Θέμα: Ολοκληρώματα. Υπολογισμός ολοκληρωμάτων. Μέθοδοι ολοκλήρωσης. Εμβαδά. Η συνάρτηση που ορίζεται από ολοκλήρωμα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Θέμα: Ολοκληρώματα. Υπολογισμός ολοκληρωμάτων. Μέθοδοι ολοκλήρωσης. Εμβαδά. Η συνάρτηση που ορίζεται από ολοκλήρωμα"

Transcript

1 Θέμ: Ολοκληρώμτ Υολογισμός ολοκληρωμάτων Μέθοδοι ολοκλήρωσης Εμβδά Η συνάρτηση ου ορίζετι ό ολοκλήρωμ Ενλητικές σκήσεις ολοκληρωμάτων

2 ΥΠΟΛΟΓΙΣΜΟΣ ΟΛΟΚΛΗΡΩΜΑΤΩΝ ΜΕ ΕΥΡΕΣΗ ΤΗΣ ΑΡΧΙΚΗΣ ή ΠΑΡΑΓΟΥΣΑΣ ΣΥΝΑΡΤΗΣΗΣ Άσκηση N βρείτε τις ράγουσες των ρκάτω συνρτήσεων: ) ) f ( ) = f 3 ( ) = + 3) f( ) = συν 5 4) f 4 ( ) = 4 5) 6) f( ) = f( ) = ) f( ) = ημ 8) + f( ) = 9) f ( ) = + ) f( ) = 3 ln + ) f( ) = ημ+ συν ) f( ) = συν ημ

3 3) συν ημ f( ) = 4) ημ συν f( ) = ημ 5) f( ) = εφ+ συν 6) ln f( ) = 7) ημ συν f( ) = συν ΜΕΘΟΔΟΙ ΟΛΟΚΛΗΡΩΣΗΣ ΜΕ ΑΝΤΙΚΑΤΑΣΤΑΣΗ ή ΕΥΡΕΣΗ ΤΗΣ ΑΡΧΙΚΗΣ ή ΠΑΡΑΓΟΥΣΑΣ ΣΥΝΑΡΤΗΣΗΣ Άσκηση N υολογίσετε τ ρκάτω ολοκληρώμτ: ) J = ημ συνd ημ(ln ) ) I = d 3) I = + ( ) d ) I= ( 3) d 3 5) I= ( + ) ( 3 + ) d 3 6) I= ( 3 ) d 3

4 3 7) I= d 8) I= d 9) I = d 3 + ) I = + d ) J = ( + ) συν( + + 3) d ) I= + d 3) J = d 4 4) Ι = 4+ d 5) J = 6) Ι = 3 4 ln 7) I = d 8) J = συν 4 4 d συν ημ d 5 3 d 9) I = ( + ) ( ) d ) I= 3 ln 3 ημ d συν + 3 4

5 ) I= (ln ) d ) I= + d (ln + ) εφ 3) I= 3 συν d 4) I= 5) I= 3 σφ 3 d ημ 4 συν ημ d 6) I= συν ημ d 7) I= εφ d 8) Ι= + ln d OΛOKΛHPΩΣH KATA ΠAPAΓONTEΣ Άσκηση 3 N υολογίσετε τ ολοκληρώμτ: ) συν d A: ) ( + ) + d A: 3 4 3) 4) ημ d A: + 5 ln d A: 4 5) d A: συν ln 4 5

6 Άσκηση 4 Δίνετι το ολοκλήρωμ I d ν =, >, κι ν με ν. Ν οδείξετε ότι ν I ν = + ν ( ν ) ν I ν Άσκηση 5 (Θέμ 99) 4 ν Αν θέσουμε Ι = εφ d γι κάθε ν *, τότε: ν i. Αοδείξτε ότι γι κάθε ν> ισχύει Ι ν = Ιν. ν ii. Υολογίστε το Ι 5. OΛOKΛHPΩΣH PHTΩN ΣYNAPTHΣEΩN Άσκηση 6 N υολογίσετε το ρκάτω ολοκληρώμτ: ) Ι= d + ) Ι= + 3+ d 3) Ι= d 3 + 6

7 Άσκηση 7 Ν υολογίσετε τ ρκάτω ολοκληρώμτ: ) Ι= ln ( + + ) d A: ln ( + ) + ) Ι= ln + 3 d Α: 4 4ln 3 3) Ι= 3 ημ d Α: + 3ln συν + 3 συν 4) Ι= d ημ 5ημ+ 6 Α: 4 ln 3 5) I= d Α: ) J= d Α: ) I= ( ) ( + ) 8) I= 9) J= 6 d Α: d Α: + ln ln ( + ) + d Α: + ( + ) 63 ln ln 4 ) Ι= ημ d Α: Άσκηση 8 i. Αν η συνάρτηση είνι συνεχής στο [,], ν οδείξετε ότι ( ) = ( ) f d f d. ii. Αν, β>, ν οδείξετε ότι ( ) β β = ( ) d d. 7

8 Άσκηση 9 Η συνάρτηση f είνι συνεχής στο κι γι κάθε ισχύει f() + β f( ) = γ, με + β. Αοδείξετε ότι f 4 ( ) d γ =. + β Άσκηση Αν η συνάρτηση f είνι συνεχής κι άρτι στο [, ], ν οδείξετε ότι: i. ( ) f d = f ( ) d + ii. ( ) = ( ) f d f d Άσκηση i. Ν χρησιμοοιήσετε την ντικτάστση u = γι ν οδείξετε ότι f (ημ ) d = f (συν ) d ν ν ημ συν ii. Ν οδείξετε ότι d d ν ν ημ συν ν ν + = ημ + συν κοινή τιμή των δύο ολοκληρωμάτων. κι ν υολογίσετε την iii. Ν υολογίσετε το I = συν συν + ημ 3 d

9 ΕΜΒΑΔΑ Άσκηση Δίνετι η συνάρτηση ( ) 3 f = 3 +. ) Ν μελετήσετε το ρόσημό της. β) Ν βρείτε το εμβδόν του χωρίου ου ερικλείετι ό τη γρφική ράστση της f i. Τον άξον ' κι τις ευθείες = κι = ii. Τους άξονες ', yy ' κι την ευθεί = iii. Τον άξον ' κι τις ευθείες = κι = 3 iv. Τον άξον ' κι την ευθεί = v. Τον άξον ' κι την ευθεί = 3 vi. Τον άξον ' Άσκηση 3 Ν υολογίσετε το εμβδό του χωρίου ου ερικλείετι i. ό την ρβολή y =, την ευθεί +y =. ii. ό την ρβολή y =, την ευθεί +y = κι τον θετικό ημιάξον Ο iii. ό τις ρβολές y = κι y =. A: i. 9 τ.μ.,ii. 5 6, iii. Άσκηση 4 (Θέμ Δέσμες) Έστω C f η γρφική ράστση της συνάρτησης f( ) = ηµ +,, 4. Ν βρεθεί το εμβδό του χωρίου ου ερικλείετι ό την C f, την εφτομένη της στο = κι τους ημιάξονες O, Oy. 8 9

10 Άσκηση 5 Δίνετι η συνάρτηση f () = ln. i. Ν μελετήσετε την f ως ρος την μονοτονί κι τ κρόττ. ii. N οδείξετε ότι το εμβδό E(t) του χωρίου ου ερικλείετι ό τη γρφική ράστση της συνάρτησης f τον άξον κι τις ευθείες = κι =t >, δίνετι ό την σχέση: E(t) = lnt t + t. iii. Ν βρείτε τις σύμτωτες της συνάρτησης E(t), t >. iv. N υολογίσετε το lim E(t). t + A.: iii. y=, iv. Άσκηση 6 Δίνετι η συνάρτηση f : (, + ) (, + ) με f()= 4 κι f()= f (). i. Δείξτε ότι: f()= 4. ii. Ν βρείτε το εμβδό του χωρίου ου ερικλείετι ό την γρφική ράστση της συνάρτησης g με g()= f (), τον άξον κι τις ευθείες =, =..

