4.1 δες αντίστοιχη θεωρία 4.2. Α) ναι. Β) όχι. 4.3 δες αντίστοιχη θεωρία. 4.4 δες αντίστοιχη θεωρία 4.5 Α Λ Β Σ Γ Σ Δ Σ ,8 θεωρία.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "4.1 δες αντίστοιχη θεωρία 4.2. Α) ναι. Β) όχι. 4.3 δες αντίστοιχη θεωρία. 4.4 δες αντίστοιχη θεωρία 4.5 Α Λ Β Σ Γ Σ Δ Σ ,8 θεωρία."

Transcript

1 ΑΠΑΝΤΗΣΕΙΣ - ΛΥΣΕΙΣ 4. δες ντίστοιχη θεωρί 4. Α) νι Β) όχι 4. δες ντίστοιχη θεωρί 4.4 δες ντίστοιχη θεωρί 4.5 Α Λ Β Σ Γ Σ Δ Σ 4. 6 f d f ()g()d f()g() f()g ()d f()d f () f()d f () () () f(g())d f(g( ()) () 4.6-4,8 θεωρί

2 ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ 4.9 Οι δοσμένοι τύποι συνρτήσεων φυσικά δεν προδιθέτουν γι υπολογισμό πργουσών. Απλοποιούμε λοιπόν με πράξεις τους δοσμένους τύπους κι έχουμε :. Είνι 4 f 4 6 Οπότε οι πράγουσες της f είνι οι συνρτήσεις, β. Είνι F ημ c, όπου c R. f ln Οπότε οι πράγουσες της f στο, είνι οι συνρτήσεις 4 5 F ln c ln c , γ. Είνι, όπου c R. l log og f f Οπότε οι πράγουσες της f στο, είνι οι συνρτήσεις 5 4 F c F 5 c, όπου c R. 6 5 ΑΣΚΗΣΗ 4.. Μετσχημτίζουμε τον τύπο της συνάρησης κι έχουμε : f, οπότε οι πράγουσες της f είνι οι συνρτήσεις F c,όπου c R. β. Όμοι έχουμε f ημ συν ημ συν ημ ημ ημ οπότε οι πράγουσες της f είνι οι συνρτήσεις

3 F ημ c,όπου c R. γ. Όμοι έχουμε f ln ln ln ln οπότε οι πράγουσες της f είνι οι συνρτήσεις F ln c,όπου c R. δ. Όμοι έχουμε f οπότε οι πράγουσες της f είνι οι συνρτήσεις F ημ c,όπου c R. ΑΣΚΗΣΗ 4.. έχουμε f F c,όπου c R. οπότε οι πράγουσες της f είνι οι συνρτήσεις β. έχουμε π 5 π 5 π f 5 π οπότε οι πράγουσες της f είνι οι συνρτήσεις F γ. έχουμε π 5 c,όπου c R. ln ln f οπότε οι πράγουσες της f είνι οι συνρτήσει δ. έχουμε f 7log log F c,όπου c R.

4 οπότε οι πράγουσες της f είνι οι συνρτήσεις F 7 c,όπου c R. ΑΣΚΗΣΗ 4..Κάνουμε σχήμ Hornr γι το πολυώνυμο του ριθμητή κι έχουμε οπότε η συνάρτηση γράφετι f οπότε οι πράγουσες της f είνι οι συνρτήσεις F - ++c= c 4 4 4ln c β.κάνουμε σχήμ Hornr γι το πολυώνυμο του προνομστή κι έχουμε - οπότε η συνάρτηση γράφετι f οπότε οι πράγουσες της f είνι οι συνρτήσεις F ln +c=ln +c ΑΣΚΗΣΗ 4..Κάνουμε την Ευκλείδι διίρεση :

5 Y Π οπότε η ρητή συνάρτηση γράφετι f Όμως A B A( ) B( ) Από την () προκύπτει A( ) B( ) Γι χ= η () Β=5 Γι χ= η () A A Από τις σχέσεις, προκύπτει f 5 οπότε οι πράγουσες της f είνι οι συνρτήσεις ln +5 ln c= ln +5ln F c β.κάνουμε την Ευκλείδι διίρεση : Π 4 Y οπότε η ρητή συνάρτηση γράφετι

6 f Όμως A B A( ) B Από την () προκύπτει A( ) B Γι χ=- η () -Β=-5 B 5 Γι χ= η () A A Από τις σχέσεις, προκύπτει 5 f οπότε οι πράγουσες της f είνι οι συνρτήσεις 5 5 F ln ln c ln ln c ΑΣΚΗΣΗ 4.4 Η συνάρτηση f είνι συνεχής στο διάστημ π,π οπότε η συνάρτηση F ημ cείνι πράγουσ της f στο διάστημ π,. η συνάρτηση F c είνι πράγουσ της f στο διάστημ,π. γι ν είνι τώρ η η συνάρτηση F είνι πράγουσ της f στο διάστημ π,π,ρκεί ν είνι συνεχής στο. Δηλδή m lim F li F F c c,οπότε ν θέσουμε c πίρνουμε c c. Κτά συνέπει οι πράγουσες της f στο διάστημ π,π είνι οι συνρτήσεις F ημ c, ημ c, F c, c, c ΑΣΚΗΣΗ 4.5 ) f, f 6 β) i)θ Bolzano γι την f στο, ii)θμτ γι την f στο,

7 ΑΣΚΗΣΗ 4.6 Επειδή f (), έχουμε διδοχικά: f () f() c, c R Γι ν διέρχετι η f πό το σημείο A(,) πρέπει κι ρκεί f() ή, ισοδύνμ, c, δηλδή c 4. Επομένως, f() 4. ΑΣΚΗΣΗ 4.7 Γι κάθε έχουμε : f f f f f f f f f f f f f f f c f c Γι,η () γράφετι f c c c,οπότε πό σχέση () προκύπτει ότι f f : Γι έχουμε ( f συνεχής) f lim f lim Κτά συνέπει πό, f,, ΑΣΚΗΣΗ 4.8 f εφ ΑΣΚΗΣΗ 4.9 f c ΑΣΚΗΣΗ 4. f ΑΣΚΗΣΗ 4. f ΑΣΚΗΣΗ 4.

8 f με ΑΣΚΗΣΗ 4. 4 f c ) f 4 β) ΑΣΚΗΣΗ 4.4 )Δείξτε ότι g β) f, R β) ln G c ΑΣΚΗΣΗ 4.5 Γι, η δοσμένη σχέση γράφετι f ln... f ΑΣΚΗΣΗ 4.6 i) Έχουμε d d d d d i i) Έχουμε 4 4 d d d d 4 4 d 4 ΑΣΚΗΣΗ 4.7 i) Έχουμε ln ln ln d ln ln d d ln ln ln

9 i) Έχουμε / ln ln ln ln d d ln ln d d ln 4 ln ln 4 4 ΑΣΚΗΣΗ 4.8 Η δοσμένη σχέση με διίρεση ( f ) γράφετι : f f ( ) f ( ) f ( ) f( ),οπότε f( ) β β f β ( ) d f ( ) d f( ) f( ) d ln f( ) d β β β f ( ) d f ( ) d f( ) f(β) β ln υπ β ln f(β) ln f() f() ln f( ) d ln f( ) ΑΣΚΗΣΗ 4.9 Έχουμε 4 I d d d d ΑΣΚΗΣΗ 4. Έχουμε I d d d 4 d d 8 ΑΣΚΗΣΗ 4. Κάνουμε σχήμ Hornr γι το πολυώνυμο του προνομστή κι έχουμε

10 - οπότε η συνάρτηση γράφετι f Οπότε I d ln ln ΑΣΚΗΣΗ 4. Από τη σχέση ημ προκύπτει ότι ημ γι κάθε π/ π/ π/ π/ π -ημ d= -ημd συν 8 π,,οπότε ΑΣΚΗΣΗ 4. ) Η συνάρτηση f είνι συνεχής κι πργωγίσιμη στο R,οπότε f με Είνι f = f - + f () + f() ο.ε. f() = Το πρόσημο της f φίνετι πό τον πρπάνω πίνκ,πό τον οποίο κι προκύπτει ότι Η f είνι γνησίως φθίνουσ στο, κι γνησίως ύξουσ στο,.

11 Έχει ολικό ελάχιστο το f β) Είνι f f f γι κάθε R. d= d= γ) Είνι ΑΣΚΗΣΗ 4.4 ) Η συνάρτηση g : με τύπο g( ) είνι κυρτή στο διότι g( ) Συνεπώς η εφπτομένη σε οποιοδήποτε σημείο του γρφήμτος της βρίσκετι κάτω πό το γράφημ της g Είνι, g(), g () φού g ( ) κι άρ η εφπτομένη στο σημείο A(,) έχει εξίσωση y. Από τ πρπάνω έχουμε () Ας υποθέσουμε ότι υπάρχει τέτοιο ώστε f( ) Η ρχική νισότητ γι δίνει ( ) το οποίο ντίκειτι στην () Έτσι, f( ) κι ως συνεχής διτηρεί στθερό πρόσημο Από την ρχική έινι f() f() άρ f( ) β) Αφού f( ) θ ισχύει υπο f d f d 4 Η πράστση μέσ στο ολοκλήρωμ γράφετι f( ) 5 f( ) γιτί f( ) λόγω υπόθεσης γιτί Δ κτά συνέπει f f ( ) 5 d ( ) 5 d υποθ f( ) d d d 5d ΑΣΚΗΣΗ 4.5 Η συνάρτηση g Έχουμε είνι φνερά συνεχής στο,.

12 Άρ η συνάρτηση g g / / 4 8 Είνι d= 5 4 d=... / / 4 / ΑΣΚΗΣΗ 4.6 / Η συνάρτηση g R,κτά συνέπει κι στο,. Πρτηρούμε ότι, οπότε είνι φνερά συνεχής στο κι κτά συνέπει , οπότε Άρ η συνάρτηση g γράφετι g Είνι d= -6+ d= ΑΣΚΗΣΗ 4.7 ) Κάνουμε την Ευκλείδι διίρεση : κι έχουμε =, οπότε I d d d

13 d d. Όμως d d d ln 9 β) Κάνουμε την Ευκλείδι διίρεση : Π Y οπότε η ρητή συνάρτηση γράφετι f Όμως A B A( ) B( ) Από την () προκύπτει A B A A B B 5 Από τις σχέσεις, προκύπτει A( ) B( ) A B A B f 5, οπότε 5 I d d d d 5 d ln 5 ln...

