УНИВЕРЗИТЕТ У БЕОГРАДУ ОТПОРНОСТ МАТЕРИЈАЛА. Машински факултет Београд, 2006.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "УНИВЕРЗИТЕТ У БЕОГРАДУ ОТПОРНОСТ МАТЕРИЈАЛА. Машински факултет Београд, 2006."

Transcript

1

2 УНИВЕРЗИТЕТ У БЕОГРАДУ Милорад Милованчевић Нина Анђелић ОТПОРНОСТ МАТЕРИЈАЛА Машински факултет Београд, 2006.

3

4 С А Д Р Ж А Ј СПИСАК УПОТРЕБЉЕНИХ ОЗНАКА... VII УВОД ОДНОС СИЛЕ И ДЕФОРМАЦИЈЕ Појам деформације Линијска, дужинска деформација (дилатација ε ) Угаона деформација (угао клизања, клизање γ ) Стање деформације Физичке особине материјала Облик тела ГЕОМЕТРИЈСКЕ КАРАКТЕРИСТИКЕ ПОПРЕЧНИХ ПРЕСЕКА Општи израз за геометријске карактеристикe попречних пресека Промена момената инерције при трансформацији координатног система Транслација координатног система Ротација координатног система Главни тежишни моменти инерције Полупречници инерције Елипса инерције Отпорни момент...40 I

5 3. ВРСТЕ СИЛА Спољашње силе Подела сила према начину њихове промене током времена Унутрашње силе Метод пресека Појам напона Неке основне претпоставке отпорности материјала Веза напона и деформације Поасонов коефицијент ν Запреминска кубна дилатација ε V Дозвољени напон Коефицијент сигурности Општи случај напрезања штапа греде Пресече силе силе у попречном пресеку штапа греде Пресечне силе изражене преко напона Основни случајеви напрезања НАПРЕЗАЊЕ У ПОДУЖНОМ ПРАВЦУ (АКСИЈАЛНО НАПРЕЗАЊЕ) Пресечне силе Услови равнотеже Сен-Венанов принцип Појам концентрације напона...76 II

6 4.4 Димензионисање подужно напрегнутих штапова Утицај температурских разлика Утицај сопствене тежине Утицај центрифугалне силе Појам статичке неодређености Статички неодређена конструкција изложена подужном напрезању Штапови оптерећени променама температуре План померања Подужна преднапрезања НАПОНИ У КОСОМ ПРЕСЕКУ ПОДУЖНО НАПРЕГНУТОГ ШТАПА Равно стање напона Напрезање у два правца Главни нормални напони и равни главних напона Највећи напон смицања и раван највећег напона смицања Чисто смицање Техничко смицање Заковане везе Заварене везе УВИЈАЊЕ (ТОРЗИЈА) Увијање (торзија) штапова кружног попречног пресека Једначине равнотеже III

7 6.3 Веза између угла увијања и угла клизања Релативни угао увијања θ (z) Угао увијања θ (z) Напон смицања τ z Димензионисање вратила Димензионисање према дозвољеном напону смицања (τ d ) Димензионисање према дозвољеном релативном углу увијања ( θ d ) Уштеда у материјалу коришћењем вратила кружно - прстенастог попречног пресека Статички неодређене конструкције изложене увијању САВИЈАЊЕ - НАПОНИ Чисто савијање (око осе х) Савијање силама (око осе х) Нормални напони при савијању силама Напони смицања при савијању силама Расподела напона смицања τ zy по висини попречног пресека Расподела напона смицања по висини правоугаоног попречног пресека Расподела напона смицања код неких симетричних попречних пресека Димензионисање носача на основу дозвољеног напона на савијање Локални напони IV

8 7.5 Степен искоришћења попречног пресека Идеални облик носача изложених савијању Ојачавање носача помоћу ламела ДЕФОРМАЦИЈЕ ПРИ САВИЈАЊУ Гранични услови за просту греду и конзолу Клепшов поступак Статички одређени непрекидни носачи са зглобовима ЛИТЕРАТУРА V