11 ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΣΥΝΑΡΤΗΣΗΣ ΠΟΥ ΟΡΙΖΕΤΑΙ ΑΠΟ ΟΛΟΚΛΗΡΩΜΑ ( ( ) () ( ) g( ) () ( ) g( ) F = f t dt F = f t dt F f () t dt = h( ) ) Έστω ότι η συνάρτηση f είνι συνεχής στο εδίο ορισμού της A f κι στθερό σημείο του A f. ) Αν η F είνι της μορφής F( ) = f () t dt κι το A f είνι διάστημ, τότε: εδίο ορισμού της F είνι ολόκληρο το A f. ln t Π.χ. γι την F( ) = dt t + είνι F (, ) Α = +. ) Αν η F είνι της μορφής F( ) = f () t dt κι το A f είνι ένωση διστημάτων, τότε: εδίο ορισμού της F είνι το ευρύτερο διάστημ υοσύνολο του εδίου ορισμού της f στο οοίο εριέχετι το. Π.χ. γι την ( ) = είνι F (, ] F t dt Α =. t γι την G( ) = dt t είνι G (, ) Α =.

12 3) Αν η F είνι της μορφής g( ) F( ) = f () t dt, τότε: η F έχει ως εδίο ορισμού το ευρύτερο υοσύνολο του, το οοίο ροκύτει ό τις ιτήσεις: Ag a κι g ( ) νήκουν στο ίδιο διάστημ, υοσύνολο του A f. Π.χ. γι την F( ) t 5 = dt είνι Α (,5) F =. t γι την γι την είνι [ 4, ) F F( ) = t dt Α = +. είνι Α = (,, + ) F F( ) = t 4dt. 4) Αν η F είνι της μορφής g( ) F ( ) = f () t dt, τότε: h( ) η F έχει ως εδίο ορισμού το ευρύτερο υοσύνολο του, το οοίο ροκύτει ό τις ιτήσεις: Ag Ah g ( ) κι h ( ) νήκουν στο ίδιο διάστημ, υοσύνολο του A f. Π.χ. γι την F ( ) = t 9 dt 3 είνι Α [ 4, ], ) 9 F = +. γι την ( ) = F t dt είνι Α F =,.

13 Εξήγηση: Στο o ράδειγμ είνι f t () t 9 = με (, 3] [ 3, ) A = +. Ακόμη είνι f h ( ) 9 = κι g ( ) = 3. Θ ρέει λοιόν ν ισχύει: h ( ) 3 h ( ) 3 κι ή κι g ( ) 3 g ( ) 3 δηλδή κι ή κι κι ή κι 4 4 η ή κι κι ( 4 ή ). 3

14 Άσκηση 7 Ν βρείτε την ράγωγο των ρκάτω συνρτήσεων: i. ( ) = ημ 3 5 f t dt f = dt ln t ii. ( ) 4 t f = dt ln t iii. ( ) Άσκηση 8 Ν βρείτε την ράγωγο των ρκάτω συνρτήσεων: i. ( ) 5 f = συν t dt 5 ii. f ( )= t 3t dt ln t iii. ( ) = ln ( ) f dt iv. f ( )= t 4 dt. Άσκηση 9 Ν βρείτε την ράγωγο των ρκάτω συνρτήσεων: i. ( ) ( t ) ln f = dt 5 t f = t dt ln ii. ( ) + f = t 4 t dt iii. ( ) 4

15 Άσκηση Ν βρείτε την ράγωγο των ρκάτω συνρτήσεων: i. ii. iii. 3 t, f ( ) = dt, 3 t, f ( ) = ημ dt, 3 3 ( ) = συν( + ) f t dt,, iv. f () = f (t) 3 d dt,. Άσκηση Ν βρείτε τη ράγωγο των ρκάτω συνρτήσεων: i. ( ) = + ημ ( ) f t t dt, ii. ( ) ( ) f = + συν t dt, iii. ( ) ( ) f = + ln t dt, >. Άσκηση Ν βρείτε τη δεύτερη ράγωγο των ρκάτω συνρτήσεων: f = ημ t dt, i. ( ) 5 ii. ( ) = + ( ) t f t dt 5 t 5 iii. ( ) ( ημ ) f u du dt, =, 5

16 Ολοκλήρωμ της συνάρτησης F()= f (t)dt Άσκηση 3 t i. Εάν F ( ) = dt, ν βρείτε το ολοκλήρωμ ( ) F d ii. Εάν F ( ) = ημt dt, ν βρείτε το ολοκλήρωμ ( ) iii. Εάν F ( ) = F d 3 dt, ν βρείτε το ολοκλήρωμ ( ) + t F d Όρι στ ολοκληρώμτ Άσκηση 4 N βρείτε τ ρκάτω όρι: ημt A = lim+ dt t B = lim + dt lnt (A =) (B=) Γ =lim ln(3t 3t + t 3 ( ) )dt (Γ=) 3 Δ = lim + ln(+ ) dt +t (Δ=) 6

17 Άσκηση 5 Η συνάρτηση f είνι ργωγίσιμη στο. Ν βρείτε τον τύο της ν γνωρίζετε ότι ισχύει: f () = + t f ( t )dt γι κάθε. A: f () = + Άσκηση 6 Γι την συνεχή συνάρτηση f : N βρείτε τον ισχύει + f (t)dt λ, γι κάθε. * λ + ν η γρφική της ράστση C f διέρχετι ό την ρχή των ξόνων. Άσκηση 7 N δείξετε ότι γι κάθε, είνι εφ t σφ dt dt + = + t t( + t ). 7

18 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Άσκηση 8 Έστω f μι συνάρτηση δυο φορές ργωγίσιμη στο διάστημ [, β] με f ( ) >, f ( β ) > β κι f ( ) d =. Ν δείξετε ότι: i. Υάρχει γ (, β) τέτοιο, ώστε f ( γ ) =. ii. Υάρχει δ (, β) τέτοιο, ώστε f ( δ ) <. iii. Υάρχουν ξ, ξ (, β) τέτοιοι, ώστε f ( ξ ) f ( ξ ) <. =. iv. Υάρχει ξ (, β) τέτοιο, ώστε f ( ξ ) Πρόκληση! Αοδείξτε το τελευτίο ερώτημ (iv) εξιρώντς ό τ δεδομέν την ύρξη δεύτερης ργώγου, θεωρήστε, δηλδή, γνωστό ότι η f είνι λά ργωγίσιμη. Μορείτε ν βρείτε δυο διφορετικούς τρόους όδειξης γι υτό; Τρεις; Άσκηση 9 Αν η συνάρτηση f είνι συνεχής στο [, β], με f ( ) d β, ν δείξετε ότι υάρχει τουλάχιστον έν σημείο ξ (, β) τέτοιο ώστε ν ισχύει f ( ) d + f ( ) d = + β ξ β ξ ξ. β 8

19 Άσκηση 3 Έστω η ργωγίσιμη στο συνάρτηση f γι την οοί ισχύει β δ f ()d = f()d, όου γ β =δ γ> κι β<γ. i. Αν h() = f(t)dt,, ν οδείξετε ότι υάρχει έν τουλάχιστον μετξύ των +β κι γ ώστε h ( ) =. ii. Ν οδείξετε ότι η εξίσωση f () = έχει μι τουλάχιστον ρίζ στο διάστημ (, β ) +. Άσκηση 3 Έστω η συνεχής συνάρτηση f στο διάστημ [, ]. N δείξετε ότι η εξίσωση: f (t) dt = f () έχει τουλάχιστον μι λύση στο (, ). Άσκηση 3 Έστω οι θετικοί ριθμοί, β, γ με < β κι η συνεχής συνάρτηση f : (, + ), ώστε β ( ) f ( γ ) d = γ β διάστημ (γ, βγ).. N δείξετε ότι η εξίσωση f()= έχει μί τουλάχιστον ρίζ στο Άσκηση 33 Oι συνρτήσεις f, g είνι συνεχείς στο κι γι κάθε ισχύει t f (t)dt g(t)dt. Δείξτε ότι η εξίσωση: 3 f () = g() + έχει μι τουλάχιστον ρίζ στο διάστημ (,). 9

20 Άσκηση 34 Έστω η συνεχής συνάρτηση f στο [,] κι ργωγίσιμη στο (,), ώστε f () = f () + f (t) dt. Ν οδείξετε ότι : i. υάρχει (,) τέτοιο ώστε f ( ) = f (t)dt, ii. υάρχει (,) τέτοιο ώστε f ( ) = f ( ). Άσκηση 35 Έστω η ργωγίσιμη συνάρτηση f : [,] με f()=, γι την οοί ισχύει: f (t)dt γι κάθε [,]. Ν οδείξετε ότι: i. f()=, ii. υάρχει, ( ) τέτοιο ώστε: f (t)dt =, iii. υάρχει (,) τέτοιο ώστε: f ( ) =, iv. υάρχει εφτομένη της C f της οοίς η κλίση είνι ίση με. Άσκηση 36 Ν βρείτε τον τύο μις συνεχούς στο συνάρτησης f, γι την οοί ισχύει f()= t + f ( t) dt, γι κάθε. Α: 3 f( ) = + 3