14 ΑΣΚΗΣΗ 4.8 Έχουμε ln d ' = ln ( )d = ln d = ln d ΑΣΚΗΣΗ 4.9 Έχουμε = ln = ln ln 4( ) = ln = = 4 I f d f d f f d f f d 6 f f f d f f d Όμως f f f f f f 6 d = d = d = ln ln Οπότε πό την σχέση προκύπτει ότι I ln ΑΣΚΗΣΗ 4.4 π Είνι tημ tdt... π,οπότε π π π π I t tdt d d d ημ συν π π συν π ημπ

15 π π π ημ π ημ π d ημ π ημ π d π π π ημπ συν π πημπ ημ πσυν π συν π π πημ π συν π ΑΣΚΗΣΗ 4.4 ) Έχουμε ότι Το πεδίο ορισμου της f ln είνι, A f Η f είνι συνεχής κι πργωγίσιμη στο, κι είνι ln f Βρίσκουμε τις ρίζες κι το πρόσημο της ln f ln f Είνι ln f ln ln f + - f f ΟΜ Το πρόσημο της f φίνετι στον πρπάνω πίνκ,πό τον οποίο προκύπτει ότι η συνάρτηση f : Είνι γνησίως ύξουσ στο διάστημ, κι γνησίως φθίνουσ στο, Έχει τοπικό μέγιστο το μέγιστο. f,όμως σν συνεχής στο,θ είνι κι ολικό ln Είνι lim f lim lim ln

16 Οπότε η f,σν συνεχής θ έχει Σ.Τ. το διάστημ, Το πεδίο ορισμου της g είνι Ag R Η g είνι συνεχής κι πργωγίσιμη στο R κι είνι g με g g - + g g ΟΕ Το πρόσημο της g φίνετι στον πρπάνω πίνκ,πό τον οποίο προκύπτει ότι η συνάρτηση g : Είνι γνησίως φθίνουσ στο διάστημ, κι γνησίως ύξουσ στο, Έχει τοπικό ελάχιστο το g,όμως σν συνεχής στο,θ είνι κι ολικό ελάχιστο. Είνι lim g lim lim. DH Όμως lim κι lim lim lim. Οπότε η g,σν συνεχής θ έχει Σ.Τ. το διάστημ,. β) Η πράστση μέσ στο ολοκλήρωμ γράφετι : ln ln Π 4 ln Π Ομως a a ln ln ln - - Οπότε το ολοκλήρωμ γράφετι με πρόσθεση κτά μέλη (λόγω ()) πίρνουμε ότι ln ln I d d I d ln 4 d...

17 ΑΣΚΗΣΗ 4.4 θέτουμε ln u d du d du d du διφορίζουμε ln ln νέ άκρ u ln ln κι u ln ln έχουμε ln u I d udu = ΑΣΚΗΣΗ 4.4 θέτουμε ln u d du d du d du διφορίζουμε ln ln νέ άκρ u ln ln ln κι u ln ln ln έχουμε. I d ln ln ln du ulnu.συνεχίζουμε με νέ ντικτάστση κι θέτουμε lnu t,οπότε d lnu dt lnu du dt du dt u κι όμοι έχουμε ulnu ulnu t ln ln I du du dt ln ln t lnln lnln ln ln ln. ΑΣΚΗΣΗ Το ολοκλήρωμ γράφετι I d d d θέτουμε u οπότε διφορίζουμε τη ν σχέση κι πίρνουμε u u u du d udu d udu d udu d u οπότε 4 d u u du

18 νέ άκρ u κι u 9 πό έχουμε I d u u u u du u u du u u u du u du u du u du u u u ΑΣΚΗΣΗ 4.45 H συνάρτηση f ίνι πολυωνυμική κι κτά συνέπει είνι πργωγίσιμη στο R. Έχουμε 5 4 f 5. Κτά συνέπει η f είνι γνησίως ύξουσ στο R,άρ είνι κι,οπότε είνι κι νντιστρέψιμη. Είνι 5 f f d f d f d d d f ΑΣΚΗΣΗ 4.46 Θέτουμε β υπο I f d I f β d β Κάνουμε ντικτάστση β u β u Διφορίζουμε κι είνι β β d du d du d du d du

19 νέ άκρ είνι u β β κι u β β β β β β β I f d u f u du u f u du u f u du β β β β β β β β β f u du uf u du f u du I I f u du β β I β f d I f d β β ΑΣΚΗΣΗ 4.47 Θέτουμε f d c Η δοσμένη σχέση γράφετι f c f c Αντικθιστούμε στην σχέση () την τιμή της f c c c c d c d c c c Θεωρούμε την συνάρτηση g, R g με ( ) g - + g + g ο.ε. g κτά τ γνωστά προκύπτει ότι η,είνι μονδική ρίζ της εξίσωσης. Οπότε πό την σχέση έχουμε c c c κι πό () προκύπτει ότι f c f

20 ΑΣΚΗΣΗ 4.48 Θέτουμε β t όπότε β β β β β f( ) d β t f β t dt ( β) f( t) dt tf( t) dt ( β) f( ) d f( ) d β Άρ β Έχουμε β f( ) d f( ) d β β β β f( ) d f( ) d f( ) d () Θέτουμε β u οπότε β β β β f( ) d f β u du f( u) du β β Η σχέση () γράφετι β β β f( ) d f( ) d f( ) d β f( ) d β β ΑΣΚΗΣΗ 4.49 () Είνι lim f( ) lim λ λ υπ lim λ λ (β)είνι I d d ln = ln ΑΣΚΗΣΗ 4.5 () Είνι f( ) lim lim υπ lim 4 (β) η ευθεί ψ λ β είνι πλάγι σύμπτωτη της συνάρτησης f( ) ότν f( ) λ lim υπ κι

21 β lim f( ) λ lim lim lim lim lim Άρ η ευθεί ψ=χ είνι πλάγι σύμτωτη της συνάρτησης f( ) στο (γ)είνι I f( ) d d d ln =ln ΑΣΚΗΣΗ 4.5 ) Θέτουμε όπου το 4- κι πό το σύστημ που προκύπτει βρίσκουμε f()=668-. β) Είνι g()= 668 ln, (, ) (,+ ). g( ) Επειδή lim = = κι lim (g()-)= = -, η C f δεν έχει οριζόντιες ή πλάγιες σύμπτωτες.είνι lim g()= κι lim g()= +, lim g()= - οπότε η C f έχει κτκόρυφη σύμπτωτη την ευθεί =. γ) Είνι h()= (668-)= , κι h ( ) d = =[h ()] - ( ) h ( ) d =βh (β)- h ()-[h()] = βh (β)- h ()-h(β)+h(). Γι ν ισχύει η ισότητ h ( ) d =h()-h(β),ρκεί βh (β)- h ()=, γι κτάλληλες τιμές των, β.έχουμε h ()= - +6= = ή = 6. Επιλέγοντς = κι β= 6 πίρνουμε το ζητούμενο.

22 ΑΣΚΗΣΗ 4.5 ημt Αν F dt,τότε έχουμε t 4 ημt Η συνάρτηση f t ορίζετι γι κάθε t R με t 4 t 4 t t t Κτά συνέπει f,,, Όμως το νήκει στο υποδιάστημ A,στο οποίο η f είνι συνεχής., του f A,οπότε, A. F 6 Αν F 9 u du,τότε έχουμε Η συνάρτηση 9 9 u u u u, Κτά συνέπει, Η συνάρτηση Όμως το f f u u ορίζετι γι τ κάθε u R με A,στο οποίο η f είνι συνεχής. g 6 ορίζετι γι κάθε R,οπότε Ag R. νήκει στο A,,οπότε πιτούμε ν ισχύει : f Ag R R R g, 6, 6 9, οπότε A F,. Η συνάρτηση F είνι άθροισμ των συνρτήσεων,,,. AF AF A F F F,οπότε Είνι 4 ημt ημ F dt 9 u du t 4 4 ημ F ΑΣΚΗΣΗ 4.5 Η σχέση () γι,γράφετι ισοδύνμ

23 f f t dt f f t dt έχουμε κι ν πργωγίσουμε κι τ δύο μέλη f f f f t f f f Με ολοκλήρωση πίρνουμε : Από την () γι f t t dt f t dt t προκύπτει f f. Από την () γι κάθε έχουμε t ln f t dt ln f ln f t dt ln f ln t t, οπότε f ΑΣΚΗΣΗ 4.54 Έχουμε ότι η συνάρτηση f είνι συνεχής στο, Οι πράγουσες της f,δίνοντι πό τον τύπο Όμως υποθ F f t dt c c. Κτά συνέπει είνι F f t dt F f t dt c. Όμως t t t t t t t f t dt dt dt dt dt t t t t t t t t dt dt dt dt t t t t t t t t t t t dt d t t t t t Οπότε πό την σχέση προκύπτει F f t dt F

24 ΑΣΚΗΣΗ 4.55 ) Γι το πεδίο ορισμού της f πρέπει οπότε A f, ln ln ln, κι R,οπότε β) Φνερά η f είνι συνεχής στο οι πράγουσες της f,δίνοντι πό τον τύπο υπο F f t dt c Αλλά F f tdt c c =,οπότε F f t dt Όμως f t dt ln lnt t lnt dt θέτουμε lnt u διφορίζουμε d lnt du lnt dt du dt du t νέ άκρ u ln t ln κι u ln t ln t Οπότε πό την σχέση προκύπτει t ln ln ln t u ln ln ln f t dt dt du lnu lnudu ln u du ln u t lnt u κι πό τη σχέση () προκύπτει ότι το σύνολο των πργουσών είνι ln F f t dt ln u ln ln ln ΑΣΚΗΣΗ 4.56 Θέτοντς στη δοθείσ σχέση όπου το, προκύπτει πως g() g ().Όμως, η g πργωγίσιμη στο [,] ως πράξεις μετξύ πργωγίσιμων. Συνεπώς, πό Roll, f ( r ) υπάρχει r (,) ώστε g( r) f ( ) Επειδή,, R,ισχύει πως Άρ, R : g( ) g() Β ΛΥΣΗ Με την ντικτάστση στην δοθείσ έχουμε πως f ( t ) f ( t ) g() g() dt dt

25 f ( t ) f ( t ) κι επειδή dt τότε έχουμε πως Οπότε βάζοντς στην δοθείσ έχουμε g( ) g() γι κάθε Συνεπώς η g είνι στθερή συνάρτηση στο. ΑΣΚΗΣΗ 4.57 θέτουμε t u t u (με t στθερά) d t du t d du d du d du διφορίζουμε νέ άκρ u t t κι u t t έχουμε t t f( ) f ( t ) f( t u) f ( u) f( t u) f ( u) G( t) d du du f( ) f ( t ) t f( t u) f( u) f( t u) f( u) Αυτην κι την ρχικη τις προσθετουμε κι: t t t ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) f f t f t u f u f u f t u f t u f u G( t) d du du f( ) f( t ) f( t u) f( u) f( t u) f( u) t f( u) du f( t u) f( u) δηλδή G t t f( u) f( t) f() f( t) f() f( t u) f( u) f( t t) f( t) f( t ) f() f() f( t) άρ G t f ( t ) f () f() f( t) με t R Από την () προκύπτει φνερά ότι η G t είνι πργωγίσιμη στο R με f( t) f() f ( t) f G t f() f( t) f( t) f() Από την () γι προκύπτει με t R f () f f () f f () G f() f() 4 f () 4 f()

