν οδείξετε ότι τ εμβδά των χωρίων (AMΓ) κι (BMΔ) ν είνι ίσ ν κι μόνο ν το σημείο M έχει κ συντετγμένες f ( β ), κ β. ii) N βρείτε σημείο N (, ( )) f ώστε το εμβδό ου ερικλείετι ό την γρφική ράστση της f, την οριζόντι ευθεί y=f( ) κι ό τις κτκόρυφες ευθείες = κι =β, ν γίνετι ελάχιστο. A: ii) = + β Άσκηση 6 Έστω οι συνεχείς συνρτήσεις f, g : [, β] όου f () > g() > γι κάθε (, β), κι οι γρφικές ρστάσεις υτών έχουν κοινά σημεί τ: A(, f()) κι B(β, f(β)). N δείξετε ότι υάρχει ευθεί =ξ, ξ (, β), ου χωρίζει το χωρίο ου ερικλείετι μετξύ των C f, C g σε δύο άλλ χωρί με εμβδά Ε, Ε ώστε: Ε =4 Ε. 8

29 Άσκηση 6 Έστω η συνεχής συνάρτηση f : κάθε. γι την οοί ισχύει f ( ) = dt +, γι f ( t) + i. Ν οδείξετε ότι η συνάρτηση f είνι γνησίως ύξουσ. ii. Ν δείξετε ότι ισχύει: f ( ) f( ) = + +, γι κάθε. iii. Ν βρείτε τον τύο της ντίστροφης συνάρτησης. iv. Ν βρείτε το εμβδόν του χωρίου ου ερικλείετι ό την γρφική ράστση της f, τους άξονες τετμημένων κι τετγμένων κι την ευθεί =. v. Ν οδείξετε ότι d =. f ( ) + Άσκηση 6 Έσ τω η ργωγίσιμη συνάρτηση f :(, + ) (, + ), γι την οοί ισχύει ότι: f ( ) f + ( ) = γι κάθε >. i. Ν οδείξετε ότι η f είνι ντιστρέψιμη. ii. Ν βρείτε τον τύο της f. iii. Ν λύσετε τις εξισώσεις f ( ) = κι f ( ) = 4. iv. Ν υολογίσετε το εμβδόν του χωρίου ου ερικλείετι ό την γρφική ράστση της f, τον άξον ' κι τις ευθείες 4 = +, = +. 9

30 Άσκηση 63 Δίνετι η ργωγίσιμη στο γι κάθε > κι η C f διέρχετι ό το σημείο A(, ). * + συνάρτηση f, γι την οοί ισχύει ότι f () +f ( ) = i. N οδείξετε ότι ο τύος της f είνι f( ) = ln. ii. Ν υολογίσετε το εμβδόν του χωρίου ου ερικλείετι ό την C f, τον κι τις ευθείες =, =. Α: ii. 3 3

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΡΧΙΚΗ ΣΥΝΑΡΤΗΣΗ - ΠΑΡΑΓΟΥΣΑ ΑΣΚΗΣΕΙΣ Ν ρείτε τις ράγουσες F των ρκάτω συνρτήσεων ( ) = ( +) ( -) log ( -) γ ( ) = ( +) ( - ) +, > ln( -) ln( -) ( ) = + 5, > δ ( ) = 5 +, > Ν ρείτε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ 1. x-2 x 5x x -3 x dx, ε. 20x 3- x dx, στ. dx. εφx+εφ3x dx, δ. e dx, ε. ηµ - +3 dx. 2 3

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ 1. x-2 x 5x x -3 x dx, ε. 20x 3- x dx, στ. dx. εφx+εφ3x dx, δ. e dx, ε. ηµ - +3 dx. 2 3 - 6 - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. Ν υολογίσετε τ ρκάτω ολοκληρώµτ:. - ( -ηµ+συν)d, β. - +συνd, γ. d, δ. - 5 - d, ε. - d, στ. d.. Ν υολογίσετε τ ρκάτω ολοκληρώµτ: ηµ -συν +5. Α= d, β. Β= ( + )

Διαβάστε περισσότερα

Ορισμένο ολοκλήρωμα συνάρτησης Η συνάρτηση F( x ) = ( )

Ορισμένο ολοκλήρωμα συνάρτησης Η συνάρτηση F( x ) = ( ) 9 Ορισμένο ολοκλήρωμ συνάρτησης Η συνάρτηση F( = f t dt Θεωρούμε τη συνεχή συνάρτηση f:a R με A = [,] Χωρίζουμε το [,] σε ν ισομήκη υοδιστήμτ ου το κθέν έχει μήκος Δ = Σε κάθε υοδιάστημ ου σχημτίζετι ν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ:..4 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β Άσκηση. Ν υολογίσετε το ολοκλήρωμ ( + ) d. Εειδή ( ) ( + ) =

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 11: ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ [Κεφ 2.8: Κυρτότητα Σημεία Καμπής του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 11: ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ [Κεφ 2.8: Κυρτότητα Σημεία Καμπής του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ [Κεφ.8: Κυρτότητ Σημεί Κμής του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β Άσκηση. Δίνοντι οι συνρτήσεις f, g ορισμένες στο [, ]

Διαβάστε περισσότερα

Γενικές ασκήσεις σχ. Βιβλίου 3 ου κεφαλαίου

Γενικές ασκήσεις σχ. Βιβλίου 3 ου κεφαλαίου Γενικές σκήσεις σχ. Βιβλίου ου κεφλίου. Ν χρησιµοοιήσετε την ντικτάστση u γι ν οδείξετε ότι f ( ηµ )d f ( ηµ )d ηµ i Ν υολογίσετε το ολοκλήρωµ d +ηµ u du d κι u u Έστω Ι ( ) f ( ηµ )d Ι ( ) ( u) f ηµ u

Διαβάστε περισσότερα

Γ Λυκείου. ανάλυση. Μαθηματικά Προσανατολισμού Mίλτος Παπαγρηγοράκης Χανιά. Ολοκληρώματα. Ταξινομημένες ασκήσεις για λύση.

Γ Λυκείου. ανάλυση. Μαθηματικά Προσανατολισμού Mίλτος Παπαγρηγοράκης Χανιά. Ολοκληρώματα. Ταξινομημένες ασκήσεις για λύση. Γ Λυκείου Μθημτικά Προσντολισμού 6-7 Mίλτος Πγρηγοράκης Χνιά νάλυση Τξινομημένες σκήσεις γι λύση Ολοκληρώμτ & Γενικές Ασκήσεις Τξη: Γ Γενικού Λυκείου Μθημτικά ροσντολισμού Θετικών Σουδών & οικονομίς κι

Διαβάστε περισσότερα

Γ ΛYKEIOY. Μαθηματικά Προσανατολισμού. ανάλυση Mίλτος Παπαγρηγοράκης Χανιά. Ολοκληρώματα. Ταξινομημένες ασκήσεις για λύση.