21 Άσκηση 37 Έστω f : συνεχής συνάρτηση γι την οοί ισχύει f ( ) = + f ( t ) dt γι κάθε. Ν οδείξετε ότι: i. f ( ) = ii. Εάν β γ β f d f d. < < τότε ( γ β) ( ) < ( β ) ( ) γ β Άσκηση 38 Έστω η συνεχής συνάρτηση f:, ώστε ν ισχύει η σχέση: f() f(+)=6+, γι κάθε. N δείξετε ότι: i. H συνάρτηση F() = f () t dt 3 είνι στθερή κι ν βρεθεί ο τύος της. ii. Ισχύει f(t)dt = 9. + A: i. F()= 5 Άσκηση 39 Έστω συνεχής συνάρτηση f : (, + ) (, + ) γι την οοί ισχύει ότι ( t ) f ( t) f ( ) = dt γι κάθε >. Ν βρείτε τον τύο της Α: f( ) = 3

22 Άσκηση 4 ln 3 Έστω η δύο φορές ργωγίσιμη συνάρτηση f:(,+ ), ώστε f ( ) = γι κάθε > κι η εφτομένη της C f στο σημείο της A(,) είνι ράλληλη στην ευθεί y=+. i. N δείξετε ότι ο τύος της f είνι: f() = (ln) + ln +. ii. N δείξετε ότι η f() έχει μέγιστο το οοίο κι ν βρείτε. Άσκηση 4 Δίνετι η δύο φορές ργωγίσιμη συνάρτηση f στο με f () > γι κάθε. Έστω η συνάρτηση g με τύο g() = f (t)dt,. + 5 Ν οδείξετε ότι: i. H συνάρτηση g είνι ργωγίσιμη στο κι γι κάθε ισχύει: g ( + ) = g ( ). ii. H εξίσωση f (+ ) + f (5 ) = f (t)dt έχει λύση στο διάστημ (,). 5 + iii. H γρφική ράστση της συνάρτησης g έχει έν μόνο σημείο κμής, το οοίο κι ν βρείτε. Α: iii. Α(,) Άσκηση 4 Έστω η συνάρτηση f : γι την οοί ισχύουν οι σχέσεις: ( ) f( ) f ( ) = + γι κάθε κι f()=. N βρείτε τον τύο της. Α: = ( + ) f( )

23 Άσκηση 43 t Δίνετι η συνεχής στο συνάρτηση f γι την οοί ισχύει f ( t) dt = f ( ) Ν βρείτε τον τύο της f.. Α: ( ) ( f = + ) Άσκηση 44 Ν βρείτε τη συνάρτηση f γι την οοί ισχύει ( ) ημ ( ) f = t t dt γι κάθε. Α: f( ) = ημ συν Άσκηση 45 Έστω μι ργωγίσιμη συνάρτηση f :[, ) ( ) ( ) ( ) + γι την οοί ισχύει f ' = f + f t dt γι κάθε. Εάν η γρφική ράστση της f τέμνει τον άξον y' y σε σημείο με τετγμένη, ν βρείτε τον τύο της. Α: f( ) = 4+ Άσκηση 46 Η συνάρτηση f είνι συνεχής κι γι κάθε είνι f() κι ισχύει η σχέση t f () t dt i. Δείξτε ότι f () =. ii. t Ν οδείξετε ότι γι κάθε > ισχύει f () t dt <. 3

24 Άσκηση 47 Αν η συνάρτηση f είνι ργωγίσιμη κι στρέφει τ κοίλ άνω στο διάστημ [,], με f () >, ν δείξετε ότι η συνάρτηση g( ) = f () t dt είνι γνησίως ύξουσ στο (,]. Άσκηση 48 Αν η συνάρτηση f είνι συνεχής κι γνησίως ύξουσ στο διάστημ [,], ν δείξετε ότι η συνάρτηση g( ) = f () t dt είνι γνησίως ύξουσ στο (,]. Άσκηση 49 Έστω η συνάρτηση f () = t t + λ dt, λ>. i. N μελετήσετε την f ως ρος τ κοίλ. ii. Aν <β<γ, ν δείξετε ότι β. β t t + λ dt < γ β. γ t t + λ dt. β Άσκηση 5 Aν η f είνι γνησίως φθίνουσ στο [5,5], ν μελετήσετε ως ρος τη μονοτονί στο [5, ] την g()= +5 f (t) dt 5 f (). Άσκηση 5 Αν γι τις συνεχείς συνρτήσεις f, g ισχύει: f (t )dt + g() < f ()+ g(t) dt γι κάθε [, + ), ν οδείξετε ότι f()>g() γι κάθε [, ) 4 +.

25 Άσκηση 5 Έστω κι η συνάρτηση f με τύο f () = 8ln +, >. i. Ν οδείξετε ότι η f έχει ελάχιστο το οοίο κι ν βρείτε. ii. Ν μελετήσετε την f ως ρος τ κοίλ. iii. Ν βρείτε τον ώστε ν ισχύει: f ()d =. iv. Ν οδείξετε ότι f ( 5) + f ( 3) > f ( 4) Α: ii) κυρτή, iii) = 3 5 3( ) Άσκηση 53 Δίνετι η συνάρτηση ( ) f ( ) = ,. i. Ν μελετήσετε ως ρος την μονοτονί κι τ κρόττ. ii. Ν υολoγίσετε το όριο t ( t )( ) lim dt. + Α: i. ΤΜ: στο, το, TE: στο, το +5, ii. Άσκηση 54 Έστω η συνεχής συνάρτηση f στο διάστημ [ ), +, γι την οοί ισχύει: f () > f (t )dt γι κάθε. Ν οδείξετε ότι η συνάρτηση h( ) = f () t dt είνι γνησίως ύξουσ στο διάστημ [, + ), κι κτόιν ότι f()> γι κάθε. 5

26 Άσκηση 55 Θεωρούμε την συνάρτηση f () = + t dt,. i. Ν μελετήσετε την f ως ρος την μονοτονί κι το ρόσημο γι κάθε. ii. N οδείξετε ότι f () + f = γι κάθε >. iii. Ν υολογίσετε το εμβδό του χωρίου ου ερικλείετι ό την C f, τον άξον κι τις ευθείες =, =. Άσκηση 56 Έστω η συνάρτηση f : (, ) + με f () = + ln, η οοί έχει τοικό κρόττο το. i. Ν βρείτε το. ii. Ν οδείξετε ότι η εξίσωση f()= έχει κριβώς δύο λύσεις στο διάστημ (, + ). iii. Ν βρείτε την ργωγίσιμη συνάρτηση g : (, + ), με g()= ώστε g () = f () γι κάθε >. Άσκηση 57 i. Έστω η ργωγίσιμη κι γνησίως ύξουσ συνάρτηση f στο διάστημ [,β], η οοί έχει σύνολο τιμών το [γ,δ]. Αν η f είνι συνεχής στο [,β], ν οδείξετε ότι: β δ f ()d + f ()d = βδ γ. γ ii. Αν η συνάρτηση f είνι ργωγίσιμη στο κι ισχύει: 6

27 f 5 () + 5 f () = γι κάθε, τότε φού οδείξετε ότι η f ντιστρέφετι, ν βρείτε τον τύο της f κι ν υολογίσετε το β f ()d ότν f()= κι f(β)=. Άσκηση 58 Δίνετι η συνάρτηση f : (, ) Είνι ργωγίσιμη στο (, + ), f ( ) > γι κάθε >, f ( ) f ( ) ' + = γι κάθε >, + γι την οοί ισχύουν τ εξής: Η γρφική της ράστση διέρχετι ό το σημείο Α(, ). i. Ν οδείξετε ότι η f ' είνι συνεχής στο (, + ) κι ν βρείτε την f. ii. Ν οδείξετε ότι ( ) ( ) f t f < dt < γι κάθε >. t f t dt t με iii. Ν βρείτε τη συνάρτηση F με τύο F ( ) = + ( ) >. iv. Ν οδείξετε ότι t dt < γι κάθε >. (Δέσμες 998) 7