26 ΑΣΚΗΣΗ 4.58 Θεωρούμε τη βοηθητική συνάρτηση G( ) f ( t) dt Έχουμε G( ) G( ) Γι τη συνάρτηση G ισχύουν οι προυποθέσεις του Θ.Roll στο διάστημ,., ώστε G( ) () Κτά συνέπει υπάρχει έν τουλάχιστον χ Όμως G( ) ( ) f ( t) dt ( f ( t) dt) = f ( t) dt f ( ) οπότε G( ) f ( t) dt f ( ).Κτά συνέπει η () γράφετι ισοδύνμ f ( t) dt f ( ) f ( ) f ( t) dt ΑΣΚΗΣΗ 4.59 t t οπότε γι έχουμε t t t t t t dt dt lim t t dt lim dt t t ) Γι κάθε t R είνι Όμως t t dt dt ln t ln t t lim dt lim ln t t Οπότε πό την σχέση προκύπτει ότι t lim t dt β) Λόγω του ) ερωτήμτος, στο ζητούμενο όριο έχουμε προσδιοριστί,οπότε f t dt f tdt f t lim lim lim lim lim lim DLH

27 ΑΣΚΗΣΗ 4.6 Είνι : f t dt f t dt f t dt f lim f t dt lim lim =lim συν συν DLH συν ημ f t dt f f f lim lim f f f. DLH ημ συν Οπότε λόγω της υπόθεσης είνι f f 4 ΑΣΚΗΣΗ 4.6 Η εξίσωση της ευθείς γράφετι y = g() = Οι τετμημένες των σημείων τομής των δύο γρφικών πρστάσεων είνι οι λύσεις της εξίσωσης f() = g() 4 = + 6 = = ή = Το διάστημ ολοκλήρωσης είνι το [, ] Η διφορά f() g() = 4 + = + 6 Πρόσημο της διφοράς f() g() + f() + Ε = (f() g())d = (4 )d = ( 6)d = = + 6 = = 5 6

28 ΑΣΚΗΣΗ 4.6 i) f () = 6, f() = κι f () = 6 Άρ η εφπτομένη στο Α είνι : y = 6( ) y = 6 ii) Ανζητούμε το εμβδό του μικτογράμμου τριγώνου ΟΒΑ, όπου το Β είνι το σημείο τομής της εφπτομένης με τον άξον των. Γι y =, η y = 6 =, άρ Β, Φέρνουμε ΑΓ Ζητούμενο εμβδόν :, οπότε Γ(, ) Ε = (Μικτόγρμμο ΟΓΑ) (Τρίγωνο ΒΓΑ) = f () d g() d = d 6 d = d (6 )d = = ( ).. =. 4 = + 4 = 4 = 4 ΑΣΚΗΣΗ 4.6 Κοινό πεδίο ορισμού είνι το [, + )

29 Κοινά σημεί των C f, 9( ) = ( + ) ή = 5 C g : f() = g() ( ) = = = Πρόσημο της διφοράς f() g() : f() g() f() g() + 9( ) ( + ) E = 5 f() g() d = 5 (f() g())d = 5 ( )d = d d = ( ) d ( )d = ( ) = 5 4 (4 ) ( 5 ) 6 5 = ΑΣΚΗΣΗ 4.64 i) f () = f () = Εξίσωση της εφπτόμενης στο Α(, ) : y f() = f ()( ) y = ( ) y = + Η εφπτόμενη στο Α τέμνει τον άξον των στο σημείο με τετμημένη την λύση της εξίσωσης + = = Το ζητούμενο εμβδόν χωρίζετι πό τον άξον των y σε δύο μέρη.

30 Ε = ( )d ( )d = = = 4 4 ii) Εξετάζουμε ν υπάρχει τιμή του με έτσι ώστε ν ισχύει Ε ( )d = = 6 ή = 6 Από υτές, στο διάστημ [, ] νήκει η = 6 Άρ η ευθεί = 6 χωρίζει το χωρίο σε δύο ισεμβδικά τμήμτ. Ανζητώντς ευθεί = με φθάνουμε σε δύντη εξίσωση, άρ δεν υπάρχει τέτοι ευθεί. ΑΣΚΗΣΗ 4.65

31 ΑΣΚΗΣΗ 4.66

32 ΑΣΚΗΣΗ 4.67 ΑΣΚΗΣΗ 4.68 Γι την f έχουμε ότι είνι συνεχής με θετικές τιμές στο διάστημ [,] κτά συνέπει γι το εμβδόν Ε του ζητούμενου χωρίου θ είνι : d d d d 9 d 9 d 9 6 d 5.

33 ΑΣΚΗΣΗ 4.69 ) Θέτουμε στη δοθείσ όπου το +6 : f(+6)+f(+)= () Θέτουμε στη δοθείσ όπου το + : f(+)+f()= () Από () κι () : f(+6)=f() β) f( 7) d = f( 6) d = f( ) d u 6 f( u) du. ΑΣΚΗΣΗ 4.7 Έστω f t dt g t dt h t dt f t dt h t dt f t h t dt f t dt g t dt f t g t dt Άρ πό θεώρημ Bolzano υπάρχει τουλάχιστον έν, ώστε f t dt g t gt h t dt. Η g h. Επομένως η φ είνι γνησίως ύξουσ. Άρ η λύση υτή είνι μονδική. ΑΣΚΗΣΗ 4.7 ) Επειδή η συνάρτηση h() - g() είνι συνεχής στο [, β] ως διφορά συνεχών συνρτήσεων κι γι κάθε [, β] είνι h() > g() h() - g() > έχουμε : ( h( ) g( )) d > h( ) d - g( ) d > h( ) d > g( ) d. β) i) Πργωγίζουμε τ δύο μέλη της f() f() = κι πίρνουμε : f () + f () f() = f ()(+ f() ) = f () = ii) Γι κάθε > έχουμε < f() < f () f( ) (),. f ( ) < f() f() < f () < f( ) f( ) < f () (). Αρκεί λοιπόν ν ποδείξουμε την ().

34 Η f είνι συνεχής στο [, ] κι πργωγίσιμη στο (, ) φού είνι πργωγίσιμη στο. Σύμφων με το θεώρημ μέσης τιμής υπάρχει έν f( ) f( ) τουλάχιστον ξ(, ) τέτοιο ώστε f (ξ) =. Όμως < ξ < f () < f (ξ) < f () (), φού πό την () γι κάθε : f( ) f ( ) f () = > ( f () >, πό την () ), οπότε η f είνι γνησίως f( ) ( ) ύξουσ. Όμως f () = =. Έτσι πό την () προκύπτει η (). f = ( ) iii) Η f είνι συνεχής στο [, ] (ως πργωγίσιμη στο ) κι γι κάθε [, ] είνι f() (f() = κι γι κάθε > είνι < < f() ). Επομένως Ε = f( ) d. Επειδή το συμπέρσμ του ερωτήμτος () εξκολουθεί ν ισχύει κι ότν h() g() γι κάθε [, β] με το = ν μην ισχύει πντού στο [, β] ( η πόδειξη όμοι ) θ έχουμε : f() f () ( γι κάθε [, ] με το = ν ισχύει μόνο γι = ) d < f d ( ) < f ( ) d [ 4 ] < E < [f()] - ( ) f( ) d [ 4 ] < E 4 < E 4 < E E < [f()] - E E < f() E < f() Άρ 4 < Ε < f().

35 ΑΣΚΗΣΗ 4.7 ) Έχουμε ln f ( ) d + 4 d = ln f ( ) d [ln f ( ) ] d = lnf() = f() =, γι κάθε [, ]. f ( ) β) Ι = f ( ) f ( ) d f ( ) f ( ) f ( ) = d = f ( ) f ( ) = f ( ) - d f ( ) f ( ) Άρ Ι = Ι =,5 d u f ( u) + f ( u) f ( u ) du = Ι. ΑΣΚΗΣΗ 4.7 i) Θεωρώ την συνάρτηση g f udu uf udu g f u du uf u du f u du f f f u du Είνι Άρ η g είνι γνησίως ύξουσ. Έχω Η () λόγω της () δίνει f(u)du g g g g uf(u)du uf(u)du f(u)du uf(u)du f(u)du ii) Έχουμε h f(u)du f(u)du uf(u)du f f(u)du uf(u)du f g. f(u)du f(u)du f(u)du Άρ η h είνι γνησίως ύξουσ

36 ΑΣΚΗΣΗ 4.74 ) Η συνάρτηση g είνι πργωγίσιμη στο ως άθροισμ πργωγίσιμων συνρτήσεων διότι η f είνι συνεχής στο κι η z z ( ) πργωγίσιμη ως πολυωνυμική. Άρ g () = ( z f( t) dt) z ( ) = z = z f( ) ( ) - z z = z f( ) - z z. β) Πρτηρούμε ότι g() = z f( t) dt z ( ) =, άρ γι κάθε z ισχύει g() g(), δηλδή το g() = είνι ολικό ελάχιστο της g. Επιπλέον το είνι εσωτερικό σημείο του κι η g είνι πργωγίσιμη στο, οπότε σύμφων με το θεώρημ του Frmat g () = z f( ) - z z = z - z z = z z z. f( ) γ) Έχουμε : z z z z z z z z z z = z z = z z w w w w w w w = (w + )( w + ) w w = w w + w + w + w + w = - R(w) = - z w R(z ) =. δ) Αρκεί ν δείξουμε ότι β < διότι τότε εφρμόζετι το θεώρημ του Bolzano γι την f στο [, ] ( η f είνι συνεχής στο [, ] κι θ είνι f()f() < ). Έχουμε R(z ) = < κι z = ( + βi ) = β +βi, άρ β < ( β)( + β) < a ρνητικού - άρ είνι ρνητικός. + β < β < -, δηλδή ο β είνι μικρότερος του ΑΣΚΗΣΗ 4.75 Ισοδύνμ ρκεί ν δείξουμε ότι d d Η συνάρτηση f έχει πράγωγο f με,

37 f + f f min f ma κι πό τον πίνκ προκύπτει ότι f.όμως η f γι τ των, (φού δεν είνι στθερή). Κτά συνέπει, πίρνει κι άλλες τιμές εκτός d f d d d d Η συνάρτηση g έχει πράγωγο f με, f - f f f κι πό τον πίνκ προκύπτει ότι ma min g.όμως η g γι τ εκτός των, (φού δεν είνι στθερή). Κτά συνέπει, πίρνει κι άλλες τιμές d g d d d d Προσθέτουμε τις σχέσεις, κι πίρνουμε ΑΣΚΗΣΗ 4.76 f ( ) d d ) Γι το ολοκλήρωμ f ( ) d θέτουμε = f(t), t[, β], οπότε f ( ) d = f (t)dt. Γι = f() πίρνουμε t =, ενώ γι = f(β) πίρνουμε f ( ) t = β ( η f είνι ). Το f ( ) d είνι κλώς ορισμένο φού η f ( ) f είνι συνεχής ( f συνεχής C f συνεχής γρμμή f C συνεχής