Γ ΛYKEIOY. Μαθηματικά Προσανατολισμού. ανάλυση Mίλτος Παπαγρηγοράκης Χανιά. Ολοκληρώματα. Ταξινομημένες ασκήσεις για λύση. νάλυση Γ ΛYKEIOY Μθημτικά Προσντολισμού 9 - Mίλτος Πγρηγοράκης Χνιά 65 Τξινομημένες σκήσεις γι λύση Ολοκληρώμτ & Γενικές Ασκήσεις Τξη: Γ Γενικού Λυκείου Μθημτικά ροσντολισμού Θετικών Σουδών & οικονομίς

Διαβάστε περισσότερα

3x 2x 1 dx. x dx. x x x dx.

3x 2x 1 dx. x dx. x x x dx. ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση (Υολογισμός του f () d Βσιζόμενος σε Ιδιότητες Ή στην Αρχική της f, η οοί Βρίσκετι ό Κνόνες Πργώγισης) Ν υολογίσετε το ολοκλήρωμ ( + ) d (Θέμ Β) Άσκηση (Υολογισμός του f () d

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: 3. 3.4 Μέρος Β του σχολικού ιλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Πράδειγμ. Ν υολογισθούν τ ορισμέν ολοκληρώμτ: ΘΕΜΑ Β i. ii. (

Διαβάστε περισσότερα

114 ασκήσεις ένα ερώτημα - σε όλη την ύλη. x και g x ln 1 2x ln x. ισχύει η σχέση: είναι περιττή και ισχύει ότι. f x x 2 2x, για κάθε x

114 ασκήσεις ένα ερώτημα - σε όλη την ύλη. x και g x ln 1 2x ln x. ισχύει η σχέση: είναι περιττή και ισχύει ότι. f x x 2 2x, για κάθε x Ν εξετάσετε ν είνι ίσες οι συνρτήσεις f() N ποδείξετε ότι f g, ότν γι κάθε Η συνάρτηση f : f,. 4 σκήσεις έν ερώτημ - σε όλη την ύλη ln κι g ln ln ισχύει η σχέση: είνι περιττή κι ισχύει ότι 4 Ν οριστεί

Διαβάστε περισσότερα

Μαθηματικά Θετικής - Τεχνολογική Κατεύθυνσης

Μαθηματικά Θετικής - Τεχνολογική Κατεύθυνσης o Γεικό Λύκειο Χίω 8-9 Γ τάξη Τμήμ Μθημτικά Θετικής - Τεχολογική Κτεύθυσης γ Ασκήσεις γι λύση Μ Πγρηγοράκης Γ ΛΥΚΕΙΟΥ - ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μ ΠΑΠΑΓΡΗΓΟΡΑΚΗΣ 56 Α) Ν υολογίσετε τ:

Διαβάστε περισσότερα

Ο Λ Ο Κ Λ Η Ρ Ω Μ Α Τ Α

Ο Λ Ο Κ Λ Η Ρ Ω Μ Α Τ Α Ο Λ Ο Κ Λ Η Ρ Ω Μ Α Τ Α ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ 4 Ν υπολογίσετε το ολοκλήρωµ: 5 + d (988) 4 Αν I v π 4 v = εϕ d, ν Ν*, τότε: ) Ν ποδείξετε ότι γι κάθε ν>, ισχύει: Iv = Iv v β) Ν υπολογίσετε το Ι 5 (99) 4 Ν βρεθεί

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο : Έστω z, z C με (z ) = κι (z ) = Αν f() ( z )( z )( z )( z ) = κι f(i ) = 64 8i, τότε ν ποδείξετε ότι: ) f( i )

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 16 Μάθημ: ΜΑΘΗΜΑΤΙΚΑ Ημερομηνί κι ώρ εξέτσης: Δευτέρ, 6/6/16 8: 11: ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ

Διαβάστε περισσότερα

Τάξη Γ. Κεφάλαιο. Εμβαδόν Επιπέδου Χωρίου Θεωρία-Μεθοδολογία-Ασκήσεις. Ολοκληρωτικός Λογισμός

Τάξη Γ. Κεφάλαιο. Εμβαδόν Επιπέδου Χωρίου Θεωρία-Μεθοδολογία-Ασκήσεις. Ολοκληρωτικός Λογισμός Τάξη Γ Κεφάλιο Ολοκληρωτικός Λογισμός Θεωρί-Μεθοδολογί-Ασκήσεις Κεφάλιο 3 Ολοκληρωτικός Λογισμός Σε κάθε μί πό τις πρκάτω περιπτώσεις ορίζετι πό τη γρφική πράστση μις τουλάχιστον συνάρτησης κι πό κάποιες

Διαβάστε περισσότερα

( ) = ( ) για κάθε. Θέμα Δ. x 2. Δίνονται οι συναρτήσεις f x

( ) = ( ) για κάθε. Θέμα Δ. x 2. Δίνονται οι συναρτήσεις f x ΔΙΑΓΩΝΙΣΜΑΤΑ Διγώνισμ Θέμ Α Α Ν ποδειχθεί ότι η συνάρτηση f = ln,, είνι πργωγίσιμη στο κι ισχύει f = Μονάδες 7 Α Πότε μί συνάρτηση f λέμε ότι είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της; Α Πότε

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ -8 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑ Αν η συνάρτηση f είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της, ν γρφεί η εξίσωση της εφπτομένης της γρφικής πράστσης της f στο σημείο Α(,f( ))

Διαβάστε περισσότερα

just ( u) Πατρόκλου 66 Ίλιον

just ( u) Πατρόκλου 66 Ίλιον just f ( u) du it Πτρόκλου 66 Ίλιον 637345 6944 www.group group-aei aei.gr Νίκος Σούρµπης - - Γιώργος Βρδούκς Ν χρκτηρίσετε τ πρκάτω, σηµειώνοντς Σ (σωστό) ή Λ (λάθος). Αν z, z C, τοτε zz = zz. Η εξίσωση

Διαβάστε περισσότερα

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ. Αόριστο ολοκλήρωμα. Ερωτήσεις θεωρίας

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ. Αόριστο ολοκλήρωμα. Ερωτήσεις θεωρίας ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Αόριστο ολοκλήρωμ Ερωτήσεις θεωρίς Ποι ρολήμτ οδήγησν στην νάγκη ορισμού της ρχικής συνάρτησης ; Δώστε τον ορισμό της ρχικής συνάρτησης ή ράγουσς f στο Δ κι έν ράδειγμ Πολλές φορές

Διαβάστε περισσότερα

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ [4] ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΡΧΙΚΗ ΣΥΝAΡΤΗΣΗ Ορισµός Έστω µι συνάρτηση f ορισµένη σε έν διάστηµ Αρχική ή ράγουσ συνάρτηση της f στο, ονοµάζετι κάθε συνάρτηση F, ργωγίσιµη στο, τέτοι