28 Άσκηση 59 Έστω η συνάρτηση f ορισμένη στο [ β, ] γι την οοί ισχύουν ) η f είνι ργωγίσιμη με f ()< γι κάθε [ β, ] β β) f ()d = κ. i) Aν η γρφική ράστση C f της f τέμνει τις ευθείες = κι =β στ σημεί A κι B ντιστοίχως κι ό έν σημείο M (, ( )) f της C f φέρουμε την ευθεί y=f( ) ου τέμνει τις ευθείες = κι =β στ σημεί Γ κι Δ, ν οδείξετε ότι τ εμβδά των χωρίων (AMΓ) κι (BMΔ) ν είνι ίσ ν κι μόνο ν το σημείο M έχει κ συντετγμένες f ( β ), κ β. ii) N βρείτε σημείο N (, ( )) f ώστε το εμβδό ου ερικλείετι ό την γρφική ράστση της f, την οριζόντι ευθεί y=f( ) κι ό τις κτκόρυφες ευθείες = κι =β, ν γίνετι ελάχιστο. A: ii) = + β Άσκηση 6 Έστω οι συνεχείς συνρτήσεις f, g : [, β] όου f () > g() > γι κάθε (, β), κι οι γρφικές ρστάσεις υτών έχουν κοινά σημεί τ: A(, f()) κι B(β, f(β)). N δείξετε ότι υάρχει ευθεί =ξ, ξ (, β), ου χωρίζει το χωρίο ου ερικλείετι μετξύ των C f, C g σε δύο άλλ χωρί με εμβδά Ε, Ε ώστε: Ε =4 Ε. 8

29 Άσκηση 6 Έστω η συνεχής συνάρτηση f : κάθε. γι την οοί ισχύει f ( ) = dt +, γι f ( t) + i. Ν οδείξετε ότι η συνάρτηση f είνι γνησίως ύξουσ. ii. Ν δείξετε ότι ισχύει: f ( ) f( ) = + +, γι κάθε. iii. Ν βρείτε τον τύο της ντίστροφης συνάρτησης. iv. Ν βρείτε το εμβδόν του χωρίου ου ερικλείετι ό την γρφική ράστση της f, τους άξονες τετμημένων κι τετγμένων κι την ευθεί =. v. Ν οδείξετε ότι d =. f ( ) + Άσκηση 6 Έσ τω η ργωγίσιμη συνάρτηση f :(, + ) (, + ), γι την οοί ισχύει ότι: f ( ) f + ( ) = γι κάθε >. i. Ν οδείξετε ότι η f είνι ντιστρέψιμη. ii. Ν βρείτε τον τύο της f. iii. Ν λύσετε τις εξισώσεις f ( ) = κι f ( ) = 4. iv. Ν υολογίσετε το εμβδόν του χωρίου ου ερικλείετι ό την γρφική ράστση της f, τον άξον ' κι τις ευθείες 4 = +, = +. 9

30 Άσκηση 63 Δίνετι η ργωγίσιμη στο γι κάθε > κι η C f διέρχετι ό το σημείο A(, ). * + συνάρτηση f, γι την οοί ισχύει ότι f () +f ( ) = i. N οδείξετε ότι ο τύος της f είνι f( ) = ln. ii. Ν υολογίσετε το εμβδόν του χωρίου ου ερικλείετι ό την C f, τον κι τις ευθείες =, =. Α: ii. 3 3

Ορισμένο ολοκλήρωμα συνάρτησης Η συνάρτηση F( x ) = ( )

Ορισμένο ολοκλήρωμα συνάρτησης Η συνάρτηση F( x ) = ( ) 9 Ορισμένο ολοκλήρωμ συνάρτησης Η συνάρτηση F( = f t dt Θεωρούμε τη συνεχή συνάρτηση f:a R με A = [,] Χωρίζουμε το [,] σε ν ισομήκη υοδιστήμτ ου το κθέν έχει μήκος Δ = Σε κάθε υοδιάστημ ου σχημτίζετι ν

Διαβάστε περισσότερα

3x 2x 1 dx. x dx. x x x dx.

3x 2x 1 dx. x dx. x x x dx. ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση (Υολογισμός του f () d Βσιζόμενος σε Ιδιότητες Ή στην Αρχική της f, η οοί Βρίσκετι ό Κνόνες Πργώγισης) Ν υολογίσετε το ολοκλήρωμ ( + ) d (Θέμ Β) Άσκηση (Υολογισμός του f () d

Διαβάστε περισσότερα

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ. Αόριστο ολοκλήρωμα. Ερωτήσεις θεωρίας

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ. Αόριστο ολοκλήρωμα. Ερωτήσεις θεωρίας ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Αόριστο ολοκλήρωμ Ερωτήσεις θεωρίς Ποι ρολήμτ οδήγησν στην νάγκη ορισμού της ρχικής συνάρτησης ; Δώστε τον ορισμό της ρχικής συνάρτησης ή ράγουσς f στο Δ κι έν ράδειγμ Πολλές φορές

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ -8 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑ Αν η συνάρτηση f είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της, ν γρφεί η εξίσωση της εφπτομένης της γρφικής πράστσης της f στο σημείο Α(,f( ))

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : Η ΣΥΝΑΡΤΗΣΗ F( = (d [Kεφ:.5 H Συνάρτηση F( = (d Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. lim e d. Ν υπολογίσετε το όριο: ( Έχουμε ( e d

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009.

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009. ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 9. ΘΕΜΑ ο Α. Έστω, Δ. Δικρίνουμε τις περιπτώσεις: Αν =, τότε f( ) = f( ). Αν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 5 : Δίνετι η πργωγίσιμη συνάρτηση, με πεδί ρισμύ κι σύνλ τιμών

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ ΜΑΪΟΥ 9 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέµ 1ο Α. Έστω µι συνεχής συνάρτηση f ορισµένη σε έν διάστηµ.

Διαβάστε περισσότερα

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 008 ( ΠΡΟΚΗΡΥΞΗ Π /008) ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΟΥ Κλάδος: ΠΕ 0 ΜΑΘΗΜΑΤΙΚΩΝ ΕΞΕΤΑΣΗ ΣΤΗΝ ΠΡΩΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ (Γνωστικό ντικείμενο)

Διαβάστε περισσότερα

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto.

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto. 1 Τ πρκάτω είνι τ κυριότερ θεωρήμτ κι ορισμοί πό το σχολικό βιβλίο κολουθούμεν πό δικά μς σχόλι. 1 ο ΠΡΩΤΟ 2 Συνρτήσεις Γνησίως μονότονη συνάρτηση Μι γνησίως ύξουσ ή γνησίως φθίνουσ συνάρτηση λέμε ότι

Διαβάστε περισσότερα

γραπτή εξέταση στo μάθημα ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

γραπτή εξέταση στo μάθημα ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ δυδικό η εξετστική περίοδος πό 9/0/5 έως 9/04/5 γρπτή εξέτση στo μάθημ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ ΛΥΚΕΙΟΥ Τμήμ: Βθμός: Ονομτεπώνυμο: Κθηγητές: Θ Ε Μ Α Α Α. Έστω μι συνάρτηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Έστω η πργωγίσιμη συνάρτηση f: (, + ) R γι την οποί ισχύει η σχέση f() yf(y) = yf + y y γι κάθε, y (, + ) i. Ν δειχθεί ότι η f είνι στθερή στο (, + ). ii. Εάν iii.

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 3 Μ Α Θ Η Μ Α Τ Ι Κ Α Κ Α T E Y Θ Υ Ν Σ Η Σ

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 3 Μ Α Θ Η Μ Α Τ Ι Κ Α Κ Α T E Y Θ Υ Ν Σ Η Σ Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 3 Μ Α Θ Η Μ Α Τ Ι Κ Α Κ Α T E Y Θ Υ Ν Σ Η Σ Ε ι μ ε λ ε ι : Τ κ η ς Τ σ κ λ κ ο ς o ΘΕΜΑ Π ν ε λ λ δ ι κ ε ς Ε ξ ε τ σ ε ι ς ( 3 ) A. Εστω f μι συνεχης συνρτηση σε εν διστημ [, β].