38 γρμμή, φού οι C f, C είνι συμμετρικές ως προς την y = f συνεχής ). Έτσι είνι f f ( ) f ( ) d = f ( ) tf ( t) dt. Επομένως : f ( ) f ( ) d + f ( ) d = ( f ( t) tf ( t)) dt = [ tf(t)] f ( ) = βf(β) f(). β) f () = >, γι κάθε. Άρ η f είνι κι σύμφων με το () θ είνι : f f () ( ) d = f f () ( ) d = f() f() f ( ) d = = + ΑΣΚΗΣΗ 4.77 f () = + =. 6 ( 5 ) d >, γι κάθε. Άρ η f είνι γνησίως ύξουσ. Έχουμε : f() = f ( ) f() = + 6 t dt = t dt = = 6, φού ν > 6 6 τότε 6 t t t dt >, ενώ ν < 6 τότε dt = dt <. 6 6 ΑΣΚΗΣΗ Η δοσμένη γράφετι: f f f f f f f f f Άρ f c όμως f

39 οπότε c c κι f τελικά f ln β. f t dt lim () Γι το μετσχημτισμό του f t dt θέτουμε: u t u t u t οπότε du dt Άρ f udu f u du Οπότε το δοσμένο όριο () ισούτι: lim f u du L' H f συνεχής f f f lim ln γ. 5 5 h t f t dt t f t dt 5 5 h f f 5 5 h t f tdt t f t dt 5 h f f 5 h ln ln h h h ln ln

40 7 Επίσης g 7 κι g Άρ h g 6 Οπότε πό βσικό θεώρημ έχουμε: Όμως άρ 5 h t f t dt g h g c c c Τελικά h g. h g c δ. Α λύση: Αρκεί ν λυθεί ντί της 5 t 7 f tdt 8 ή h g 7 8 Θεωρούμε την 7 φ() = στο [,] 7 8 φ() συνεχής σν διφορά συνεχών στο [, ] 8 7 8, Άρ υπάρχει έν τουλάχιστον Επίσης

41 Άρ Β λύση: γνησίως ύξουσ κι η ρίζ ξ είνι μονδική. Με θεώρημ Bolzano πάμε ότν οι συμβτικές λύσεις γι κάποιο λόγο δεν εφρμόζοντι. Εδώ όμως η δοσμένη εξίσωση γράφετι: Όμως ως γνωστό πό την άλγεβρ Α λυκείου (!) έχει μονδική ρίζ την η οποί βρίσκετι στο (, ) διότι:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Ο μθητής που έχει μελετήσει το κεφάλιο υτό θ πρέπει ν είνι σε θέση:. Ν γνωρίζει τις έννοιες πράγουσ ή ρχική συνάρτηση, όριστο ολοκλήρωμ κι ν μπορεί ν υπολογίζει πλά όριστ ολοκληρώμτ με τη οήθει των μεθόδων

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 52 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 8 η ΕΚΑ Α

ΜΑΘΗΜΑ 52 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 8 η ΕΚΑ Α ΜΑΘΗΜΑ 5 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 8 η ΕΚΑ Α 7. Έστω συνάρτηση f : R R, η οποί είνι πργωγίσιµη κι κυρτή στο R µε f() κι f () i) Ν ποδείξετε ότι f() γι κάθε R f (t)dt Ν ποδείξετε ότι ηµ Αν επιπλέον ισχύει f () (f()

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009.

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009. ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 9. ΘΕΜΑ ο Α. Έστω, Δ. Δικρίνουμε τις περιπτώσεις: Αν =, τότε f( ) = f( ). Αν

Διαβάστε περισσότερα

Α2. Πότε μία συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα του πεδίου ορισμού της; Μονάδες 3

Α2. Πότε μία συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα του πεδίου ορισμού της; Μονάδες 3 Βθμός: /25 Τεστ Μθημτικών Εξετζόμενος-η: Προσντολισμού, Γ Λυκείου Θεωρί 1 Κθηγητής: Ιορδάνης Χτζηνικολάου Συνρτήσεις Θέμ Α Α1. Ν ποδείξετε ότι οι γρφικές πρστάσεις C κι C των συνρτήσεων f κι f 1 είνι συμμετρικές

Διαβάστε περισσότερα

E f (x)dx f (x)dx E. 7 f (x)dx (3). 7 f (x)dx E E E E.

E f (x)dx f (x)dx E. 7 f (x)dx (3). 7 f (x)dx E E E E. ΘΕΜΑ Α Α i Σχολικό βιβλίο σελίδ 6 ii Σχολικό βιβλίο σελίδ 6 Α Σχολικό βιβλίο σελίδ 85 Α3 Ισχύει ότι 7 3 7 ()d ()d ()d () 3 Στο,3 είνι () οπότε το εμβδό του χωρίου Ω που ορίζετι πό την κι τις ευθείες, 3

Διαβάστε περισσότερα

Χαράλαμπος Στεργίου Χρήστος Νάκης ΜΑΘΗΜΑΤΙΚΑ Γ2. Υποδείξεις Απαντήσεις των προτεινόμενων ασκήσεων

Χαράλαμπος Στεργίου Χρήστος Νάκης ΜΑΘΗΜΑΤΙΚΑ Γ2. Υποδείξεις Απαντήσεις των προτεινόμενων ασκήσεων Χράλμπος Στεργίου Χρήστος Νάκης ΜΑΘΗΜΑΤΙΚΑ Γ Υποδείξεις Απντήσεις των προτεινόμενων σκήσεων 5.65 5.8 Ενότητ 5 Συμπληρωμτικές σκήσεις κι θέμτ 5.65 ) Από τ δεδομέν της άσκησης έχουμε: f () + f() = ( f ())

Διαβάστε περισσότερα

( ) = ( ) για κάθε. Θέμα Δ. x 2. Δίνονται οι συναρτήσεις f x

( ) = ( ) για κάθε. Θέμα Δ. x 2. Δίνονται οι συναρτήσεις f x ΔΙΑΓΩΝΙΣΜΑΤΑ Διγώνισμ Θέμ Α Α Ν ποδειχθεί ότι η συνάρτηση f = ln,, είνι πργωγίσιμη στο κι ισχύει f = Μονάδες 7 Α Πότε μί συνάρτηση f λέμε ότι είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της; Α Πότε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 23

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 23 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΘΕΜΑ Αν η συνάρτηση f είνι συνεχής στο, πργωγίσιμη στο κι γι κάθε ισχύει f f ( ) d = e e e Α) Ν ποδείξετε ότι: f = e i) η f είνι πργωγίσιμη στο κι ισχύει ii) f() = e Β)

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Μ. Τετάρτη 11 Απριλίου 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Μ. Τετάρτη 11 Απριλίου 2012 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνί: Μ. Τετάρτη Απριλίου ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α. Βλέπε Σχολικό Βιβλίο, σελίδ 7 την πόδειξη του Θεωρήµτος. Α. Βλέπε

Διαβάστε περισσότερα

) f (x) = e x - f(x) ΜΑΘΗΜΑ Η ΣΥΝΑΡΤΗΣΗ F(x) = ΑΣΚΗΣΕΙΣ. Ασκήσεις Εύρεση συνάρτησης Ύπαρξη ρίζας. f (t)dt

) f (x) = e x - f(x) ΜΑΘΗΜΑ Η ΣΥΝΑΡΤΗΣΗ F(x) = ΑΣΚΗΣΕΙΣ. Ασκήσεις Εύρεση συνάρτησης Ύπαρξη ρίζας. f (t)dt ΜΑΘΗΜΑ 4 3.5 Η ΣΥΝΑΡΤΗΣΗ F() = Ασκήσεις Εύρεση συνάρτησης Ύπρξη ρίζς f ()d ΑΣΚΗΣΕΙΣ. Έστω συνεχής συνάρτηση f : R R γι την οποί ισχύει f ( ) f() = e d γι κάθε R. Ν βρεθεί η f. Είνι f () = ( f e d ) f ()

Διαβάστε περισσότερα

Τάξη Γ. Κεφάλαιο. Εμβαδόν Επιπέδου Χωρίου Θεωρία-Μεθοδολογία-Ασκήσεις. Ολοκληρωτικός Λογισμός

Τάξη Γ. Κεφάλαιο. Εμβαδόν Επιπέδου Χωρίου Θεωρία-Μεθοδολογία-Ασκήσεις. Ολοκληρωτικός Λογισμός Τάξη Γ Κεφάλιο Ολοκληρωτικός Λογισμός Θεωρί-Μεθοδολογί-Ασκήσεις Κεφάλιο 3 Ολοκληρωτικός Λογισμός Σε κάθε μί πό τις πρκάτω περιπτώσεις ορίζετι πό τη γρφική πράστση μις τουλάχιστον συνάρτησης κι πό κάποιες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : Η ΣΥΝΑΡΤΗΣΗ F( = (d [Kεφ:.5 H Συνάρτηση F( = (d Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. lim e d. Ν υπολογίσετε το όριο: ( Έχουμε ( e d

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Μ. Τετάρτη 11 Απριλίου 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Μ. Τετάρτη 11 Απριλίου 2012 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΤΑΞΗ: ΜΑΘΗΜΑ: 3 η ΤΑΞΗ ΕΠΑ.Λ. (Β ΟΜΑ Α ΜΑΘΗΜΑΤΙΚΑ II Ηµεροµηνί: Μ. Τετάρτη Απριλίου ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α. Βλέπε Σχολικό Βιβλίο, σελίδ 7 την πόδειξη του Θεωρήµτος. Α. Βλέπε Σχολικό Βιβλίο,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο : Έστω z, z C με (z ) = κι (z ) = Αν f() ( z )( z )( z )( z ) = κι f(i ) = 64 8i, τότε ν ποδείξετε ότι: ) f( i )

Διαβάστε περισσότερα

ΟΛΟΚΛΗΡΩΜΑΤΑ-ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ

ΟΛΟΚΛΗΡΩΜΑΤΑ-ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ εθοδολογί Πρδείγµτ σκήσεις πιµέλει.: άτσιος ηµήτρης ΡΩ-Ρ ΡΩ διότητες: Ρ Πρδείγµτ:. υπολογίσετε τ πρκάτω ολοκληρώµτ: 5 d d συν π ( + ) d 4 Π ΡΩ ΡΩΩ. d c 6. d. d. d 4. d 5. συνd f '( ) d f ( ) + c. ηµ συν

Διαβάστε περισσότερα

Α) Να αποδείξετε ότι η νιοστή παράγωγος της συνάρτησης f µπορεί να πάρει. )e όπου α ν, β ν είναι συντελεστές

Α) Να αποδείξετε ότι η νιοστή παράγωγος της συνάρτησης f µπορεί να πάρει. )e όπου α ν, β ν είναι συντελεστές . ίνετι η συνάρτηση f() e. Α) Ν ποδείξετε ότι η νιοστή πράγωγος της συνάρτησης f µπορεί ν πάρει τη µορφή (ν) f () ( + ν + ν )e όπου ν ν είνι συντελεστές εξρτηµένοι πό το ν τους οποίους κι ν υπολογίσετε.