Διαβάστε περισσότερα

β ] και συνεχής στο ( a, β ], τότε η f παίρνει πάντοτε στο [ a,

β ] και συνεχής στο ( a, β ], τότε η f παίρνει πάντοτε στο [ a, ΕΡΩΤΗΣΕΙΣ Σ Λ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΑΔΙΚΩΝ - Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς στο τετράδιό σς την ένδειξη σωστό ή λάθος δίπλ στο γράμμ που ντιστοιχεί σε κάθε πρότση

Διαβάστε περισσότερα

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Κεφάλιο ο: ΟΟΚΗΡΩΤΙΚΟΟΓΙΜΟ Ερωτήσεις του τύου «ωστό - άθος». * Η συνάρτηση F () = ln - είνι µι ράγουσ της συνάρτησης f () = ln.. * Κάθε συνεχής συνάρτηση σε έν διάστηµ, έχει µόνο µι ράγουσ στο.. * Αν F,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : Η ΣΥΝΑΡΤΗΣΗ F( = (d [Kεφ:.5 H Συνάρτηση F( = (d Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. lim e d. Ν υπολογίσετε το όριο: ( Έχουμε ( e d

Διαβάστε περισσότερα

( 1) ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ A A 1. Σχολικό σελ. 260 Α 2. Σχολικό σελ. 169 Α 3 Α 4 ΘΕΜΑ Β Β1. Άρα. Β2. Άρα από την δεύτερη σχέση έχω: = 1

( 1) ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ A A 1. Σχολικό σελ. 260 Α 2. Σχολικό σελ. 169 Α 3 Α 4 ΘΕΜΑ Β Β1. Άρα. Β2. Άρα από την δεύτερη σχέση έχω: = 1 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΚΥΡΙΑΚΗ 7//- ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ KAI ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΚΑ () ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ A

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009.

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009. ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 9. ΘΕΜΑ ο Α. Έστω, Δ. Δικρίνουμε τις περιπτώσεις: Αν =, τότε f( ) = f( ). Αν

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο)

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 6 Α) Αν η συνάρτηση f είνι πργωγίσιµη σε έν σηµείο του πεδίου ορισµού της, ν γρφεί η εξίσωση της εφπτοµένης της γρφ πρ/σης της f στο σηµείο A(,f ( )) Α) Ν ποδείξετε ότι ν µι συνάρτηση f

Διαβάστε περισσότερα

Α2. Πότε μία συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα του πεδίου ορισμού της; Μονάδες 3

Α2. Πότε μία συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα του πεδίου ορισμού της; Μονάδες 3 Βθμός: /25 Τεστ Μθημτικών Εξετζόμενος-η: Προσντολισμού, Γ Λυκείου Θεωρί 1 Κθηγητής: Ιορδάνης Χτζηνικολάου Συνρτήσεις Θέμ Α Α1. Ν ποδείξετε ότι οι γρφικές πρστάσεις C κι C των συνρτήσεων f κι f 1 είνι συμμετρικές

Διαβάστε περισσότερα

E f (x)dx f (x)dx E. 7 f (x)dx (3). 7 f (x)dx E E E E.

E f (x)dx f (x)dx E. 7 f (x)dx (3). 7 f (x)dx E E E E. ΘΕΜΑ Α Α i Σχολικό βιβλίο σελίδ 6 ii Σχολικό βιβλίο σελίδ 6 Α Σχολικό βιβλίο σελίδ 85 Α3 Ισχύει ότι 7 3 7 ()d ()d ()d () 3 Στο,3 είνι () οπότε το εμβδό του χωρίου Ω που ορίζετι πό την κι τις ευθείες, 3

Διαβάστε περισσότερα

ΥΠΟΔΕΙΞΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ

ΥΠΟΔΕΙΞΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΥΠΟΔΕΙΞΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ. ) Δικρίνουμε τις εριτώσεις >e, e η g δεν έχει κρόττ, οότε ρέει

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 5 : Δίνετι η πργωγίσιμη συνάρτηση, με πεδί ρισμύ κι σύνλ τιμών

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Ο μθητής που έχει μελετήσει το κεφάλιο υτό θ πρέπει ν είνι σε θέση:. Ν γνωρίζει τις έννοιες πράγουσ ή ρχική συνάρτηση, όριστο ολοκλήρωμ κι ν μπορεί ν υπολογίζει πλά όριστ ολοκληρώμτ με τη οήθει των μεθόδων

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 52 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 8 η ΕΚΑ Α

ΜΑΘΗΜΑ 52 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 8 η ΕΚΑ Α ΜΑΘΗΜΑ 5 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 8 η ΕΚΑ Α 7. Έστω συνάρτηση f : R R, η οποί είνι πργωγίσιµη κι κυρτή στο R µε f() κι f () i) Ν ποδείξετε ότι f() γι κάθε R f (t)dt Ν ποδείξετε ότι ηµ Αν επιπλέον ισχύει f () (f()

Διαβάστε περισσότερα

Απάντηση: όπου c R. Δίνεται όμως ότι f(0) = 1, άρα η προηγούμενη για x = 0, δίνει c = ½. Παίρνουμε λοιπόν την

Απάντηση: όπου c R. Δίνεται όμως ότι f(0) = 1, άρα η προηγούμενη για x = 0, δίνει c = ½. Παίρνουμε λοιπόν την _ Θέμ Γ Θεωρούμε τις συνρτσεις,:rr, με την ργωγίσιμη κι τέτοιες, ώστε: () = κι, γι κάθε R, Γ Ν οδείξετε ότι, R Γ Ν βρείτε το λθος των ργμτικών ριζών της εξίσωσης Γ Ν οδείξετε ότι υάρχει τουλάχιστον ένς,

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. συνάρτηση φ: α,β. Ορισμός Έστω f συνάρτηση ορισμένη στο., αν. κάθε xo.