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝ Γ ΛΥΚΕΙΟΥ ΟΡΙΑ - ΣΥΝΕΧΕΙΑ 1 Να υολογίσετε τα όρια: 9 i) ii) ( ) 9 iii) 1 1 1 iv) 7 10 5 15 t t t 1 v) vi) t (t )(t ) 1 1 9 i) (ημ συν) ) 1 7 συν vii) 1 ημ viii) 1 5 i) ii) ημ 6 1 009, άν

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 2002 ΚΛΑΔΟΣ ΠΕ 03 ΜΑΘΗΜΑΤΙΚΩΝ. EΞΕΤΑΣΗ ΣΤΗΝ ΠΡΩΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ «Γνωστικό Αντικείμενο» Kυριακή 8-12-2002

ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 2002 ΚΛΑΔΟΣ ΠΕ 03 ΜΑΘΗΜΑΤΙΚΩΝ. EΞΕΤΑΣΗ ΣΤΗΝ ΠΡΩΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ «Γνωστικό Αντικείμενο» Kυριακή 8-12-2002 ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΟΥ ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 00 ΚΛΑΔΟΣ ΠΕ 0 ΜΑΘΗΜΑΤΙΚΩΝ EΞΕΤΑΣΗ ΣΤΗΝ ΠΡΩΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ «Γνωστικό Αντικείμενο» Kυρική 8--00 Η

Διαβάστε περισσότερα

Ελευθέριος Πρωτοπαπάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ

Ελευθέριος Πρωτοπαπάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ Ελευθέριος Πρωτοαάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ ΑΣΚΗΣΗ ίνεται η συνάρτηση f µε f() = 5 4 +α, όου α R και το είναι ρίζα της εξίσωσης f() =. α) Να βρείτε το α R. β) Να λύσετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (27 /5/ 2004)

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (27 /5/ 2004) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (7 /5/ 4) ΘΕΜΑ ο Α. Έστω μι συνάρτηση f ορισμένη σ' έν διάστημ Δ κι έν εσωτερικό σημείο του Δ. Αν η f προυσιάζει τοπικό κρόττο στο κι είνι πργωγίσιμη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑο Α Έστω µι συνάρτηση f ορισµένη σ' έν διάστηµ κι έν εσωτερικό σηµείο του Αν η f προυσιάζει τοπικό κρόττο στο κι είνι πργωγίσιµη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ΘΕΜΑο Α Έστω µι συνάρτηση f ορισµένη σ' έν διάστηµ κι έν εσωτερικό σηµείο του Αν η f προυσιάζει τοπικό κρόττο στο κι είνι πργωγίσιµη στο σηµείο

Διαβάστε περισσότερα

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Προτεινόμενα θέματα Πανελλαδικών εξετάσεων Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης o ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Ααντήσεις ΘΕΜΑ ο Α. Σχολικό βιβλίο, σελίδα 6. B. Σχολικό βιβλίο, σελίδες 97 και

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Έστω η πργωγίσιμη συνάρτηση f: (, + ) R γι την οποί ισχύει η σχέση f() yf(y) = yf + y y γι κάθε, y (, + ) i. Ν δειχθεί ότι η f είνι στθερή στο (, + ). ii. Εάν iii.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Μαθηματικά Γενικής Παιδείας Γ.Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΣΚΗΣΕΙΣ ) Να βρείτε το πεδίο ορισμού των συναρτήσεων: ( ) 6+ 9, g ( ), h ( ) 5 +, k

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 27 MAΪΟΥ 2013 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 27 MAΪΟΥ 2013 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΕΥΤΕΡΑ 7 MAΪΟΥ 3 Λύσεις των θεμάτων Έκδοση 3

Διαβάστε περισσότερα

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ Το ορισμένο ολοκλήρωμ ή ολοκλήρωμ Riema μις πργμτικής συνάρτησης f με διάστημ ολοκλήρωσης το πεπερσμένο διάστημ [, ], υπάρχει ότν: η f είνι συνεχής στο διάστημ υτό, κθώς

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισµα Μαθηµατικών Γ Λυκείου ΕΠΑΛ

Επαναληπτικό Διαγώνισµα Μαθηµατικών Γ Λυκείου ΕΠΑΛ ΘΕΜΑ Α Επνληπτικό Διγώνισµ Μθηµτικών Γ Λυκείου ΕΠΑΛ Α. Ν δώσετε τον ορισµό της συχνότητς κι της σχετικής συχνότητς µις πρτήρησης x i. (7 Μονάδες) Α. Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς

Διαβάστε περισσότερα

ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ I

ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ I ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ I Σε κθεµιά πό τις πρκάτω περιπτώσεις ν κυκλώσετε το γράµµ Α, ν ο ισχυρισµός είνι ληθής κι το γράµµ Ψ, ν ο ισχυρισµός είνι ψευδής δικιολογώντς συγχρόνως την πάντησή

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ο δείγμα ΘΕΜΑ ο Α. Έστω μία συνάρτηση f συνεχής σε ένα διάστημα α,β. Αν G είναι μία παράγουσα της f στο α,β τότε να αποδείξετε ότι

Διαβάστε περισσότερα

ΠΕΡΙΚΛΗΣ Γ. ΚΑΤΣΙΜΑΓΚΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΟ ΠΡΩΤΟ ΘΕΜΑ ΕΚΔΟΣΕΙΣ ΟΡΟΣΗΜΟ ΖΩΓΡΑΦΟΥ

ΠΕΡΙΚΛΗΣ Γ. ΚΑΤΣΙΜΑΓΚΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΟ ΠΡΩΤΟ ΘΕΜΑ ΕΚΔΟΣΕΙΣ ΟΡΟΣΗΜΟ ΖΩΓΡΑΦΟΥ ΠΕΡΙΚΛΗΣ Γ ΚΑΤΣΙΜΑΓΚΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΟ ΠΡΩΤΟ ΘΕΜΑ ΕΚΔΟΣΕΙΣ ΚΕΝΤΡΙΚΗ ΔΙΑΘΕΣΗ Τρυλντώνη 8, 577 Ζωγράφου Τηλ: 747344 747395 email:info@orosimoeu wwworosimoeu ISBN: 978-68-873--4 ΕΚΔΟΣΕΙΣ

Διαβάστε περισσότερα

ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ - ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ

ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ - ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ ΚΑΡΑΓΕΩΡΓΟ ΒΑΙΗ - ΜΑΥΡΑΓΑΝΗ ΤΑΘΗ ΠΑΝΕΗΝΙΕ ΕΞΕΤΑΕΙ 5 - - Οι πρκάτω σημειώσεις βσίστηκν στ έντυπ του Κ.Ε.Ε. (999 ) κι στη θεμτοδοσί των Πνελλδικών Εξετάσεων στ Μθημτικά Κτεύθυνσης της Γ υκείου. τις επόμενες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ II ΕΠΑΛ (ΟΜΑ Α Β ) ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α A Έστω f µια συνάρτηση ορισµένη σε ένα διάστηµα Αν F είναι µια παράγουσα της f στο, τότε να αποδείξετε ότι: όλες οι συναρτήσεις της µορφής G() F() + c, c

Διαβάστε περισσότερα

f(x) dx ή f(x) dx f(x) dx

f(x) dx ή f(x) dx f(x) dx ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Ορισμός. Αν η f είνι ολοκληρώσιμη στο διάστημ [ a, ) ή στο διάστημ (,], τότε ονομάζουμε γενικευμένο ολοκλήρωμ είδους το ολοκλήρωμ της μορφής f() d ή - f() d Ορισμός. Το σημείο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ. Α.3 Πότε η ευθεία y = l λέγεται οριζόντια ασύµπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ. Α.3 Πότε η ευθεία y = l λέγεται οριζόντια ασύµπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3 ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 7 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Α.1 Αν z 1, z είναι µιγαδικοί αριθµοί, να αποδειχθεί ότι: z 1 z = z 1 z. Α. Πότε δύο συναρτήσεις f, g λέγονται ίσες; Μονάδες 4 Α.3 Πότε η ευθεία y

Διαβάστε περισσότερα

Για παραγγελίες των βιβλίων 2310610920

Για παραγγελίες των βιβλίων 2310610920 Για παραγγελίες των βιβλίων 369 Θέματα Προσομοίωσης Πανελλαδικών D.A.T. ΘΕΜΑ o ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 3 ΑΠΡΙΛΙΟΥ 8 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 30 ΜΑΪΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 30 ΜΑΪΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 3 ΜΑΪΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ o A. Έστω µι συνεχής συνάρτηση σ' έν διάστηµ [, ]. Αν G είνι µι πράγουσ

Διαβάστε περισσότερα

Μαθηματικά θετικής & τεχνολογικής κατεύθυνσης

Μαθηματικά θετικής & τεχνολογικής κατεύθυνσης ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 5 Μθημτικά θετικής & τεχνολογικής κτεύθυνσης Α. Σχολικό βιβλίο, σελ: 94 ΘΕΜΑ Α Α. Σχολικό βιβλίο, σελ: 88 Α. Σχολικό βιβλίο, σελ: 59 Α4. ) ΛΑΘΟΣ β) ΣΩΣΤΟ γ) ΛΑΘΟΣ δ) ΣΩΣΤΟ ε) ΣΩΣΤΟ