Διαβάστε περισσότερα

3ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

3ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A 3ο Επνληπτικό διγώνισμ στ Μθημτικά κτεύθυνσης της Γ Λυκείου 17-18 Θέμ A Α1 Έστω f μι συνεχής συνάρτηση σ έν διάστημ β ν ποδείξετε ότι: f t dt G β G Α Πότε μι συνάρτηση λέγετι 1-1; Α3 Πότε μι συνάρτηση

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο)

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 6 Α) Αν η συνάρτηση f είνι πργωγίσιµη σε έν σηµείο του πεδίου ορισµού της, ν γρφεί η εξίσωση της εφπτοµένης της γρφ πρ/σης της f στο σηµείο A(,f ( )) Α) Ν ποδείξετε ότι ν µι συνάρτηση f

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 10 Ιουνίου 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις)

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 10 Ιουνίου 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις) ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρ Ιουνίου 9 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (Ενδεικτικές Απντήσεις) ΘΕΜΑ Α Α. () Ορισμός σχολικού βιβλίου σελ.5 (β) (i) Μι συνάρτηση

Διαβάστε περισσότερα

4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A 4ο Επνληπτικό διγώνισμ στ Μθημτικά κτεύθυνσης της Γ Λυκείου 7-8 Θέμ A Α Έστω η συνάρτηση Ν ποδείξετε ότι η είνι πργωγίσιμη στο,, δηλδή κι ισχύει Ν ποδείξετε ότι η δεν είνι πργωγίσιμη στο μονάδες 7 A Ν

Διαβάστε περισσότερα

ΝΕΟ ΦΡΟΝΤΙΣΤΗΡΙΟ. Λύσεις. Θέμα Α. Α1. Σχολικό βιβλίο σελίδα 262. Α2. Σχολικό βιβλίο σελίδα 169. Α3. α) (1) κάτω, (2) το σημείο επαφής τους

ΝΕΟ ΦΡΟΝΤΙΣΤΗΡΙΟ. Λύσεις. Θέμα Α. Α1. Σχολικό βιβλίο σελίδα 262. Α2. Σχολικό βιβλίο σελίδα 169. Α3. α) (1) κάτω, (2) το σημείο επαφής τους Λύσεις Θέμ Α Α. Σχοικό ιίο σείδ. Α. Σχοικό ιίο σείδ 9. Α. ) () κάτω, () το σημείο επφής τους ) () Α4. ) Σωστό ) Λάθος γ) Λάθος Θέμ Β ν ( ν κ= f(ξ κ )Δ ), f()d Β. Επειδή τ σημεί Α(,), Β(,) νήκουν στη γρφική

Διαβάστε περισσότερα

1 η ΕΚΑ Α ΜΑΘΗΜΑ 45 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ

1 η ΕΚΑ Α ΜΑΘΗΜΑ 45 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑ 45 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ η ΕΚΑ Α. ίνετι η συνάρτηση f () ( ) κι το σηµείο Α(, 0) µε > 0 Ν µελετηθεί η f ως προς την µονοτονί, τ κρόττ, την κυρτότητ, τ σηµεί κµπής κι τις σύµπτωτες. Γι τις διάφορες τιµές

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής - Τεχνολογικής κατεύθυνσης Γ Λυκείου

ΜΑΘΗΜΑΤΙΚΑ Θετικής - Τεχνολογικής κατεύθυνσης Γ Λυκείου ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΣΤΡΙΤΣΙΟΥ ΕΠΙΜΕΛΕΙΑ: Κωνστντόπουλος Κων/νος Μθημτικός ΜSc ΜΑΘΗΜΑΤΙΚΑ Θετικής - Τεχνολογικής κτεύθυνσης Γ Λυκείου ΑΠΑΝΤΗΣΕΙΣ -ΥΠΟΔΕΙΞΕΙΣ ΤΟΥ ου ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΘΕΜΑ Α Α. (i) Βλέπε σχολικό

Διαβάστε περισσότερα

ίνονται οι πραγµατικές συναρτήσεις f, g που έχουν πεδίο ορισµού το σύνολο

ίνονται οι πραγµατικές συναρτήσεις f, g που έχουν πεδίο ορισµού το σύνολο 996 ΘΕΜΑΤΑ. ίνοντι οι πργµτικές συνρτήσεις f, g που έχουν πεδίο ορισµού το σύνολο. Αν οι f κι g έχουν συνεχείς πρώτες πργώγους κι συνδέοντι µετξύ τους µε τις σχέσεις f = g, g = - f τότε ν ποδείξετε ότι:

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ στο ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ στο ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ στο ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ Ι. Σε κθεμιά πό τις πρκάτω περιπτώσεις ν κυκλώσετε το γράμμ Α, ν ο ισχυρισμός είνι ληθής κι το γράμμ Ψ, ν ο ισχυρισμός είνι ψευδής δικιολογώντς συγχρόνως την

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Ο Α. Απόδειξη σελ

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Ο Α. Απόδειξη σελ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 7-5-4 ΘΕΜΑ Ο Α. Απόδειξη σελ. 6 6 Β. Ορισμός σελ. Γ. Σωστό β Σωστό γ Λάθος δ Λάθος ε Σωστό ΘΕΜΑ Ο. D () ln { R : > } (, + ) Η πργωγίζετι

Διαβάστε περισσότερα

η οποία ονομάζεται εκθετική συνάρτηση με βάση α. Αν α 1, τότε έχουμε τη σταθερή συνάρτηση f x 1.

η οποία ονομάζεται εκθετική συνάρτηση με βάση α. Αν α 1, τότε έχουμε τη σταθερή συνάρτηση f x 1. Εκθετική συνάρτηση Αν θετικός πργμτικός ριθμός, σε κάθε ντιστοιχεί η δύνμη. Έτσι ορίζετι η συνάρτηση : f : με f, 0 η οποί ονομάζετι εκθετική συνάρτηση με βάση. Αν, τότε έχουμε τη στθερή συνάρτηση f. Ας

Διαβάστε περισσότερα

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto.

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto. 1 Τ πρκάτω είνι τ κυριότερ θεωρήμτ κι ορισμοί πό το σχολικό βιβλίο κολουθούμεν πό δικά μς σχόλι. 1 ο ΠΡΩΤΟ 2 Συνρτήσεις Γνησίως μονότονη συνάρτηση Μι γνησίως ύξουσ ή γνησίως φθίνουσ συνάρτηση λέμε ότι

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ -8 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑ Αν η συνάρτηση f είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της, ν γρφεί η εξίσωση της εφπτομένης της γρφικής πράστσης της f στο σημείο Α(,f( ))

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ..7 Μέρος Β του σχολικού ιλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. Ν ρεθεί το εμδόν του χωρίου Ω που περικλείετι πό τη γρφική πράστση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 5 : Δίνετι η πργωγίσιμη συνάρτηση, με πεδί ρισμύ κι σύνλ τιμών

Διαβάστε περισσότερα

114 ασκήσεις ένα ερώτημα - σε όλη την ύλη. x και g x ln 1 2x ln x. ισχύει η σχέση: είναι περιττή και ισχύει ότι. f x x 2 2x, για κάθε x

114 ασκήσεις ένα ερώτημα - σε όλη την ύλη. x και g x ln 1 2x ln x. ισχύει η σχέση: είναι περιττή και ισχύει ότι. f x x 2 2x, για κάθε x Ν εξετάσετε ν είνι ίσες οι συνρτήσεις f() N ποδείξετε ότι f g, ότν γι κάθε Η συνάρτηση f : f,. 4 σκήσεις έν ερώτημ - σε όλη την ύλη ln κι g ln ln ισχύει η σχέση: είνι περιττή κι ισχύει ότι 4 Ν οριστεί

Διαβάστε περισσότερα

Τετάρτη, 20 Μα ου 2009 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ

Τετάρτη, 20 Μα ου 2009 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ Τετάρτη, Μ ου 9 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ o Α. Έστω μί συνάρτηση f ορισμένη σε έν διάστημ Δ. Αν η f είνι συνεχής στο Δ κι γι κάθε εσωτερικό σημείο του Δ ισχύει f (), ν ποδείξετε ότι η f είνι

Διαβάστε περισσότερα

Μαθηµατικά Κατεύθυνσης Γ Λυκείου Θέµατα Θεωρίας

Μαθηµατικά Κατεύθυνσης Γ Λυκείου Θέµατα Θεωρίας Μθηµτικά Κτεύθυνσης Γ Λυκείου Θέµτ Θεωρίς ΑΠΟΔΕΙΞΕΙΣ. N ποδείξετε ότι οι γρφικές πρστάσεις C κι C των συνρτήσεων κι - είνι συµµετρικές ως προς την ευθεί y που διχοτοµεί τις γωνίες Oy κι Oy Aς πάρουµε µι

Διαβάστε περισσότερα

just ( u) Πατρόκλου 66 Ίλιον

just ( u) Πατρόκλου 66 Ίλιον just f ( u) du it Πτρόκλου 66 Ίλιον 637345 6944 www.group group-aei aei.gr Νίκος Σούρµπης - - Γιώργος Βρδούκς Ν χρκτηρίσετε τ πρκάτω, σηµειώνοντς Σ (σωστό) ή Λ (λάθος). Αν z, z C, τοτε zz = zz. Η εξίσωση

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 6 Α) Αν η συνάρτηση f είνι πργωγίσιµη σε έν σηµείο του πεδίου ορισµού της, ν γρφεί η εξίσωση της εφπτοµένης της γρφ πρ/σης της f στο σηµείο A(,f ( )) Α)

Διαβάστε περισσότερα

Ο Λ Ο Κ Λ Η Ρ Ω Μ Α Τ Α

Ο Λ Ο Κ Λ Η Ρ Ω Μ Α Τ Α Ο Λ Ο Κ Λ Η Ρ Ω Μ Α Τ Α ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ 4 Ν υπολογίσετε το ολοκλήρωµ: 5 + d (988) 4 Αν I v π 4 v = εϕ d, ν Ν*, τότε: ) Ν ποδείξετε ότι γι κάθε ν>, ισχύει: Iv = Iv v β) Ν υπολογίσετε το Ι 5 (99) 4 Ν βρεθεί

Διαβάστε περισσότερα

Μαθηματικά θετικής & τεχνολογικής κατεύθυνσης

Μαθηματικά θετικής & τεχνολογικής κατεύθυνσης ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 5 Μθημτικά θετικής & τεχνολογικής κτεύθυνσης Α. Σχολικό βιβλίο, σελ: 94 ΘΕΜΑ Α Α. Σχολικό βιβλίο, σελ: 88 Α. Σχολικό βιβλίο, σελ: 59 Α4. ) ΛΑΘΟΣ β) ΣΩΣΤΟ γ) ΛΑΘΟΣ δ) ΣΩΣΤΟ ε) ΣΩΣΤΟ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑ o ΕΚΦΩΝΗΣΕΙΣ A Έστω µι συνεχής συνάρτηση σ' έν διάστηµ [, β] Αν G είνι µι πράγουσ της στο [, β], τότε ν δείξετε ότι β d Gβ G

Διαβάστε περισσότερα

γραπτή εξέταση στo μάθημα ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

γραπτή εξέταση στo μάθημα ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ δυδικό η εξετστική περίοδος πό 9/0/5 έως 9/04/5 γρπτή εξέτση στo μάθημ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ ΛΥΚΕΙΟΥ Τμήμ: Βθμός: Ονομτεπώνυμο: Κθηγητές: Θ Ε Μ Α Α Α. Έστω μι συνάρτηση

Διαβάστε περισσότερα

Σ ΣΤΑ ΘΕΜΑ. f x0. x x. x x. lim. lim f. lim x. lim f x. lim. lim f x f x 0. lim. σχήμα. 7 μ Α1. ,οπότε. 4 μ. f x0 0 0 αφού η f είναι.