Μαθηματικά Προσανατολισμού Γ Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. συνάρτηση φ: α,β. Ορισμός Έστω f συνάρτηση ορισμένη στο., αν. κάθε xo. Ορισμός συντελεστή διεύθυνσης ευθείς Έστω συνάρτηση κι M, έν σημείο της γρφικής της πράστσης. υπάρχει το κι είνι πργμτικός ριθμός λ, τότε ορίζουμε ως εφπτομένη της στο σημείο M, την ευθεί (ε) που διέρχετι

Διαβάστε περισσότερα

ΟΛΟΚΛΗΡΩΜΑΤΑ-ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ

ΟΛΟΚΛΗΡΩΜΑΤΑ-ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ εθοδολογί Πρδείγµτ σκήσεις πιµέλει.: άτσιος ηµήτρης ΡΩ-Ρ ΡΩ διότητες: Ρ Πρδείγµτ:. υπολογίσετε τ πρκάτω ολοκληρώµτ: 5 d d συν π ( + ) d 4 Π ΡΩ ΡΩΩ. d c 6. d. d. d 4. d 5. συνd f '( ) d f ( ) + c. ηµ συν

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Μ. Τετάρτη 11 Απριλίου 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Μ. Τετάρτη 11 Απριλίου 2012 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνί: Μ. Τετάρτη Απριλίου ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α. Βλέπε Σχολικό Βιβλίο, σελίδ 7 την πόδειξη του Θεωρήµτος. Α. Βλέπε

Διαβάστε περισσότερα

1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ

1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ 5 ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονί συνάρτησης Οι έννοιες γνησίως ύξουσ συνάρτηση, γνησίως φθίνουσ συνάρτηση είνι γνωστές πό προηγούμενη τάξη Συγκεκριμέν,

Διαβάστε περισσότερα

3ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

3ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A 3ο Επνληπτικό διγώνισμ στ Μθημτικά κτεύθυνσης της Γ Λυκείου 17-18 Θέμ A Α1 Έστω f μι συνεχής συνάρτηση σ έν διάστημ β ν ποδείξετε ότι: f t dt G β G Α Πότε μι συνάρτηση λέγετι 1-1; Α3 Πότε μι συνάρτηση

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Μ. Τετάρτη 11 Απριλίου 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Μ. Τετάρτη 11 Απριλίου 2012 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΤΑΞΗ: ΜΑΘΗΜΑ: 3 η ΤΑΞΗ ΕΠΑ.Λ. (Β ΟΜΑ Α ΜΑΘΗΜΑΤΙΚΑ II Ηµεροµηνί: Μ. Τετάρτη Απριλίου ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α. Βλέπε Σχολικό Βιβλίο, σελίδ 7 την πόδειξη του Θεωρήµτος. Α. Βλέπε Σχολικό Βιβλίο,

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ

ΜΑΘΗΜΑ ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΜΑΘΗΜΑ 9. ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ Θεωρί - Σχόλι - Μέθοδοι Ασκήσεις νισοτήτων ΘΕΩΡΙΑ. Ορισµός Αν f συνεχής στο [, ], τότε ν f ()d lim f ( ξκ ) ν + κ. Εισήµνση Το ολοκλήρωµ δεν εξρτάτι ό τη µετλητή, δηλδή f

Διαβάστε περισσότερα

Εκφωνήσεις των θεμάτων των εξετάσεων Επεξεργασμένες ενδεικτικές απαντήσεις Ενδεικτική κατανομή μονάδων ανά ερώτημα

Εκφωνήσεις των θεμάτων των εξετάσεων Επεξεργασμένες ενδεικτικές απαντήσεις Ενδεικτική κατανομή μονάδων ανά ερώτημα . Εκφωνήσεις των θεμάτων των εξετάσεων Εεξεργασμένες ενδεικτικές ααντήσεις Ενδεικτική κατανομή μονάδων ανά ερώτημα Εεξεργασία: Δημήτριος Σαθάρας Σχολικός Σύμβουλος Μαθηματικών Συντονιστής βαθμολογητών

Διαβάστε περισσότερα

Μαθηµατικά Κατεύθυνσης Γ Λυκείου Θέµατα Θεωρίας

Μαθηµατικά Κατεύθυνσης Γ Λυκείου Θέµατα Θεωρίας Μθηµτικά Κτεύθυνσης Γ Λυκείου Θέµτ Θεωρίς ΑΠΟΔΕΙΞΕΙΣ. N ποδείξετε ότι οι γρφικές πρστάσεις C κι C των συνρτήσεων κι - είνι συµµετρικές ως προς την ευθεί y που διχοτοµεί τις γωνίες Oy κι Oy Aς πάρουµε µι

Διαβάστε περισσότερα

4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A 4ο Επνληπτικό διγώνισμ στ Μθημτικά κτεύθυνσης της Γ Λυκείου 7-8 Θέμ A Α Έστω η συνάρτηση Ν ποδείξετε ότι η είνι πργωγίσιμη στο,, δηλδή κι ισχύει Ν ποδείξετε ότι η δεν είνι πργωγίσιμη στο μονάδες 7 A Ν

Διαβάστε περισσότερα

ίνονται οι πραγµατικές συναρτήσεις f, g που έχουν πεδίο ορισµού το σύνολο

ίνονται οι πραγµατικές συναρτήσεις f, g που έχουν πεδίο ορισµού το σύνολο 996 ΘΕΜΑΤΑ. ίνοντι οι πργµτικές συνρτήσεις f, g που έχουν πεδίο ορισµού το σύνολο. Αν οι f κι g έχουν συνεχείς πρώτες πργώγους κι συνδέοντι µετξύ τους µε τις σχέσεις f = g, g = - f τότε ν ποδείξετε ότι:

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 6 Α) Αν η συνάρτηση f είνι πργωγίσιµη σε έν σηµείο του πεδίου ορισµού της, ν γρφεί η εξίσωση της εφπτοµένης της γρφ πρ/σης της f στο σηµείο A(,f ( )) Α)

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ ΜΑΪΟΥ 9 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέµ 1ο Α. Έστω µι συνεχής συνάρτηση f ορισµένη σε έν διάστηµ.

Διαβάστε περισσότερα

, x > 0. Β) να µελετηθεί η µονοτονία και τα ακρότατα της f. Γ) να δείξετε ότι η C f είναι κυρτή και ότι δεν υπάρχουν τρία συνευθειακά σηµεία

, x > 0. Β) να µελετηθεί η µονοτονία και τα ακρότατα της f. Γ) να δείξετε ότι η C f είναι κυρτή και ότι δεν υπάρχουν τρία συνευθειακά σηµεία f ( t ) ίνεται η συνεχής συνάρτηση f : [, + ) R µε: f ( ) = + ( + ), > t Α ) να δείξετε ότι: α) f ( ) = ln +, > β) f ( ) = Β) να µελετηθεί η µονοτονία και τα ακρότατα της f Γ) να δείξετε ότι η C f είναι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ. Σύνολο τιμών της f λέμε το σύνολο που έχει για στοιχεία του τις τιμές της f σε όλα τα.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ. Σύνολο τιμών της f λέμε το σύνολο που έχει για στοιχεία του τις τιμές της f σε όλα τα. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ Β Γενικό μέρος των συνρτήσεων Τι λέμε σύνολο τιμών μις συνάρτησης με πεδίο ορισμού το σύνολο A ; Σύνολο τιμών της λέμε το σύνολο που έχει γι στοιχεί του τις τιμές

Διαβάστε περισσότερα

ΘΕΜΑ 151 ο. x -f(t) 2f(x)+f (x)= 2 e dt και f(0) = 0.