9 3.4 ПОЈАМ НАПОНА Врсте сила Потребно је увести неку бројну меру везану за унутрашње силе (напрезања) у конструкцији (телу). Када замисливши пресечемо тело неком произвољном равни на леви и десни део тела у односу на ту раван, распоред уочених унутрашњих сила у том пресеку није познат. Из услова равнотеже који могу да се примене за леви или десни део тела, следи да се све те унутрашње силе у самом пресеку могу редуковати на неку силу F. Она је по величини једнака резултанти спољашњих сила које нападају уочени (леви или десни) део тела, колинеарна је са њом, а супротног смера, па се обе узајамно поништавају. Посматрајмо један произвољни попречни пресек напрегнутог елемента. Уколико посматрамо површину целог замишљеног попречног пресека, јасно је да је распоред свих унутрашњих сила по њему, функција координата тачака тог пресека. Слика 3.4 Појам напона где су: - орт нормале произвољне пресечне равни, - А површина пресека добијена пресецањем тела произвољном равни, - A произвољно мала површина у околини произвољне тачке пресека, - F средња вредност унутрашње силе по површини A. Изразом F = A p средње (3.1) дефинишемо средњи напон (средње напрезање), а када потражимо граничну вредност овог количника, добићемо израз 51

10 Отпорност материјала lim A 0 F A d F = da = p којим дефинишемо укупни напон. Сила у посматраној тачки дефинише се изразом (3.2) d F = p da (3.3) где је p вектор укупног напона у посматраној тачки попречног пресека дефинисаног нормалом. Ова величина се у општем случају разликује и по величини и по правцу од тачке до тачке попречног пресека, што значи да је напон појам везан за тачку и за одређену раван кроз ту тачку: ( x, y,z) p = p (3.4) p Како је кроз сваку тачку могуће провући бесконачно много равни, то значи да у свакој тачки постоји бесконачно вектора напона. То такође значи, да вектор укупног напона у некој тачки зависи и од оријентације равни постављене кроз ту тачку, која је одређена јединичним вектором спољашње нормале у тој тачки. Скуп свих вектора напона p за све равни кроз посматрану тачку назива се стање напона у посматраној тачки. Из практичних разлога, вектор напона растављамо на компоненте. 52 Слика 3.5 Компоненте вектора укупног напона p у посматраној тачки попречног пресека дефинисаног нормалом

11 Врсте сила l,m,, где је орт нормале уо- За правце дефинисане ортовима чене пресечне равни, биће: i, p = p l + p m + p = τ l + τ m + σ (3.5) l m l Односно, у ортогоналном систему координата x, y, z (са ортовима j,k ) биће: m p z = p i + p j + p k = τ i + τ j + σ k (3.6) zx zy zz zx zy zz Величина τ = ( x, y,z), ( x, y,z) zx τ zx τ = (3.7) zy τ zy се назива напон смицања у некој тачки за раван са нормалом z у смеру x, односно y, и делује у равни попречног пресека. Величина zz σ zz ( x, y,z) σ = (3.8) назива се нормални напон у некој тачки за раван са нормалом z, делује управно на попречни пресек, а уобичајено је да се у отпорности материјала обележава са σ z. Дакле, у ортогоналном систему координата x, y, z, биће: Слика 3.6 Разлагање вектора напона у истој тачки за различите пресечне равни 53

12 Отпорност материјала Један од основних задатака отпорности материјала је одређивање вредности нормалног напона и напона смицања за сваку тачку напрегнутог тела. Довољно је познавати векторе напона за три међусобно управне равни у некој тачки, па је могуће одредити вектор напона за било коју раван кроз ту тачку НЕКЕ ОСНОВНЕ ПРЕТПОСТАВКЕ ОТПОРНОСТИ МАТЕРИЈАЛА У Отпорности материјала усвајамо извесне претпоставке о материјалу, деформацијама, силама, условима равнотеже и тако даље, јер, с једне стране, уопштено решавање проблема у области механике деформабилног тела у већини случајева није могуће обавити на једноставан и брз начин, погодан за свакодневну инжењерску праксу. Са друге стране, Отпорност материјала која представља почетну основу у области механике деформабилног тела, својим уводним претпоставкама даје могућност решавања читавог низа проблема који се појављују у инжењерској пракси. Применом уводних претпоставки отпорности материјала добијају се једноставни обрасци погодни за свакодневну инжењерску примену. Оваквим обрасцима се добијају решења проблема која су на страни сигурности, а инжењери их често називају азбуком свог заната. 1. Претпоставка о материјалу Материјал је: - непрекидан, - хомоген и изотропан, - идеално и то линеарно еластичан. 2. Претпоставка о малим деформацијама Деформације су мале у поређењу са димензијама тела. ε или ε 0.1 %. 3. Претпоставка о силама Спољашње силе су статичке. Конструкција која испуњава услове 1, 2 и 3, може се звати конструкцијом са линеарним понашањем, а одговарајући проблеми линеарни проблеми. Код таквих проблема могу се увести још неке претпоставке.