Σ ΣΤΑ ΘΕΜΑ. f x0. x x. x x. lim. lim f. lim x. lim f x. lim. lim f x f x 0. lim. σχήμα. 7 μ Α1. ,οπότε. 4 μ. f x0 0 0 αφού η f είναι. ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Σ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥΥ 8 7 μ Α ΘΕΜΑ Α Α η λύση Γι έχουμε lim πργωγίσιμη στο lim lim,οπότε μ lim φού η είνι μ Επομένως, lim η λύση, δηλδή η είνι συνεχής στο lim lim μ lim lim

Διαβάστε περισσότερα

β ] και συνεχής στο ( a, β ], τότε η f παίρνει πάντοτε στο [ a,

β ] και συνεχής στο ( a, β ], τότε η f παίρνει πάντοτε στο [ a, ΕΡΩΤΗΣΕΙΣ Σ Λ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΑΔΙΚΩΝ - Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς στο τετράδιό σς την ένδειξη σωστό ή λάθος δίπλ στο γράμμ που ντιστοιχεί σε κάθε πρότση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΥΝΕΧΕΙΑ ΕΠΙΜΕΛΕΙΑ: ΧΡΑΣ ΓΙΑΝΝΗΣ ΚΕΝΤΡΙΚΟ Ν. ΣΜΥΡΝΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΥΝΕΧΕΙΑ ΕΠΙΜΕΛΕΙΑ: ΧΡΑΣ ΓΙΑΝΝΗΣ ΚΕΝΤΡΙΚΟ Ν. ΣΜΥΡΝΗΣ Φ4 ΣΥΝΕΧΕΙΑ ΕΠΙΜΕΛΕΙΑ: ΧΡΑΣ ΓΙΑΝΝΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΛΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΥ ΚΕΝΤΡΙΚ 3ο ΓΕΝΙΚ ΛΥΚΕΙ Ν. ΣΜΥΡΝΗΣ ΘΕΩΡΙΑ ΣΩΣΤ-ΛΑΘΣ ΠΛΛΑΠΛΗΣ ΕΠΙΛΓΗΣ ΣΥΜΠΛΗΡΩΣΗΣ ΚΕΝΥ ΠΑΡΑΤΗΡΗΣΕΙΣ ΑΣΚΗΣΕΙΣ Α &

Διαβάστε περισσότερα

Θεωρήματα, Προτάσεις, Εφαρμογές

Θεωρήματα, Προτάσεις, Εφαρμογές Θεωρήμτ, Προτάσεις, Εφρμογές Μιγδικοί Ιδιότητες συζυγών: Αν z i κι z γ δi είνι δυο μιγδικοί ριθμοί, τότε: Μέτρο: z z z z z z z z 3 z z z z 4 z z z z Αν z, z είνι μιγδικοί ριθμοί, τότε z z z z z z z z 3

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (27 /5/ 2004)

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (27 /5/ 2004) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (7 /5/ 4) ΘΕΜΑ ο Α. Έστω μι συνάρτηση f ορισμένη σ' έν διάστημ Δ κι έν εσωτερικό σημείο του Δ. Αν η f προυσιάζει τοπικό κρόττο στο κι είνι πργωγίσιμη

Διαβάστε περισσότερα

1. Έςτω f:r R, ςυνεχήσ ςυνάρτηςη και α,b,c R. Αποδείξτε ότι

1. Έςτω f:r R, ςυνεχήσ ςυνάρτηςη και α,b,c R. Αποδείξτε ότι Έςτω :RR, ςυνεχήσ ςυνάρτηςη κι,,cr Αποδείξτε ότι ) d d β) d d γ) d c c d c c δ) d c c c d ε) d στ) d Απάντηση:, εάν η είνι περιττή d, εάν η είνι άρτι Πρόκειτι γι πολύ βσική άσκηση, που είνι εφρμογή της

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ

ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 8 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. Απόδειξη θεωρήμτος σελίδ 99 στο σχολικό Α. ) Ψ β) Η συνάρτηση,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Έστω η πργωγίσιμη συνάρτηση f: (, + ) R γι την οποί ισχύει η σχέση f() yf(y) = yf + y y γι κάθε, y (, + ) i. Ν δειχθεί ότι η f είνι στθερή στο (, + ). ii. Εάν iii.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ:..4 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β Άσκηση. Ν υολογίσετε το ολοκλήρωμ ( + ) d. Εειδή ( ) ( + ) =

Διαβάστε περισσότερα

1995 ΘΕΜΑΤΑ ίνονται οι πραγµατικοί αριθµοί κ, λ µε κ < λ και η συνάρτηση f(x)= (x κ) 5 (x λ) 3 µε x. Να αποδείξετε ότι:, για κάθε x κ και x λ.

1995 ΘΕΜΑΤΑ ίνονται οι πραγµατικοί αριθµοί κ, λ µε κ < λ και η συνάρτηση f(x)= (x κ) 5 (x λ) 3 µε x. Να αποδείξετε ότι:, για κάθε x κ και x λ. 995 ΘΕΜΑΤΑ. ίνοντι οι πργµτικοί ριθµοί κ, λ µε κ < λ κι η συνάρτηση f() ( κ) 5 ( λ) µε. Ν ποδείξετε ότι: ) f () f() 5 κ, γι κάθε κ κι λ. λ ) Η συνάρτηση g() ln f() στρέφει τ κοίλ προς τ κάτω στο διάστηµ

Διαβάστε περισσότερα

4o Επαναληπτικό Διαγώνισμα 2016

4o Επαναληπτικό Διαγώνισμα 2016 wwwaskisopolisgr ΘΕΜΑ A 4o Επνληπτικό Διγώνισμ 6 Διάρκει: ώρες Α Έστω μι συνάρτηση f πργωγίσιμη σ έν διάστημ,, με εξίρεση ίσως έν σημείο του f διτηρεί πρόσημο στο,,, ν,στο οποίο όμως η f είνι συνεχής Αν

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. συνάρτηση φ: α,β. Ορισμός Έστω f συνάρτηση ορισμένη στο., αν. κάθε xo.

Μαθηματικά Προσανατολισμού Γ Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. συνάρτηση φ: α,β. Ορισμός Έστω f συνάρτηση ορισμένη στο., αν. κάθε xo. Ορισμός συντελεστή διεύθυνσης ευθείς Έστω συνάρτηση κι M, έν σημείο της γρφικής της πράστσης. υπάρχει το κι είνι πργμτικός ριθμός λ, τότε ορίζουμε ως εφπτομένη της στο σημείο M, την ευθεί (ε) που διέρχετι

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» Η συνάρτηση f() =, 0 Υπερβολή Δύο ποσά λέγοντι ντιστρόφως νάλογ, εάν μετβάλλοντι με τέτοιο τρόπο, που ότν οι τιμές του ενός πολλπλσιάζοντι με ένν ριθμό, τότε κι οι ντίστοιχες τιμές του άλλου ν διιρούντι

Διαβάστε περισσότερα

Θέμα: Ολοκληρώματα. Υπολογισμός ολοκληρωμάτων. Μέθοδοι ολοκλήρωσης. Εμβαδά. Η συνάρτηση που ορίζεται από ολοκλήρωμα

Θέμα: Ολοκληρώματα. Υπολογισμός ολοκληρωμάτων. Μέθοδοι ολοκλήρωσης. Εμβαδά. Η συνάρτηση που ορίζεται από ολοκλήρωμα Θέμ: Ολοκληρώμτ Υολογισμός ολοκληρωμάτων Μέθοδοι ολοκλήρωσης Εμβδά Η συνάρτηση ου ορίζετι ό ολοκλήρωμ Ενλητικές σκήσεις ολοκληρωμάτων ΥΠΟΛΟΓΙΣΜΟΣ ΟΛΟΚΛΗΡΩΜΑΤΩΝ ΜΕ ΕΥΡΕΣΗ ΤΗΣ ΑΡΧΙΚΗΣ ή ΠΑΡΑΓΟΥΣΑΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ 2

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ 2 - 7 - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. ίνετι η συνάρτηση f η οποί είνι συνεχής στο διάστηµ [, ]. Ν ποδείξετε ότι υπάρχει έν τουλάχιστον ξ (, τέτοιο, ώστε: ξ f(d=ξf(ξ. ( Θ. Rolle στην F(= f( d. ίνετι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ. Σύνολο τιμών της f λέμε το σύνολο που έχει για στοιχεία του τις τιμές της f σε όλα τα.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ. Σύνολο τιμών της f λέμε το σύνολο που έχει για στοιχεία του τις τιμές της f σε όλα τα. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ Β Γενικό μέρος των συνρτήσεων Τι λέμε σύνολο τιμών μις συνάρτησης με πεδίο ορισμού το σύνολο A ; Σύνολο τιμών της λέμε το σύνολο που έχει γι στοιχεί του τις τιμές

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ ΜΑΪΟΥ 9 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέµ 1ο Α. Έστω µι συνεχής συνάρτηση f ορισµένη σε έν διάστηµ.