ΘΕΜΑ 151 ο. x -f(t) 2f(x)+f (x)= 2 e dt και f(0) = 0. ΘΕΜΑ 5 ο Έστω συνάρτηση f :[0, + ) παραγωγίσιμη στο διάστημα [0, + ) για την οποία ισχύει : 2 -f(t) 2f()+f ()= 2 e dt και f(0) = 0. i) Να δείξετε ότι + f() 0 για κάθε є [0, + ). ii) Να δείξετε ότι η f

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ..7 Μέρος Β του σχολικού ιλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. Ν ρεθεί το εμδόν του χωρίου Ω που περικλείετι πό τη γρφική πράστση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 23

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 23 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΘΕΜΑ Αν η συνάρτηση f είνι συνεχής στο, πργωγίσιμη στο κι γι κάθε ισχύει f f ( ) d = e e e Α) Ν ποδείξετε ότι: f = e i) η f είνι πργωγίσιμη στο κι ισχύει ii) f() = e Β)

Διαβάστε περισσότερα

με x1 x2 , τότε η f είναι γνησίως αύξουσα στο Α. β) Αν για μια συνάρτηση f: ισχύει ότι f x , τότε το σύνολο τιμών της δεν μπορεί να είναι της μορφής,

με x1 x2 , τότε η f είναι γνησίως αύξουσα στο Α. β) Αν για μια συνάρτηση f: ισχύει ότι f x , τότε το σύνολο τιμών της δεν μπορεί να είναι της μορφής, Μθημτικά κτεύθυνσης Γ Λυκείου ο Διγώνισμ διάρκεις ωρών στις Συνρτήσεις κι τ Όρι Οκτώβριος Θέμ Α Α. Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς στο τετράδιό σς την ένδειξη Σωστό ή Λάθος δίπλ στο

Διαβάστε περισσότερα

[f(x)] [f(x)] [f (x)] (x 2 + 2) x 2-2 x 2.

[f(x)] [f(x)] [f (x)] (x 2 + 2) x 2-2 x 2. 99 ΘΕΜΑΤΑ. α) ίνεται η συνάρτηση f ορισµένη και δύο φορές αραγωγίσιµη στο διάστηµα µε τιµές στο (, + ). Να δειχθεί ότι η συνάρτηση g µε g() = lnf(),, έχει την ιδιότητα «g (), για κάθε» αν και µόνο αν ισχύει

Διαβάστε περισσότερα

ΝΕΟ ΦΡΟΝΤΙΣΤΗΡΙΟ. Λύσεις. Θέμα Α. Α1. Σχολικό βιβλίο σελίδα 262. Α2. Σχολικό βιβλίο σελίδα 169. Α3. α) (1) κάτω, (2) το σημείο επαφής τους

ΝΕΟ ΦΡΟΝΤΙΣΤΗΡΙΟ. Λύσεις. Θέμα Α. Α1. Σχολικό βιβλίο σελίδα 262. Α2. Σχολικό βιβλίο σελίδα 169. Α3. α) (1) κάτω, (2) το σημείο επαφής τους Λύσεις Θέμ Α Α. Σχοικό ιίο σείδ. Α. Σχοικό ιίο σείδ 9. Α. ) () κάτω, () το σημείο επφής τους ) () Α4. ) Σωστό ) Λάθος γ) Λάθος Θέμ Β ν ( ν κ= f(ξ κ )Δ ), f()d Β. Επειδή τ σημεί Α(,), Β(,) νήκουν στη γρφική

Διαβάστε περισσότερα

Τετάρτη, 20 Μα ου 2009 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ

Τετάρτη, 20 Μα ου 2009 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ Τετάρτη, Μ ου 9 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ o Α. Έστω μί συνάρτηση f ορισμένη σε έν διάστημ Δ. Αν η f είνι συνεχής στο Δ κι γι κάθε εσωτερικό σημείο του Δ ισχύει f (), ν ποδείξετε ότι η f είνι

Διαβάστε περισσότερα

γραπτή εξέταση στo μάθημα ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

γραπτή εξέταση στo μάθημα ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ δυδικό η εξετστική περίοδος πό 9/0/5 έως 9/04/5 γρπτή εξέτση στo μάθημ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ ΛΥΚΕΙΟΥ Τμήμ: Βθμός: Ονομτεπώνυμο: Κθηγητές: Θ Ε Μ Α Α Α. Έστω μι συνάρτηση

Διαβάστε περισσότερα

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 008 ( ΠΡΟΚΗΡΥΞΗ Π /008) ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΟΥ Κλάδος: ΠΕ 0 ΜΑΘΗΜΑΤΙΚΩΝ ΕΞΕΤΑΣΗ ΣΤΗΝ ΠΡΩΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ (Γνωστικό ντικείμενο)

Διαβάστε περισσότερα

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto.

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto. 1 Τ πρκάτω είνι τ κυριότερ θεωρήμτ κι ορισμοί πό το σχολικό βιβλίο κολουθούμεν πό δικά μς σχόλι. 1 ο ΠΡΩΤΟ 2 Συνρτήσεις Γνησίως μονότονη συνάρτηση Μι γνησίως ύξουσ ή γνησίως φθίνουσ συνάρτηση λέμε ότι

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 28 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΜΕΡΟΣ Α. Ν βρείτε το ολοκλήρωμ: (8x 3 ημx 5 + 7) dx ex (8x 3 ημx 5 e x + 7) dx = (8x3 ημx 5e x + 7)dx =

Διαβάστε περισσότερα

Άγγελος Λιβαθινός, Μαθηματικός. ΑΠΑΝΤΗΣΕΙΣ-ΛΥΣΕΙΣ. Α1. Θεωρία ( Σχολικό Βιβλίο, Σελίδα 98. Μέτρο Μιγαδικού αριθμού- ιδιότητα)

Άγγελος Λιβαθινός, Μαθηματικός. ΑΠΑΝΤΗΣΕΙΣ-ΛΥΣΕΙΣ. Α1. Θεωρία ( Σχολικό Βιβλίο, Σελίδα 98. Μέτρο Μιγαδικού αριθμού- ιδιότητα) ΘΕΜΑ 1 ο ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΕΩΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 4 ΜΑΪΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ-ΛΥΣΕΙΣ Α1 Θεωρία ( Σχολικό Βιβλίο, Σελίδα

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ. A1. Έστω f μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α, β), με εξαίρεση ίσως ένα σημείο

ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ. A1. Έστω f μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α, β), με εξαίρεση ίσως ένα σημείο ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 8 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α A. Έστω f μια

Διαβάστε περισσότερα

Γ Λυκείου. 4 ο ΓΛΧ M. Ι. Παπαγρηγοράκης Χανιά. [Μαθηματικά] Προσανατολισμού

Γ Λυκείου. 4 ο ΓΛΧ M. Ι. Παπαγρηγοράκης Χανιά. [Μαθηματικά] Προσανατολισμού Γ Λυκείου ο ΓΛΧ 5-6 M. Ι. Πγρηγοράκης Χνιά [Μθημτικά] Προσντολισμού Τξη: Γ Γενικού Λυκείου Μθημτικά Προσντολισμού Μέρος Γ: Ολοκληρωτικός Λογισμός Έκδοση 5.9 Η συλλογή υτή δινέμετι δωρεάν σε ψηφική μορφή