Διαβάστε περισσότερα

3.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

3.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΩΡΙΑ 1. Ορισµός Έστω µία συνάρτηση f µε εδίο ορισµού Α και A Θα λέµε ότι η f είναι εριοδική όταν υάρχει ραγµατικός αριθµός Τ > 0 έτσι ώστε για κάθε Α να ισχύει : i)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο A. Έστω µια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστηµα. Αν f () > σε κάθε εσωτερικό σηµείο του, τότε να αποδείξετε ότι η f είναι γνησίως

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ η ΜΟΡΦΗ ΑΣΚΗΣΕΩΝ: Μς ζητούν ν βρούμε την εξίσωση ενός κύκλου Ν βρεθεί η εξίσωση του κύκλου που έχει κέντρο το σημείο: Κ (3, 3) κι τέμνει πό την ευθεί

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Ο Να εξετάσετε ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λανθασµένες.. Αν η συνάρτηση είναι συνεχής στο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α A. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα. Αν F είναι μια παράγουσα της στο, τότε να αποδείξετε ότι:

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 Ε_3.Μλ3ΘΤ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α ΟΙ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΑΠΟ ΤΟΥΣ ΚΑΘΗΓΗΤΕΣ κύριο ΦΟΥΝΤΟΥΛΑΚΗ ΜΑΝΩΛΗ κυρία ΦΟΥΝΤΟΥΛΑΚΗ ΑΓΓΕΛΙΚΗ του ΦΡΟΝΤΙΣΤΗΡΙΟΥ

Διαβάστε περισσότερα

ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. Δίνετι η εκθετική συνάρτηση: f a Γι ποιες τιμές του η ) γνησίως ύξουσ; β) γνησίως φθίνουσ; ( ) είνι:. Δίνοντι οι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. Ενότητα 6 ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. Ενότητα 6 ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ ΜΙΓΑ ΙΚΟΙ Ενότητ 6 ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΟΛΟΚΛΗΡΩΜΑΤΩΝ Ορισµό ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ Έστω f µί συνάρτηση ορισµένη σε έν διάστηµ. Αρχιή συνάρτηση ή πράουσ f στο ονοµάζετι άθε συνάρτηση F που είνι πρωίσιµη στο ι ισχύει

Διαβάστε περισσότερα

Μαθηματικά Γ Λυκείου. Έκδοση Α. 120 Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων. Αθήνα 2012 (λίγο πριν τις εκλογές) 5/5/2012

Μαθηματικά Γ Λυκείου. Έκδοση Α. 120 Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων. Αθήνα 2012 (λίγο πριν τις εκλογές) 5/5/2012 Μαθηματικά Γ Λυκείου Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων 5/5/ Έκδοση Α Θετική και Τεχνολογική Κατεύθυνση ( mac964@gmail.com) Αθήνα (λίγο πριν τις εκλογές) Επαναληπτικές ασκήσεις που φιλοδοξούν

Διαβάστε περισσότερα

Ελευθέριος Πρωτοπαπάς. Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Β Γενικού Λυκείου

Ελευθέριος Πρωτοπαπάς. Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Β Γενικού Λυκείου Ελευθέριος Πρωτοαάς Εκφωνήσεις και λύσεις των ασκήσεων της Τράεζας Θεμάτων στην Άλγεβρα Β Γενικού Λυκείου Δεκέμβριος 04 Περιεχόµενα o Θέμα Θέµα Σελίδα Θέµα Σελίδα Θέµα Σελίδα Θέµα Σελίδα 6950 8 6954 9

Διαβάστε περισσότερα

AΠΟΔΕΙΞΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΦΟΡΙΚΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

AΠΟΔΕΙΞΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΦΟΡΙΚΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Αποδείξεις Θεωρίς Γ Λυκείου Κτεύθυσης Θέμ 1 ο [σελ 167 σχ. Βιβλίου] P 1 Έστω το πολυώυμο Έχουμε 1 1 1 lim P lim... AΠΟΔΕΙΞΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΦΟΡΙΚΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ( 2001 2011 ) ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΕΙΣ Ο.Ε.Φ.Ε. ( 2003 2011 )

ΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ( 2001 2011 ) ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΕΙΣ Ο.Ε.Φ.Ε. ( 2003 2011 ) ΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ( & ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΕΙΣ Ο.Ε.Φ.Ε. ( Επιμέλεια Συρραφή Θεμάτων Ζαχαριάδης Λάζαρος - Μαθηματικός ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΑΠΟ ΕΩΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 1 ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 1. ) Πότε µι συνάρτηση µε Πεδίο ορισµού το Α ονοµάζετι περιοδική; β) Ποιο είνι το πεδίο ορισµού κι η περίοδος των συνρτήσεων ηµx, συνx, εφx κι σφx;. Περιοδική ονοµάζετι

Διαβάστε περισσότερα

Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 2000-2015

Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 2000-2015 Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 000-05 Περιεχόµενα Θέµατα Επαναληπτικών 05............................................. 3 Θέµατα 05......................................................

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων.

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων. Άσκηση Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων Μέρος ο i. Δίνεται η γνησίως μονότονη συνάρτηση f : A IR. Να αποδείξετε

Διαβάστε περισσότερα

23 2011 ΘΕΜΑ Α A1. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ και x 0 ένα εσωτερικό σημείο του Δ. Αν η f παρουσιάζει τοπικό ακρότατο στο x 0 και είναι παραγωγίσιμη στο σημείο αυτό, να αποδείξετε ότι:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f () σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι

Διαβάστε περισσότερα

Λύκειο Παραλιμνίου Σχολική Χρονιά 2013-2014 Γενικές ασκήσεις επανάληψης Γ κατ

Λύκειο Παραλιμνίου Σχολική Χρονιά 2013-2014 Γενικές ασκήσεις επανάληψης Γ κατ Λύκειο Παραλιμνίου Σχολική Χρονιά 1-14 Γενικές ασκήσεις επανάληψης Γ κατ 1. Να βρείτε την παράγωγο της συνάρτησης y = e ημ + ln. Να βρείτε την παράγωγο της συνάρτησης y = τοξημ( ) d y y = ημ θ. Να βρείτε

Διαβάστε περισσότερα

για τις οποίες ισχύει ( )

για τις οποίες ισχύει ( ) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΜΗΤΑΛΑΣ ΓΙΑΝΝΗΣ, ΔΡΟΥΓΑΣ ΑΘΑΝΑΣΙΟΣ ΕΠΙΜΕΛΕΙΑ . Έστω οι συναρτήσεις f, g: για κάθε. α) Να αποδείξετε ότι η g είναι -. β) Να αποδείξετε ότι

Διαβάστε περισσότερα

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 28 (με Δημητριάδος) Βόλος τηλ.

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 28 (με Δημητριάδος) Βόλος τηλ. ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με Δημητριάδος) Βόλος τηλ. 4598 Κεφάλαιο ο Ολοκληρωτικός Λογισμός Ολοκληρωτικός Λογισμός Μεθοδολογία Λυμένα

Διαβάστε περισσότερα

Ορισμός: Μια συνάρτηση f/α ονομάζεται συνεχής στο σημείο x ο

Ορισμός: Μια συνάρτηση f/α ονομάζεται συνεχής στο σημείο x ο 0 ΜΑΘΗΜΑ.4. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ.4.. Συνέχει συνάρτησης στ o Ορισμός: Μι συνάρτηση f/α νμάζετι συνεχής στ σημεί Α, ότν υπάρχει τ lim f () ι είνι: lim f() = f( ) ΙΣΟΔΥΝΑΜΟΣ ΟΡΙΣΜΟΣ Ότν υπάρχει δ > 0 ώστε

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (1 η σειρά)

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (1 η σειρά) 9 ΘΕΡΙΝΑ ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ( η σειρά) ΘΕΜΑ ο Α. Έστω η συνάρτηση f με f() ημ. Να αποδείξετε ότι η f είναι παραγωγίσιμη στο και ισχύει f () συν Β. Πότε μια συνάρτηση f λέμε

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά)

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά) 3 1 0 011 ΘΕΡΙΝΑ ΤΜΗΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά) ΘΕΜΑ 1 Α. Έστω η συνάρτηση F()=f()+g(). Aν οι συναρτήσεις f, g είναι παραγωγίσιμες, να αποδείξετε ότι F