Διαβάστε περισσότερα

ίνονται οι πραγµατικές συναρτήσεις f, g µε πεδίο ορισµού το έχουν πρώτη και δεύτερη παράγωγο και g(x) f(α) g(α) f(x) g (x) για κάθε x { α}

ίνονται οι πραγµατικές συναρτήσεις f, g µε πεδίο ορισµού το έχουν πρώτη και δεύτερη παράγωγο και g(x) f(α) g(α) f(x) g (x) για κάθε x { α} 1997 ΘΕΜΑΤΑ 1 ίνοντι οι πργµτικές συνρτήσεις f, g µε πεδίο ορισµού το έχουν πρώτη κι δεύτερη πράγωγο κι πργµτικός ριθµός Θέτουµε Α f() g(), που γι κάθε Έστω κι Β f () Α g () Αν φ g() είνι πργµτική συνάρτηση

Διαβάστε περισσότερα

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιμέλεια: Τομέας Μαθηματικών της Ώθησης

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιμέλεια: Τομέας Μαθηματικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 5 ρρ ΑΠΑΝΤΗΣΕΙΣ Επιμέλει: Τομές Μθημτικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 5 ευτέρ, 5 Μ ου 5 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α A. Έστω μι συνάρτηση, η οποί είνι ορισμένη σε έν κλειστό

Διαβάστε περισσότερα

Η συνάρτηση F(x)= 13/3/2010 ΘΕΩΡΗΜΑ Αν f είναι συνάρτηση συνεχής σε διάστημα Δ και α είναι ένα σημείο του Δ, τότε

Η συνάρτηση F(x)= 13/3/2010 ΘΕΩΡΗΜΑ Αν f είναι συνάρτηση συνεχής σε διάστημα Δ και α είναι ένα σημείο του Δ, τότε Μθημτικός Η συνάρτηση F()= //200 ΘΕΩΡΗΜΑ Αν f είνι συνάρτηση συνεχής σε διάστημ Δ κι είνι έν σημείο του Δ, τότε η συνάρτηση F()=, Δ είνι μι πράγουσ της f στο Δ. Δηλδή ισχύει: = f() γι κάθε Δ. (H πργώγιση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Έστω η πργωγίσιμη συνάρτηση f: (, + ) R γι την οποί ισχύει η σχέση f() yf(y) = yf + y y γι κάθε, y (, + ) i. Ν δειχθεί ότι η f είνι στθερή στο (, + ). ii. Εάν iii.

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 30 ΜΑΪΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 30 ΜΑΪΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 3 ΜΑΪΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ o A. Έστω µι συνεχής συνάρτηση σ' έν διάστηµ [, ]. Αν G είνι µι πράγουσ

Διαβάστε περισσότερα

α) Στο μιγαδικό επίπεδο οι εικόνες δύο συζυγών μιγαδικών είναι σημεία συμμετρικά ως προς τον πραγματικό άξονα

α) Στο μιγαδικό επίπεδο οι εικόνες δύο συζυγών μιγαδικών είναι σημεία συμμετρικά ως προς τον πραγματικό άξονα Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν Π Α Ν Ε Λ Λ Α Δ Ι Κ Ω Ν Ε Ξ Ε Τ Α Σ Ε Ω Ν ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ 8.5. ΘΕΜΑ Α A. Έστω μι συνάρτηση f η οποί είνι συνεχής σε έν διάστημ Δ.

Διαβάστε περισσότερα

( 0) = lim. g x - 1 -

( 0) = lim. g x - 1 - ν ν ΘΕΜΑ Η πολυωνυµική συνάρτηση ν + ν + + + έχει όριο στο R κι ισχύει lim ν ν Έχουµε lim + + + lim ν ν ν ν lim ν + lim ν + ν ν ν lim + ν lim + + lim + lim ν ν ν + ν + + Εποµένως, lim ΘΕΜΑ Η ρητή συνάρτηση

Διαβάστε περισσότερα

ολοκληρωτικος λογισμος

ολοκληρωτικος λογισμος γ λυκειου ` κεφλιο κεφλιο κεφλιο κεφλιο κεφλιο κεφλιο ολοκληρωτικος λογισμος επιμελει : τκης τσκλκος 7 ... ρχικη συνρτηση... ορισμενο ολοκληρωμ... η συνρτηση F()= f()d... εμδον επιπεδου χωριου γιτι...

Διαβάστε περισσότερα

Inx + 2. Β)Να μελετήσετε την f ως προς τη μονοτονία, τα ακρότατα και το πρόσημο της.

Inx + 2. Β)Να μελετήσετε την f ως προς τη μονοτονία, τα ακρότατα και το πρόσημο της. ΘΕΜΑ ο Έστω η συνεχής συνάρτηση f ώστε t In + t f dt, > Α)Ν ποδείξετε ότι f() In Β)Ν μελετήσετε την f ως προς τη μονοτονί, τ κρόττ κι το πρόσημο της. Γ)Ν ποδείξετε ότι (In-) γι κάθε > Δ)Ν βρείτε την εφπτομένη

Διαβάστε περισσότερα

Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Αρχική Συνάρτηση Ορισμός Έστω f μι συνάρτηση ορισμένη σε έν διάστημ Δ. Αρχική συνάρτηση ή πράγουσ της f στο Δ ονομάζετι κάθε συνάρτηση F που είνι πργωγίσιμη στο

Διαβάστε περισσότερα

άρα ο μετασχηματισμός Τ είναι κανονικός 1 1 (ε) : 2x - y + 5 = y - - x + 5 =

άρα ο μετασχηματισμός Τ είναι κανονικός 1 1 (ε) : 2x - y + 5 = y - - x + 5 = ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ ΜΑÏΟΥ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο Α Σχολικό βιβλίο τεχνολογικής σελίδ 6 β Σχολικό βιβλίο τεχνολογικής σελίδ 67

Διαβάστε περισσότερα

με x1 x2 , τότε η f είναι γνησίως αύξουσα στο Α. β) Αν για μια συνάρτηση f: ισχύει ότι f x , τότε το σύνολο τιμών της δεν μπορεί να είναι της μορφής,

με x1 x2 , τότε η f είναι γνησίως αύξουσα στο Α. β) Αν για μια συνάρτηση f: ισχύει ότι f x , τότε το σύνολο τιμών της δεν μπορεί να είναι της μορφής, Μθημτικά κτεύθυνσης Γ Λυκείου ο Διγώνισμ διάρκεις ωρών στις Συνρτήσεις κι τ Όρι Οκτώβριος Θέμ Α Α. Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς στο τετράδιό σς την ένδειξη Σωστό ή Λάθος δίπλ στο

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 1 ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 1. ) Πότε µι συνάρτηση µε Πεδίο ορισµού το Α ονοµάζετι περιοδική; β) Ποιο είνι το πεδίο ορισµού κι η περίοδος των συνρτήσεων ηµx, συνx, εφx κι σφx;. Περιοδική ονοµάζετι

Διαβάστε περισσότερα

3x 2x 1 dx. x dx. x x x dx.

3x 2x 1 dx. x dx. x x x dx. ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση (Υολογισμός του f () d Βσιζόμενος σε Ιδιότητες Ή στην Αρχική της f, η οοί Βρίσκετι ό Κνόνες Πργώγισης) Ν υολογίσετε το ολοκλήρωμ ( + ) d (Θέμ Β) Άσκηση (Υολογισμός του f () d

Διαβάστε περισσότερα

Γενικές ασκήσεις σχ. Βιβλίου 3 ου κεφαλαίου

Γενικές ασκήσεις σχ. Βιβλίου 3 ου κεφαλαίου Γενικές σκήσεις σχ. Βιβλίου ου κεφλίου. Ν χρησιµοοιήσετε την ντικτάστση u γι ν οδείξετε ότι f ( ηµ )d f ( ηµ )d ηµ i Ν υολογίσετε το ολοκλήρωµ d +ηµ u du d κι u u Έστω Ι ( ) f ( ηµ )d Ι ( ) ( u) f ηµ u

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ. I. Να αποδείξετε ότι η γραφική παράσταση της f δεν έχει σηµεία που να βρίσκονται πάνω από τον άξονα. x x.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ. I. Να αποδείξετε ότι η γραφική παράσταση της f δεν έχει σηµεία που να βρίσκονται πάνω από τον άξονα. x x. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ o ΘΕΜΑΤΑ Θεωρούµε τη συνάρτηση ( ) = ( + ) ( + ) µε κι. I. Ν ποδείξετε ότι η γρφική πράστση της δεν έχει σηµεί που ν ρίσκοντι πάνω πό τον άξον. II. Ν ποδείξετε ότι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3.1 Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3.1 Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3. Μέρος Β του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Πράγουσ συνάρτηση ΟΡΙΣΜΟΣ Έστω f μι συνάρτηση ορισμένη σε έν διάστημ.

Διαβάστε περισσότερα

Ορισμένο ολοκλήρωμα συνάρτησης Η συνάρτηση F( x ) = ( )

Ορισμένο ολοκλήρωμα συνάρτησης Η συνάρτηση F( x ) = ( ) 9 Ορισμένο ολοκλήρωμ συνάρτησης Η συνάρτηση F( = f t dt Θεωρούμε τη συνεχή συνάρτηση f:a R με A = [,] Χωρίζουμε το [,] σε ν ισομήκη υοδιστήμτ ου το κθέν έχει μήκος Δ = Σε κάθε υοδιάστημ ου σχημτίζετι ν

Διαβάστε περισσότερα

4.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ

4.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ - ΑΣΚΗΣΕΙΣ. ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ η ΜΟΡΦΗ ΑΣΚΗΣΕΩΝ: Μς ζητούν ν κάνουμε την μελέτη ή την γρφική πράστση μις συνάρτησης ΜΕΘΟΔΟΛΟΓΙΑ Ότν μς ζητούν κάνουμε την γρφική πράστση

Διαβάστε περισσότερα

Γ. Ε. ΛΥΚΕΙΟ 2008 ΑΛΓΕΒΡΑ ΤΑΞΗ Β

Γ. Ε. ΛΥΚΕΙΟ 2008 ΑΛΓΕΒΡΑ ΤΑΞΗ Β Γ. Ε. ΛΥΚΕΙΟ 008 81 Γ. Ε. ΛΥΚΕΙΟ 008 8 Α. Ν ποδείξετε ότι ν συν( + β) 0, συν 0 κι συνβ 0 ισχύει: εφ + εφβ εφ( + β) = 1 εφ εφβ Β. Ν χρκτηρίσετε με Σ(σωστό) ή Λ(λάθος)κάθε μι πό τις πρκάτω προτάσεις:. Αν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. Ενότητα 6 ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. Ενότητα 6 ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ ΜΙΓΑ ΙΚΟΙ Ενότητ 6 ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΟΛΟΚΛΗΡΩΜΑΤΩΝ Ορισµό ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ Έστω f µί συνάρτηση ορισµένη σε έν διάστηµ. Αρχιή συνάρτηση ή πράουσ f στο ονοµάζετι άθε συνάρτηση F που είνι πρωίσιµη στο ι ισχύει

Διαβάστε περισσότερα

1. Να σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους παρακάτω ισχυρισμούς:

1. Να σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους παρακάτω ισχυρισμούς: 1. Ν σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους πρκάτω ισχυρισμούς: 1. Αν γι την συνεχή στο συνάρτηση f ισχύουν: f(0) f(2) 0 κι f(0) f(5) 0 τότε η εξίσωση ( ) 0 f έχει τουλάχιστον δύο ρίζες. 2. Αν ισχύει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑο Α Έστω µι συνάρτηση f ορισµένη σ' έν διάστηµ κι έν εσωτερικό σηµείο του Αν η f προυσιάζει τοπικό κρόττο στο κι είνι πργωγίσιµη