Διαβάστε περισσότερα

3.7 EΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ

3.7 EΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ OΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ 7 EΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ Στην ράγρφο είδμε ότι, ν μι συνάρτηση f είνι συνεχής σε έν διάστημ [, ] κι f ( γι κάθε [, ], τότε το εμδόν του χωρίου Ω ου ορίζετι ό τη γρφική ράστση της

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής. 1. * Αν η γραφική παράσταση µιας συνάρτησης f είναι αυτή που φαίνεται στο σχήµα, τότε λάθος είναι

Ερωτήσεις πολλαπλής επιλογής. 1. * Αν η γραφική παράσταση µιας συνάρτησης f είναι αυτή που φαίνεται στο σχήµα, τότε λάθος είναι Ερωτήσεις πολλπλής επιλογής 1. * Αν η γρφική πράστση µις συνάρτησης f είνι υτή που φίνετι στο σχήµ, τότε λάθος είνι Α. lim f () = 4 B. lim f () = 1 1 1 Γ. lim f () =. f ( 1) = 1 4 0 1 1 1 E. f (1) = 4.

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΚΑΤΟΙΚΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ

ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΚΑΤΟΙΚΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΘΕΜΑ Α ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΚΑΤΟΙΚΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ A. Έστω f μια συνάρτηση αραγωγίσιμη σε ένα διάστημα (α, β), με εξαίρεση ίσως ένα σημείο του o, στο οοίο όμως η f είναι συνεχής.

Διαβάστε περισσότερα

ΘΕΜΑ 1. θ (0, ). 4 α) Να δείξετε ότι οι ρίζες της εξίσωσης αυτής είναι μη πραγματικοί αριθμοί. β) Έστω z,z. Δ = 4εφ θ 4= 4(εφ θ 1) < 0 γιατί π

ΘΕΜΑ 1. θ (0, ). 4 α) Να δείξετε ότι οι ρίζες της εξίσωσης αυτής είναι μη πραγματικοί αριθμοί. β) Έστω z,z. Δ = 4εφ θ 4= 4(εφ θ 1) < 0 γιατί π ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΘΕΜΑ Δίνεται η εξίσωση: z (εφθ)z + =, θ (, ). 4 α) Να δείξετε ότι οι ρίζες της εξίσωσης αυτής είναι μη ραγματικοί αριθμοί. β) Έστω z,z οι ρίζες της αραάνω εξίσωσης. Αν ισχύει

Διαβάστε περισσότερα

Απόδειξη Αποδεικνύουμε το θεώρημα στην περίπτωση που είναι f (x) 0.

Απόδειξη Αποδεικνύουμε το θεώρημα στην περίπτωση που είναι f (x) 0. Αόδειξη Αοδεικνύουμε το θεώρημα στην ερίτωση ου είναι f () 0. Έστω, με. Θα δείξουμε ότι f( ) f( ). 1 1 1 Πράγματι, στο διάστημα [, ] η f ικανοοιεί τις ροϋοθέσεις του Θ.Μ.Τ. δηλαδή 1 είναι συνεχής στο 1,.

Διαβάστε περισσότερα

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σουδών Ημερομηνία: 9 Ιουνίου 217 Ααντήσεις Θεμάτων Θέμα Α Α1. Θεωρία, βλ. σχολικό βιβλίο

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ ΚΩΛΕΤΤΗ 9- -68 86 8767 www.iraklits.gr ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ε Ν Δ Ε Ι Κ Τ Ι Κ Ε Σ Α Π Α Ν Τ

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» Η συνάρτηση f() =, 0 Υπερβολή Δύο ποσά λέγοντι ντιστρόφως νάλογ, εάν μετβάλλοντι με τέτοιο τρόπο, που ότν οι τιμές του ενός πολλπλσιάζοντι με ένν ριθμό, τότε κι οι ντίστοιχες τιμές του άλλου ν διιρούντι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Έστω η πργωγίσιμη συνάρτηση f: (, + ) R γι την οποί ισχύει η σχέση f() yf(y) = yf + y y γι κάθε, y (, + ) i. Ν δειχθεί ότι η f είνι στθερή στο (, + ). ii. Εάν iii.

Διαβάστε περισσότερα

4o Επαναληπτικό Διαγώνισμα 2016

4o Επαναληπτικό Διαγώνισμα 2016 wwwaskisopolisgr ΘΕΜΑ A 4o Επνληπτικό Διγώνισμ 6 Διάρκει: ώρες Α Έστω μι συνάρτηση f πργωγίσιμη σ έν διάστημ,, με εξίρεση ίσως έν σημείο του f διτηρεί πρόσημο στο,,, ν,στο οποίο όμως η f είνι συνεχής Αν

Διαβάστε περισσότερα

1. Να σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους παρακάτω ισχυρισμούς:

1. Να σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους παρακάτω ισχυρισμούς: 1. Ν σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους πρκάτω ισχυρισμούς: 1. Αν γι την συνεχή στο συνάρτηση f ισχύουν: f(0) f(2) 0 κι f(0) f(5) 0 τότε η εξίσωση ( ) 0 f έχει τουλάχιστον δύο ρίζες. 2. Αν ισχύει

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 10 Ιουνίου 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις)

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 10 Ιουνίου 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις) ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρ Ιουνίου 9 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (Ενδεικτικές Απντήσεις) ΘΕΜΑ Α Α. () Ορισμός σχολικού βιβλίου σελ.5 (β) (i) Μι συνάρτηση

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής

Ερωτήσεις πολλαπλής επιλογής Ερωτήσεις ολλλής ειλογής. * Αν η συνάρτηση f έχει γρφική ράστση ου φίνετι στο διλνό σχήµ, τότε µί ράγουσά της µορεί ν έχει γρφική ράστση την B.. 34 . * Αν f () = e, τότε µί ράγουσ της f µορεί ν έχει γρφική

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 27 MAΪΟΥ 2013 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 27 MAΪΟΥ 2013 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΕΥΤΕΡΑ 7 MAΪΟΥ 13 Λύσεις των θεμάτων Έκδοση 1

Διαβάστε περισσότερα

Α) Να αποδείξετε ότι η νιοστή παράγωγος της συνάρτησης f µπορεί να πάρει. )e όπου α ν, β ν είναι συντελεστές

Α) Να αποδείξετε ότι η νιοστή παράγωγος της συνάρτησης f µπορεί να πάρει. )e όπου α ν, β ν είναι συντελεστές . ίνετι η συνάρτηση f() e. Α) Ν ποδείξετε ότι η νιοστή πράγωγος της συνάρτησης f µπορεί ν πάρει τη µορφή (ν) f () ( + ν + ν )e όπου ν ν είνι συντελεστές εξρτηµένοι πό το ν τους οποίους κι ν υπολογίσετε.