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ ΜΕΡΟΣ A ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 36, Γραφ. 1, Στρόβολος 3, Λευκωσία Τηλ. 357-37811 Φαξ: 357-3791 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 13 ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Πέμτη, 3/5/13

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών Θετικής & Τεχν.Κατ/νσης Γ Λυκείου 2000

Θέµατα Μαθηµατικών Θετικής & Τεχν.Κατ/νσης Γ Λυκείου 2000 Θέµατα Μαθηµατικών Θετικής & Τεχν.Κατ/νσης Γ Λυκείου Ζήτηµα ο Α. Αν η συνάρτηση f είναι αραγωγίσιµη σ ένα σηµείο x του εδίου ορισµού της να γραφεί η εξίσωση της εφατοµένης της γραφικής αράστασης της f

Διαβάστε περισσότερα

ΥΠΟΨΗΦΙΑ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ 2013

ΥΠΟΨΗΦΙΑ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ 2013 ΥΠΟΨΗΦΙΑ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ 3 Εισαγωγή Μέσα Μαΐου και ο πυρετός των Πανελλαδικών όλο και ανεβαίνει! Οι μαθητές ξεκοκαλίζουν τα βιβλία για να ανακαλύψουν δύσκολα θέματα διαφορετικά από αυτά που κυκλοφορούν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 8 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία, σελ. 53, σχολικού βιβλίου. Α. Θεωρία, σελ. 9, σχολικού βιβλίου. Α3. Θεωρία, σελ. 58, σχολικού βιβλίου. Α4. α) Σ, β) Σ,

Διαβάστε περισσότερα

Σημειωση Αν καποια προταση απο τις επομενες χρησιμοποιηθει χρειαζεται αποδειξη. Εξαιρεση αποτελουν οι(3),(13),(21)

Σημειωση Αν καποια προταση απο τις επομενες χρησιμοποιηθει χρειαζεται αποδειξη. Εξαιρεση αποτελουν οι(3),(13),(21) È Ö Ñ Ø Ä Ó Ù Ð ËÕÓÐ ËÑ ÖÒ ¾½ÆÓ Ñ ÖÓÙ¾¼¼ È Ö ØÛÔ Ö Ð Ñ ÒÓÒØ Ñ Ö ÔÖÓØ Ñ Ö Ð ÑÑ Ø ÕÖ Ñ È ÖÐ Ý Ø Ü Ø ØÓÑ Ñ Ø ÙÒ Ø ³ÄÙ ÓÙº Σημειωση Αν κποι προτση πο τις επομενες χρησιμοποιηθει χρειζετι ποδειξη. Εξιρεση ποτελουν

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [a, b] είναι όριο?

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [a, b] είναι όριο? ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [, ] είναι όριο? β) Για να βρούμε το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [, ] πρέπει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Πηγή: KEE

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Πηγή: KEE ΚΕΦΑΛΑΙΟ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Πηγή: KEE 1. Το σηµείο Μ (-, ) νήκει στη γρµµή µε εξίσωση Α. = = - Γ. = 1. ( ) ( - ) = 1 Ε. = -. Το κέντρο του κύκλου που έχει διάµετρο ΑΒ µε Α

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

e 1 1. Μια συνάρτηση f: R R έχει την ιδιότητα: (fof)(x)=2-x για κάθε χє R. Να δείξετε ότι: α) f(1)=1, β) η f αντιστρέφεται, γ) f x lim

e 1 1. Μια συνάρτηση f: R R έχει την ιδιότητα: (fof)(x)=2-x για κάθε χє R. Να δείξετε ότι: α) f(1)=1, β) η f αντιστρέφεται, γ) f x lim ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Μια συνάρτηση f: R R έχει την ιδιότητα: (fof)()=- για κάθε χє R. Να δείξετε ότι: α) f()=, β) η f αντιστρέφεται, γ) f - ()=-f(), є R., δ ) να λύσετε

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 3 ΙΟΥΝΙΟΥ 03 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΤΡΙΤΗ 3 IOYNIOY 04 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ - ΤΥΠΟΛΟΓΙΟ

ΕΠΑΝΑΛΗΨΗ - ΤΥΠΟΛΟΓΙΟ ΕΠΑΝΑΛΗΨΗ - ΤΥΠΟΛΟΓΙΟ ΚΕΦΑΛΑΙΟ Ο : ΙΑΝΥΣΜΑΤΑ Ιδιότητες πρόσθεσης δινυσµάτων () + = + () ( + ) + γ = + ( + γ) (3) + = (4) + ( ) =. Αν Ο είνι έν σηµείο νφοράς, τότε γι κάθε διάνυσµ ΑΒ έχουµε: AB = OB OA

Διαβάστε περισσότερα

(Μονάδες 15) (Μονάδες 12)

(Μονάδες 15) (Μονάδες 12) ΑΛΓΕΒΡΑ Β Λυκε ί ου τ ράε ζ αθε μάτ ων( 1ηέ κδοση) θέ μαδε ύτ ε ροκαιτ έ τ αρτ ο Κόμβ οςατ σι οούλου01415 δης Ει μέ λε ι α:εμμανουήλκ.σκαλί Αντ ώνηςκ.αοστ όλου Άσκηση 1 α) Να κατασκευάσετε ένα γραμμικό

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν Η f είναι συνεχής στο Δ και f = για κάθε εσωτερικό σημείο του Δ τότε να αποδείξετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΣΚΗΣΕΙΣ Πηγή: KEE

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΣΚΗΣΕΙΣ Πηγή: KEE 1. Ν ρεθεί η εξίσωση του κύκλου σε κθεµιά πό τις πρκάτω περιπτώσεις: ) έχει κέντρο την ρχή των ξόνων κι κτίν ) έχει κέντρο το σηµείο (3, - 1) κι κτίν 5 γ) έχει κέντρο το σηµείο (-, 1) κι διέρχετι πό το

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α. A1. Έστω μια συνάρτηση f παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο x

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α. A1. Έστω μια συνάρτηση f παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο x ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α A Έστω μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο, στο οποίο όμως η είναι συνεχής Να αποδείξετε ότι αν () 0 στο, ) και ()

Διαβάστε περισσότερα

Κεφάλαιο 2ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

Κεφάλαιο 2ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Κεφάλαιο ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύου «Σωστό - Λάθος». * Αν = α + βi, α, β R και = 0, τότε α = 0 και β = 0. Σ Λ. * Αν = α + βi και αβ 0, τότε = α β i. Σ Λ. * Αν = κ + λi κ, λ R, τότε Re () =

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6.

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6. ΜΙΓΑ ΙΚΟΙ 1 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 1 2 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 3 Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2 4 Για κάθε z C ισχύει z z 2 z 5 Για κάθε µιγαδικό z ισχύει:

Διαβάστε περισσότερα

3.4 3.5 ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ

3.4 3.5 ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΚΕΦΑΛΑΙΟ Ο.. ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΜΕΘΟΔΟΛΟΓΙΑ : ΟΛΟΚΛΗΡΩΜΑΤΑ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Συμφώνα με το Θεμελιώδες Θεώρημα του Ολοκληρωτικού Λογισμού Θ.Θ.Ο.Λ ισχύει : I. d II. d III. d ln IV. d V. d VI. d VII. d

Διαβάστε περισσότερα

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1 ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 8 ΜΑΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ Α Α.

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ).