13 Врсте сила 4. Претпоставка о независности дејства сила (принцип суперпозиције) Примена суперпозиције оптерећења може знатно олакшати решавање читавог низа проблема. Овај принцип се састоји у томе да се замишљено посматра утицај сваког оптерећења посебно ( разлагање оптерећења ). Алгебарским сабирањем појединачних утицаја добија се укупан резултат дејства оптерећења. Пример: Слика 3.7 Приказ принципа суперпозиције оптерећења F A = F A (F 1 ) + F A (F 2 ) F A (F i ) = Σ F A (F i ), F B = F B (F 1 ) + F B (F 2 ) F B (F i ) = Σ F B (F i ). 5. Претпоставка о условима равнотеже Услови равнотеже исписиваће се увек у односу на облик и димензије конструкције пре деформације. Напоменимо да су у свим инжењерским анализама крајње неопходни кораци везани и за димензиону анализу, па је згодно подсетити се које се све јединице користе у Отпорности материјала. 55

14 Отпорност материјала F z (N) - подужна (аксијална) сила у пресеку z (делује у правцу осе z) M x (M fx ) - моменти савијања (флексије) у пресеку z (савијају M y (M fy ) посматрани елемент око осе x, односно осе y) M z (M t ) - момент увијања (торзије) обрће попречни пресек око осе z. Све горе наведене величине називају се нападне величине у пресеку z. Скуп свих пресечних сила (сила и момената) на левој страни пресека замењује утицај уклоњеног десног дела штапа (греде) и обрнуто. При практичном одређивању пресечних сила треба знати да се свака од нападних величина у пресеку z може добити као алгебарски збир пројекција свих спољашњих сила, односно њихових момената који делују на леви или десни део штапа (греде) на главне тежишне осе (x, y, z) Пресечне силе изражене преко напона Услови равнотеже у попречном пресеку 66 Слика 3.15 Пресечне силе изражене преко напона Нападне величине се могу израчунати из услова равнотеже посматраног елемента у односу на изабрани координатни систем (Сл. 3.15): 1. τ da = A zx T x

15 2. τ da = A zy T y Врсте сила 3. σ da = N A 4. y σ da = A z z M x 5. x σ da = A z M y τ zy zx da = M t (3.14) 6. ( x y τ ) A Истакнимо да у горњим једначинама десну страну израза знамо, а леву не. Дакле, можемо да закључимо да се јавља проблем како да одредимо леви део ових израза, односно, како да одредимо распоред напона по попречном пресеку. Сен Венан је први предложио поступак за решавање овог проблема, поступак који је касније и назван Сен Венанова полуобртна метода, а која се базира на: - претпоставци о напонима, - претпоставци о деформацијама и - вези напона и деформације (Хуков закон) Основни случајеви напрезања На основу претпоставке о независности дејства сила, општи случај напрезања можемо посматрати као збир појединачних основних случајева: - подужно напрезање, - увијање, - савијање. У даљим разматрањима посветићемо одговарајућу пажњу свим наведеним основним случајевима напрезања. 67

16 Отпорност материјала Слика 4.3 Штап променљивог попречног пресека укупне дужине распона l = l 1 + l 2 + l СЕН-ВЕНАНОВ ПРИНЦИП Изведени образац за σ z важи само за попречне пресеке довољно удаљене од места деловања концентрисане силе. Погледајмо изглед неког реалног конструктивног елемента (Сл. 4.4а) који је оптерећен подужном силом. а) б) Слика 4.4 а) Стварни носећи елемент оптерећен затежућом силом б) Стварни носећи елемент сведен на модел за прорачун Уочимо зону штапа (Сл. 4.5а) блиску околини тачке уноса оптерећења. Експериментима је установљено да је у попречним пресецима у тој зони расподела напона неравномерна. Adhemar Jea Barre de Sait-Veat ( ), француски научник који је поред осталог дао велики допринос развоју теорије еластичности. 74