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 3 Μ Α Θ Η Μ Α Τ Ι Κ Α Κ Α T E Y Θ Υ Ν Σ Η Σ

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 3 Μ Α Θ Η Μ Α Τ Ι Κ Α Κ Α T E Y Θ Υ Ν Σ Η Σ Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 3 Μ Α Θ Η Μ Α Τ Ι Κ Α Κ Α T E Y Θ Υ Ν Σ Η Σ Ε ι μ ε λ ε ι : Τ κ η ς Τ σ κ λ κ ο ς o ΘΕΜΑ Π ν ε λ λ δ ι κ ε ς Ε ξ ε τ σ ε ι ς ( 3 ) A. Εστω f μι συνεχης συνρτηση σε εν διστημ [, β].

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Α ΜΕΡΟΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Α ΜΕΡΟΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 7-8 Α ΜΕΡΟΣ Δίνεται η παραγωγίσιμη στο συνάρτηση f για την οποία ισχύει : f ()+f()=, για κάθε και f()=e+ α) Να δείξετε ότι f()=+e -, β) Να βρείτε το όριο lim ( lim f(y)) y γ) Να δείξετε

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 2002 ΚΛΑΔΟΣ ΠΕ 03 ΜΑΘΗΜΑΤΙΚΩΝ. EΞΕΤΑΣΗ ΣΤΗΝ ΠΡΩΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ «Γνωστικό Αντικείμενο» Kυριακή 8-12-2002

ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 2002 ΚΛΑΔΟΣ ΠΕ 03 ΜΑΘΗΜΑΤΙΚΩΝ. EΞΕΤΑΣΗ ΣΤΗΝ ΠΡΩΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ «Γνωστικό Αντικείμενο» Kυριακή 8-12-2002 ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΟΥ ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 00 ΚΛΑΔΟΣ ΠΕ 0 ΜΑΘΗΜΑΤΙΚΩΝ EΞΕΤΑΣΗ ΣΤΗΝ ΠΡΩΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ «Γνωστικό Αντικείμενο» Kυρική 8--00 Η

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΥΝΕΧΕΙΑ ΕΠΙΜΕΛΕΙΑ: ΧΡΑΣ ΓΙΑΝΝΗΣ ΚΕΝΤΡΙΚΟ Ν. ΣΜΥΡΝΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΥΝΕΧΕΙΑ ΕΠΙΜΕΛΕΙΑ: ΧΡΑΣ ΓΙΑΝΝΗΣ ΚΕΝΤΡΙΚΟ Ν. ΣΜΥΡΝΗΣ Φ4 ΣΥΝΕΧΕΙΑ ΕΠΙΜΕΛΕΙΑ: ΧΡΑΣ ΓΙΑΝΝΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΛΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΥ ΚΕΝΤΡΙΚ 3ο ΓΕΝΙΚ ΛΥΚΕΙ Ν. ΣΜΥΡΝΗΣ ΘΕΩΡΙΑ ΣΩΣΤ-ΛΑΘΣ ΠΛΛΑΠΛΗΣ ΕΠΙΛΓΗΣ ΣΥΜΠΛΗΡΩΣΗΣ ΚΕΝΥ ΠΑΡΑΤΗΡΗΣΕΙΣ ΑΣΚΗΣΕΙΣ Α &

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ Η

ΜΑΘΗΜΑ ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ Η ΜΑΘΗΜΑ.7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ Η έοι του τοικού κρόττου Προσδιορισµός τω τοικώ κρόττω Θεώρηµ Frmat Θεωρί Σχόλι Μέθοδοι Ασκήσεις Frmat Αισώσεις ΘΕΩΡΙΑ. Ορισµός Μι συάρτηση µε εδίο ορισµού Α, θ λέµε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ (Α κύκλος)

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ (Α κύκλος) ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ (Α κύκλος) Δίνεται η εξίσωση z-=z-3i,zc α) Να αποδείξετε ότι ο γεωμετρικός τόπος των εικόνων του z είναι η ευθεία ε: -3y+4= β) Να βρείτε την εικόνα του μιγαδικού z, για τον οποίο το

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής - Τεχνολογικής κατεύθυνσης Γ Λυκείου

ΜΑΘΗΜΑΤΙΚΑ Θετικής - Τεχνολογικής κατεύθυνσης Γ Λυκείου ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΣΤΡΙΤΣΙΟΥ ΕΠΙΜΕΛΕΙΑ: Κωνστντόπουλος Κων/νος Μθημτικός ΜSc ΜΑΘΗΜΑΤΙΚΑ Θετικής - Τεχνολογικής κτεύθυνσης Γ Λυκείου ΑΠΑΝΤΗΣΕΙΣ -ΥΠΟΔΕΙΞΕΙΣ ΤΟΥ ου ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΘΕΜΑ Α Α. (i) Βλέπε σχολικό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 12. = e dt. Να αποδείξετε ότι: ΛΥΣΗ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 12. = e dt. Να αποδείξετε ότι: ΛΥΣΗ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΘΕΜΑ Α) Να αοδείξετε ότι: α) Η συνάρτηση f() = ln, [,] αντιστρέφεται και να ορίσετε την f. β) ln d + d =. Β) Δίνεται η συνάρτηση α) h() h(), για κάθε [, + ). = d. Να αοδείξετε

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα στα Μαθηματικά Προσανατολισμών Γ

Επαναληπτικό Διαγώνισμα στα Μαθηματικά Προσανατολισμών Γ ΘΕΜΑ Α Α1. Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα. Ποια συνάρτηση ονομάζεται αρχική ή αράγουσα της f στο ; Μονάδες 4 Α. Να διατυώσετε το θεώρημα Rolle. Μονάδες (1+1+1+1)4 Α3. Να διατυώσετε και να

Διαβάστε περισσότερα

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιμέλεια: Τομέας Μαθηματικών της Ώθησης

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιμέλεια: Τομέας Μαθηματικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 5 ρρ ΑΠΑΝΤΗΣΕΙΣ Επιμέλει: Τομές Μθημτικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 5 ευτέρ, 5 Μ ου 5 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α A. Έστω μι συνάρτηση, η οποί είνι ορισμένη σε έν κλειστό

Διαβάστε περισσότερα

1995 ΘΕΜΑΤΑ ίνονται οι πραγµατικοί αριθµοί κ, λ µε κ < λ και η συνάρτηση f(x)= (x κ) 5 (x λ) 3 µε x. Να αποδείξετε ότι:, για κάθε x κ και x λ.