Διαβάστε περισσότερα

ΠΕΡΙΚΛΗΣ Γ. ΚΑΤΣΙΜΑΓΚΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΟ ΠΡΩΤΟ ΘΕΜΑ ΕΚΔΟΣΕΙΣ ΟΡΟΣΗΜΟ ΖΩΓΡΑΦΟΥ

ΠΕΡΙΚΛΗΣ Γ. ΚΑΤΣΙΜΑΓΚΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΟ ΠΡΩΤΟ ΘΕΜΑ ΕΚΔΟΣΕΙΣ ΟΡΟΣΗΜΟ ΖΩΓΡΑΦΟΥ ΠΕΡΙΚΛΗΣ Γ ΚΑΤΣΙΜΑΓΚΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΟ ΠΡΩΤΟ ΘΕΜΑ ΕΚΔΟΣΕΙΣ ΚΕΝΤΡΙΚΗ ΔΙΑΘΕΣΗ Τρυλντώνη 8, 577 Ζωγράφου Τηλ: 747344 747395 email:info@orosimoeu wwworosimoeu ISBN: 978-68-873--4 ΕΚΔΟΣΕΙΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ΘΕΜΑο Α Έστω µι συνάρτηση f ορισµένη σ' έν διάστηµ κι έν εσωτερικό σηµείο του Αν η f προυσιάζει τοπικό κρόττο στο κι είνι πργωγίσιµη στο σηµείο

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής. 1. * Αν η γραφική παράσταση µιας συνάρτησης f είναι αυτή που φαίνεται στο σχήµα, τότε λάθος είναι

Ερωτήσεις πολλαπλής επιλογής. 1. * Αν η γραφική παράσταση µιας συνάρτησης f είναι αυτή που φαίνεται στο σχήµα, τότε λάθος είναι Ερωτήσεις πολλπλής επιλογής 1. * Αν η γρφική πράστση µις συνάρτησης f είνι υτή που φίνετι στο σχήµ, τότε λάθος είνι Α. lim f () = 4 B. lim f () = 1 1 1 Γ. lim f () =. f ( 1) = 1 4 0 1 1 1 E. f (1) = 4.

Διαβάστε περισσότερα

ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ I

ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ I ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ I Σε κθεµιά πό τις πρκάτω περιπτώσεις ν κυκλώσετε το γράµµ Α, ν ο ισχυρισµός είνι ληθής κι το γράµµ Ψ, ν ο ισχυρισµός είνι ψευδής δικιολογώντς συγχρόνως την πάντησή

Διαβάστε περισσότερα

1. Δίνεται το τριώνυμο f x 2x 2 2 λ

1. Δίνεται το τριώνυμο f x 2x 2 2 λ 0 Επνληπτικές Ασκήσεις Άλγεβρς Α Λυκείου 0 Επνληπτικές Ασκήσεις Άλγεβρς Α Λυκείου Δίνετι το τριώνυμο λ 5 λ 5, όπου λ Ν ποδείξετε ότι η δικρίνουσ του τριωνύμου ισούτι με Δ 4λ 5λ 3 β Ν βρείτε γι ποιες τιμές

Διαβάστε περισσότερα

µε Horner 3 + x 2 = 0 (x 1)(x

µε Horner 3 + x 2 = 0 (x 1)(x 998 ΘΕΜΑΤΑ. Η συνάρτηση f: ικνοποιεί τη σχέση f(f()) +f ) Ν ποδείξετε ότι η f είνι «έν προς έν». β) Ν λύσετε την εξίσωση f( 3 + ) f(4 ),. 3 () + 3,. ) Έστω, µε f( ) f( ). Τότε f(f( )) f(f( )) κι f 3 (

Διαβάστε περισσότερα

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΡΙΣΜΟΙ ΑΠΟΔΕΙΞΕΙΣ ΕΡΩΤΗΣΕΙΣ : ΣΩΣΤΟ ΛΑΘΟΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΠΙΜΕΛΕΙΑ : ΚΑΜΠΟΥΡΗΣ ΘΕΟΔΩΡΟΣ ΚΕΦΑΛΑΙΟ ο : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΕΣ ΠΡΑΓΜΑΤΙΟΙ

Διαβάστε περισσότερα

ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΡΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Δυνάμεις με ρητό ή άρρητο εκθέτη.

ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΡΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Δυνάμεις με ρητό ή άρρητο εκθέτη. ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΡΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ Δυνάμεις με ρητό ή άρρητο εκέτη. Με την οήει των ορίων κι των δυνάμεων με ρητό εκέτη ορίζετι κι η δύνμη, με > 0 κι. Ισχύουν κι σε υτή την περίπτωση

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ε_.ΜλΓΑ() ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α.. Α.. Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνί: Κυρική 7 Απριλίου ιάρκει Εξέτσης: ώρες ΑΠΑΝΤΗΣΕΙΣ Βλέπε πόδειξη () σελ.75 σχολικού βιβλίου

Διαβάστε περισσότερα

Βασικό θεώρηµα της παράγουσας Θ.Θ του ολοκληρωτικού λογισµού Μέθοδοι ολοκλήρωσης

Βασικό θεώρηµα της παράγουσας Θ.Θ του ολοκληρωτικού λογισµού Μέθοδοι ολοκλήρωσης ΜΑΘΗΜΑ.5 Η ΣΥΝΑΡΤΗΣΗ F() ΘΕΩΡΙΑ. Θεώρηµ f ()d Βσικό θεώρηµ της πράγουσς Θ.Θ του ολοκληρωτικού λογισµού Μέθοδοι ολοκλήρωσης Θεωρί - Σχόλι - Μέθοδοι Ασκήσεις Αν η f είνι µι συνεχής συνάρτηση σε διάστηµ κι

Διαβάστε περισσότερα

ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ - ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ

ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ - ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ ΚΑΡΑΓΕΩΡΓΟ ΒΑΙΗ - ΜΑΥΡΑΓΑΝΗ ΤΑΘΗ ΠΑΝΕΗΝΙΕ ΕΞΕΤΑΕΙ 5 - - Οι πρκάτω σημειώσεις βσίστηκν στ έντυπ του Κ.Ε.Ε. (999 ) κι στη θεμτοδοσί των Πνελλδικών Εξετάσεων στ Μθημτικά Κτεύθυνσης της Γ υκείου. τις επόμενες

Διαβάστε περισσότερα

( ) 2.3. ΣΥΝΑΡΤΗΣΕΙΣ Ορισμός συνάρτησης:

( ) 2.3. ΣΥΝΑΡΤΗΣΕΙΣ Ορισμός συνάρτησης: Πγκόσμιο χωριό γνώσης.3. ΣΥΝΑΡΤΗΣΕΙΣ.3.1. Ορισμός συνάρτησης: 6 Ο ΜΑΘΗΜΑ Συνάρτηση f / A B, ονομάζετι η διδικσί (νόμος ) που ντιστοιχίζει κάθε στοιχείο του συνόλου Α ( πεδίο ορισμού ) σε έν μόνο στοιχείο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: 3. 3.4 Μέρος Β του σχολικού ιλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Πράδειγμ. Ν υολογισθούν τ ορισμέν ολοκληρώμτ: ΘΕΜΑ Β i. ii. (

Διαβάστε περισσότερα

Α.4 α β γ δ ε Σωστό Σωστό Λάθος Λάθος Λάθος. Άρα υπάρχουν δύο εφαπτόμενες που διέρχονται από το σημείο A(1,4). M 0, 5 με εξίσωση y 9x 5

Α.4 α β γ δ ε Σωστό Σωστό Λάθος Λάθος Λάθος. Άρα υπάρχουν δύο εφαπτόμενες που διέρχονται από το σημείο A(1,4). M 0, 5 με εξίσωση y 9x 5 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑ Α A Απόδειξη, σχοικό ιίο σε 7 Α Ορισμός, σχοικό ιίο σε Α3 Διτύπωση θεωρήμτος, σχοικό ιίο σε 6 Α γ δ ε Σωστό Σωστό Λάθος Λάθος Λάθος ΘΕΜΑ Β Β Είνι g = + 9 Η εξίσωση

Διαβάστε περισσότερα

qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui

qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui qwertyuiopasdfghjklzcvbnmq wertyuiopasdfghjklzcvbnmqw ertyuiopasdfghjklzcvbnmqwer tyuiopasdfghjklzcvbnmqwerty ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ uiopasdfghjklzcvbnmqwertyui ΟΛΟΚΛΗΡΩΤ ΙΚΟΣ ΛΟΓΙΣΜΟΣ

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΑΠΟ ΟΛΟΚΛΗΡΩΜΑΤΑ. ΣΧΕΤΙΚΑ ΘΕΜΑΤΑ

ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΑΠΟ ΟΛΟΚΛΗΡΩΜΑΤΑ. ΣΧΕΤΙΚΑ ΘΕΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΑΠΟ ΟΛΟΚΛΗΡΩΜΑΤΑ ΣΧΕΤΙΚΑ ΘΕΜΑΤΑ ΑΝΤΩΝΗΣ ΚΥΡΙΑΚΟΠΟΥΛΟΣ Μθηµτικός Συγγρφές µέλος του Σ της ΕΜΕ Πρόεδρος της Συντκτικής Επιτροπής του περιοδικού «Ευκλείδης Β» ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΟΡΙΖΟΝΤΑΙ

Διαβάστε περισσότερα

Θέμα 1 ο. Θέμα 2 ο. Θέμα 3 ο. Θέμα 4 ο

Θέμα 1 ο. Θέμα 2 ο. Θέμα 3 ο. Θέμα 4 ο ΑΣΚΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΎΠΟΥ Θέμ ο 6 Αν υπάρχουν,β R ώστε οι εξισώσεις: ( + ) β = 4( ) κι + 4 3 + β( + ) = ( + 3) ν έχουν κοινή λύση τότε ν ποδειχθεί ότι η εικόν του + z = + βi στο μιγδικό επίπεδο νήκει σε

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 28 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΜΕΡΟΣ Α. Ν βρείτε το ολοκλήρωμ: (8x 3 ημx 5 + 7) dx ex (8x 3 ημx 5 e x + 7) dx = (8x3 ημx 5e x + 7)dx =

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o ΜΑΘΗΜΑΤΙΚΑ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 006 ΕΚΦΩΝΗΣΕΙΣ A Έστω µι συνάρτηση, η οποί είνι συνεχς σε έν διάστηµ Ν ποδείξετε ότι: Αν >0 σε κάθε εσωτερικό σηµείο του, τότε η είνι γνησίως

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 13 ΔΕΚΕΜΒΡΙΟΥ 2015 ΑΠΑΝΤΗΣΕΙΣ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 13 ΔΕΚΕΜΒΡΙΟΥ 2015 ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ ΔΕΚΕΜΒΡΙΟΥ ΘΕΜΑ A Α Λάθος β Σωστό γ Λάθος δ Σωστό ε Σωστό Α Έστω ότι υπάρχουν Τότε ισχύουν: ) ΑΠΑΝΤΗΣΕΙΣ, ΙR τέτοι ώστε ) κι g ) g ) ) + ln +

Διαβάστε περισσότερα