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ). 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1 ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ Α. Βλέπε σχολικό βιβλίο σελίδα 194, το θεώρηµα ενδιάµεσων τιµών. Β. Βλέπε τον ορισµό στη σελίδα 279 του σχολικού βιβλίου. Γ. Βλέπε

Διαβάστε περισσότερα

Θέματα. Α1. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του x,

Θέματα. Α1. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του x, Θέμα Α Θέματα Α. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του, στο οποίο όμως η f είναι συνεχής. Να αποδείξετε ότι αν η f() διατηρεί πρόσημο στο (, ) (, ), τότε

Διαβάστε περισσότερα

Πρόχειρες σημειώσεις στα επίπεδα ηλεκτρομαγνητικά κύματα

Πρόχειρες σημειώσεις στα επίπεδα ηλεκτρομαγνητικά κύματα Πρόχειρες σηειώσεις στ είεδ ηλεκτρογνητικά κύτ ΠΡΙΧΟΜΝΑ Διάδοση είεδων ΗΜΚ σε η γώγι έσ Ανάκλση κι διάδοση γι ρόστωση κάετη στην ειφάνει Ο νόος του Sell στην λάγι ρόστωση Πόλωση κάετη στο είεδο ρόστωσης

Διαβάστε περισσότερα

1. Τριγωνομετρικοί αριθμοί οξείας γωνίας

1. Τριγωνομετρικοί αριθμοί οξείας γωνίας v.5 «Αυτό το ρόβλημα, τούτ η μεγάλη συμφορά για να λυθεί χρειάζεται, δίχως αμφιβολία, όως κοιτάζω α τη δική σου την λευρά, να δεις κι εσύ α τη δική μου τη γωνία».. Τριγωνομετρικοί αριθμοί οξείας γωνίας

Διαβάστε περισσότερα

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x )

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x ) () Μονοτονία ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( ) και βρίσκω το πρόσηµό της ii) Αν προκύψει να είναι αύξουσα ή φθίνουσα,

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÏ ÏÑÏÓÇÌÏ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÏÑÏÓÇÌÏ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑΛ Β 6 ΜΑΪΟΥ ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία (θεώρ Frmat) σχολικό βιβλίο, σελ 6-6 Α Θεωρία (ορισµός) σχολικό βιβλίο, σελ 8 Α3 ΘΕΜΑ Β α β γ δ ε Σ Σ Λ Λ Σ B Έχουµε από υπόθεση

Διαβάστε περισσότερα

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ. Mια συνάρτηση λέμε ότι είναι παραγωγίσιμη σε ένα σημείο του πεδίου ορισμού ( της, αν υπάρει το lim και είναι πραγματικός αριθμός. Το όριο αυτό λέγεται παράγωγος της στο και συμβολίζεται

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν η f είναι συνεχής στο Δ και f ()= για κάθε εσωτερικό σημείο του Δ, τότε

Διαβάστε περισσότερα

Το Ορισµένο Ολοκλήρωµα

Το Ορισµένο Ολοκλήρωµα Το Ορισµένο Ολοκλήρωµα Λυγάτσικας Ζήνων Πρότυπο Πειραµατικό Γ.Ε.Λ. Βαρβακείου Σχολής 3 Μαρτίου 4 Εισαγωγή Ο δρόµος της ϑεωρίας της ολοκλήρωσης ξεκινά απο τον Αρχιµήδη, αλλά η πραγµατική ιστορία αρχίζει

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ

ΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ ΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ 1. Τι ονομάζουμε εριοδική συνάρτηση Μια συνάρτηση ƒ με εδίο ορισμού το Α λέγεται εριοδική όταν υάρχει ραγματικός αριθμός Τ, Τ > 0 τέτοιος ώστε για κάθε χ Α να ισχύει α) χ+τ Α, χ -

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÁ ÓÕÍÏËÏ ËÁÌÉÁ. ( i) ( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ( ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β ΘΕΜΑ Γ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ.

ÖÑÏÍÔÉÓÔÇÑÉÁ ÓÕÍÏËÏ ËÁÌÉÁ. ( i) ( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ( ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β ΘΕΜΑ Γ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β ΙΟΥΝΙΟΥ 4 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία σελ. 5 σχολικού βιβλίου. Α. Θεωρία σελ. 73 σχολικού βιβλίου. Α3. Θεωρία σελ. 5 σχολικού βιβλίου. Α4. α) Λ, β) Σ, γ) Σ,

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 4 Λύσεις των θεμάτων Έκδοση η

Διαβάστε περισσότερα

Μία σύντομη εισαγωγή στην Τριγωνομετρία με Ενδεικτικές Ασκήσεις

Μία σύντομη εισαγωγή στην Τριγωνομετρία με Ενδεικτικές Ασκήσεις Μία σύντομη εισαγωγή στην Τριγωνομετρία με Ενδεικτικές Ασκήσεις. Ονομασίες Ορισμοί Ο τριγωνομετρικός κύκλος έχει ακτίνα R. Αρχή μέτρησης των τόξων (γωνιών) είναι το Α, είτε κατά τη θετική φορά (αριστερόστροφα)

Διαβάστε περισσότερα

με f f κ)κάθε συνάρτηση ορισμένη σε κλειστό διάστημα έχει μέγιστη και ελάχιστη τιμή στο διάστημα αυτό. λ)αν μια συνάρτηση f είναι συνεχής στο,

με f f κ)κάθε συνάρτηση ορισμένη σε κλειστό διάστημα έχει μέγιστη και ελάχιστη τιμή στο διάστημα αυτό. λ)αν μια συνάρτηση f είναι συνεχής στο, Μαθηματικά κατεύθυνσης Γ Λυκείου Διαγώνισμα διάρκειας 3 ωρών στις Συναρτήσεις και τα Όρια 9-5 Θέμα Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας την ένδειξη Σωστό ή Λάθος

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. σας προτείνουν για άλλη μια χρονιά, ένα ολοκληρωμένο

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. σας προτείνουν για άλλη μια χρονιά, ένα ολοκληρωμένο ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Αγαπητοί μαθητές και μαθήτριες, Τα σας προτείνουν για άλλη μια χρονιά, ένα ολοκληρωμένο επαναληπτικό υλικό στα Μαθηματικά Κατεύθυνσης της Γ Λυκείου,

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΟΛΟΚΛΗΡΩΣΗΣ. Παρατήρηση: Για να εφαρμόσουμε τον τύπο πρέπει μία από τις δύο συναρτήσεις να είναι ή να την γράψουμε υπό μορφή παραγώγου

ΜΕΘΟΔΟΙ ΟΛΟΚΛΗΡΩΣΗΣ. Παρατήρηση: Για να εφαρμόσουμε τον τύπο πρέπει μία από τις δύο συναρτήσεις να είναι ή να την γράψουμε υπό μορφή παραγώγου ΜΕΘΟΔΟΙ ΟΛΟΚΛΗΡΩΣΗΣ Β. Ολοκλήρωση κατά παράγοντες Γενικά η μέθοδος αυτή εφαρμόζεται όταν έχουμε γινόμενο δύο συναρτήσεων Εκφράζεται με τον τύπο της παραγοντικής ολοκλήρωσης: f()g ()d= f()g() - f ()g()d

Διαβάστε περισσότερα

ΟΡΙΑ ΣΥΝΕΧΕΙΑ: Τύποι - Βασικές έννοιες

ΟΡΙΑ ΣΥΝΕΧΕΙΑ: Τύποι - Βασικές έννοιες Τύποι - Βασικές έννοιες Όρια - Συνέχεια 37. ΟΡΙΑ ΣΥΝΕΧΕΙΑ: Τύποι - Βασικές έννοιες Με τη βοήθεια του παρακάτω θεωρήματος διευκολύνεται ο υπολογισμός ορίων (άλγεβρα ορίων): Αν τα όρια lim f () και lim g()

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Μ. Τρίτη 3 Απριλίου 3 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Σχολικό βιβλίο,

Διαβάστε περισσότερα

xsin ydxdy (α) Εάν το χωρίο R είναι φραγμένο αριστερά και δεξιά από τις ευθείες x=α και x=β και από πάνω και κάτω από τις καμπύλες dr = dxdy

xsin ydxdy (α) Εάν το χωρίο R είναι φραγμένο αριστερά και δεξιά από τις ευθείες x=α και x=β και από πάνω και κάτω από τις καμπύλες dr = dxdy ΔΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Εφαρμογή Να υολογιστεί το ολοκλήρωμα : cos sin dd Ολοκληρώνουμε ρώτα ως ρος θεωρώντας το σαν σταθερά (αρατηρούμε ότι το «εσωτερικό» ολοκλήρωμα είναι ως ρος, δηλαδή ρώτα εμφανίζεται το

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόπουλου ΠΡΟΒΛΗΜΑΤΑ ΕΥΡΕΣΗΣ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ ΜΙΑΣ ΣΥΝΑΡΤΗΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόπουλου ΠΡΟΒΛΗΜΑΤΑ ΕΥΡΕΣΗΣ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ ΜΙΑΣ ΣΥΝΑΡΤΗΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόουλου ΠΡΟΒΛΗΜΑΤΑ ΕΥΡΕΣΗΣ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ ΜΙΑΣ ΣΥΝΑΡΤΗΣΗΣ Α. ΕΙΣΑΓΩΓΗ Ολοκληρώνοντας το 1 ο κεφάλαιο στα Μαθηματικά της Γενικής Παιδείας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 3 4 ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:.

Διαβάστε περισσότερα