1995 ΘΕΜΑΤΑ ίνονται οι πραγµατικοί αριθµοί κ, λ µε κ < λ και η συνάρτηση f(x)= (x κ) 5 (x λ) 3 µε x. Να αποδείξετε ότι:, για κάθε x κ και x λ. 995 ΘΕΜΑΤΑ. ίνοντι οι πργµτικοί ριθµοί κ, λ µε κ < λ κι η συνάρτηση f() ( κ) 5 ( λ) µε. Ν ποδείξετε ότι: ) f () f() 5 κ, γι κάθε κ κι λ. λ ) Η συνάρτηση g() ln f() στρέφει τ κοίλ προς τ κάτω στο διάστηµ

Διαβάστε περισσότερα

1 εφ x dx. 1 ν 1. συνx. 2 + ln1 = - ln 2. J 3-2 = 1 2 J 1 = ln 2 2, οπότε. x lnx 2 x, x > 0.

1 εφ x dx. 1 ν 1. συνx. 2 + ln1 = - ln 2. J 3-2 = 1 2 J 1 = ln 2 2, οπότε. x lnx 2 x, x > 0. 99 ΘΕΜΑΤΑ. Αν J ν ν εφ d, ν *, τότε α να αοδείξετε ότι για κάθε ν >, ισχύει J ν β να υολογίσετε το J 5. α Έχουµε J ν-, ν J ν ν εφ d εφ εφ d εφ ( d συν εφ d συν εφ d εφ (εφ d J ν- β Έχουµε ν εφ ν J ν- ν

Διαβάστε περισσότερα

Πανελλαδικές Εξετάσεις 2017

Πανελλαδικές Εξετάσεις 2017 Πανελλαδικές Εξετάσεις 7 Μαθηματικά Προσανατολισμού 9/6/7 ΘΕΜΑ Α Προτεινόμενες λύσεις Α. Έστω, Δ, με

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝ Γ ΛΥΚΕΙΟΥ ΟΡΙΑ - ΣΥΝΕΧΕΙΑ 1 Να υολογίσετε τα όρια: 9 i) ii) ( ) 9 iii) 1 1 1 iv) 7 10 5 15 t t t 1 v) vi) t (t )(t ) 1 1 9 i) (ημ συν) ) 1 7 συν vii) 1 ημ viii) 1 5 i) ii) ημ 6 1 009, άν

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις)

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις) ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 17 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (Ενδεικτικές Ααντήσεις) ΘΕΜΑ Α Α1. Αόδειξη σχολικού βιβλίου σελ 135 Α. α. Ψευδής

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 Β ΦΑΣΗ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 Β ΦΑΣΗ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 8 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ / ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Σάββατο Αριλίου 8 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ

Διαβάστε περισσότερα

Εξετάσεις 9 Ιουνίου Μαθηματικά Προσανατολισμού Γ Λυκείου ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

Εξετάσεις 9 Ιουνίου Μαθηματικά Προσανατολισμού Γ Λυκείου ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ Εξετάσεις 9 Ιουνίου 7 Μαθηματικά Προσανατολισμού Γ Λυκείου (Θετικών Σουδών και Σουδών Οικονομίας-Πληροφορικής) ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΤΣΙΜΙΣΚΗ & ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 777 59 ΑΡΤΑΚΗΣ - Κ. ΤΟΥΜΠΑ THΛ:

Διαβάστε περισσότερα

γ λυκειου κεφαλαιο 3 κεφαλαιο 3 κεφαλαιο 3 κεφαλαιο 3 κεφαλαιο 3 κεφαλαιο3 ολοκληρωτικος λογισμος επιμελεια : τακης τσακαλακος T Ш τ

γ λυκειου κεφαλαιο 3 κεφαλαιο 3 κεφαλαιο 3 κεφαλαιο 3 κεφαλαιο 3 κεφαλαιο3 ολοκληρωτικος λογισμος επιμελεια : τακης τσακαλακος T Ш τ γ λυκειου ` κεφλιο κεφλιο κεφλιο κεφλιο κεφλιο κεφλιο ολοκληρωτικος λογισμος ειμελει : τκης τσκλκος T Ш τ 017 ... ρχικη συρτηση... ορισμεο ολοκληρωμ... η συρτηση F()=... εμδο ειεδου χωριου T Ш τ ΟΡΙΣΜΕΝΟ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ. I. Να αποδείξετε ότι η γραφική παράσταση της f δεν έχει σηµεία που να βρίσκονται πάνω από τον άξονα. x x.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ. I. Να αποδείξετε ότι η γραφική παράσταση της f δεν έχει σηµεία που να βρίσκονται πάνω από τον άξονα. x x. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ o ΘΕΜΑΤΑ Θεωρούµε τη συνάρτηση ( ) = ( + ) ( + ) µε κι. I. Ν ποδείξετε ότι η γρφική πράστση της δεν έχει σηµεί που ν ρίσκοντι πάνω πό τον άξον. II. Ν ποδείξετε ότι

Διαβάστε περισσότερα

ολοκληρωτικος λογισμος

ολοκληρωτικος λογισμος γ λυκειου ` κεφλιο κεφλιο κεφλιο κεφλιο κεφλιο κεφλιο ολοκληρωτικος λογισμος επιμελει : τκης τσκλκος 7 ... ρχικη συνρτηση... ορισμενο ολοκληρωμ... η συνρτηση F()= f()d... εμδον επιπεδου χωριου γιτι...

Διαβάστε περισσότερα

ΘΕΜΑ Ο Μιγαδικοί 5 Έστω w i w wi, όου w i,, R α. Να ρεθούν τα Rw και Im w. Να ρεθεί ο γεωμετρικός τόος των σημείων Μw στο μιγαδικό είεδο γ. Να ρεθεί τ

ΘΕΜΑ Ο Μιγαδικοί 5 Έστω w i w wi, όου w i,, R α. Να ρεθούν τα Rw και Im w. Να ρεθεί ο γεωμετρικός τόος των σημείων Μw στο μιγαδικό είεδο γ. Να ρεθεί τ ΘΕΜΑ Ο Μιγαδικοί i Δίνεται ο μιγαδικός και έστω w α. Να ρεθεί ο μιγαδικός w όταν w. Να δείετε ότι w i γ. Αν η εικόνα του κινείται στον κύκλο κέντρου, και ακτίνας και Μ είναι η εικόνα του w στο μιγαδικό

Διαβάστε περισσότερα

qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui

qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui qwertyuiopasdfghjklzcvbnmq wertyuiopasdfghjklzcvbnmqw ertyuiopasdfghjklzcvbnmqwer tyuiopasdfghjklzcvbnmqwerty ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ uiopasdfghjklzcvbnmqwertyui ΟΛΟΚΛΗΡΩΤ ΙΚΟΣ ΛΟΓΙΣΜΟΣ

Διαβάστε περισσότερα