17 Напрезање у подужном працу (аксијално напрезање) Слика 4.5 Расподела нормалних напона у околини тачке везивања Ако је тело оптерећено статички еквивалентним системима сила (једнаких главних вектора и главних момената), а димензије области деловања силе су мале у поређењу са димензијама тела, онда ће у пресецима довољно удаљеним од места деловања силе (Сл. 4.4б и Сл. 4.5б), расподела напона веома мало зависити од начина уношења силе.оваква разматрања су позната као Сен - Венанов принцип: при удаљавању од тачке деловања силе, неравномерна расподела напона постепено тежи равномерној расподели (Сл. 4.6). Слика 4.6 Сен Венанов принцип Према већини аутора, сматра се да напон по попречном пресеку постаје равномерно расподељен на удаљењу b од тачке уноса силе (Сл 4.6), а постоје и подаци у литератури [7] који говоре о удаљењима (1,5 2) b. Не постоји никакав општи теоријски доказ Сен Венановог принципа, али је он потврђен многобројним експериментима. 75

налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm

налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm 1 Два тачкаста наелектрисања 1 400 p и 100p налазе се у диелектрику релативне диелектричне константе ε на међусобном растојању ( 1cm ) као на слици 1 Одредити силу на наелектрисање 3 100p када се оно нађе:

Διαβάστε περισσότερα

предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА

предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Висока техничка школа струковних студија у Нишу предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Садржај предавања: Систем

Διαβάστε περισσότερα

ОТПОРНОСТ МАТЕРИЈАЛА

ОТПОРНОСТ МАТЕРИЈАЛА Висока техничка школа струковних студија Београд ПРЕДМЕТ: ОТПОРНОСТ МАТЕРИЈАЛА Др Андреја Стефановић ШКОЛСКА ГОДИНА: 2017/2018 СЕМЕСТАР: II 1.1 Циљ, литература и реализација програма 1.2 Увод 1.2.1 Историјски

Διαβάστε περισσότερα

Писмени испит из Метода коначних елемената

Писмени испит из Метода коначних елемената Београд,.0.07.. За приказани билинеарни коначни елемент (Q8) одредити вектор чворног оптерећења услед задатог линијског оптерећења p. Користити природни координатни систем (ξ,η).. На слици је приказан

Διαβάστε περισσότερα

Ротационо симетрична деформација средње површи ротационе љуске

Ротационо симетрична деформација средње површи ротационе љуске Ротационо симетрична деформација средње површи ротационе љуске слика. У свакој тачки посматране средње површи, у општем случају, постоје два компонентална померања: v - померање у правцу тангенте на меридијалну

Διαβάστε περισσότερα

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ. VI Савијање кружних плоча Положај сваке тачке кружне плоче је одређен са поларним координатама и ϕ слика 61 Диференцијална једначина савијања кружне плоче је: ( ϕ) 1 1 w 1 w 1 w Z, + + + + ϕ ϕ K Пресечне

Διαβάστε περισσότερα

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: ОСНОВИ МЕХАНИКЕ студијски програм: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 2. Садржај предавања: Систем сучељних сила у равни

Διαβάστε περισσότερα

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је:

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је: Пример 1. III Савијање правоугаоних плоча За правоугаону плочу, приказану на слици, одредити: a) израз за угиб, b) вредност угиба и пресечних сила у тачки 1 ако се користи само први члан реда усвојеног

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола i i i Милка Потребић др Милка Потребић, ванредни професор,

Διαβάστε περισσότερα

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА Београд, 21.06.2014. За штап приказан на слици одредити најмању вредност критичног оптерећења P cr користећи приближан поступак линеаризоване теорије другог реда и: а) и један елемент, слика 1, б) два

Διαβάστε περισσότερα

0 нека се налази у равнотежи (Сл. ).

0 нека се налази у равнотежи (Сл. ). УВОД Отпорност материјала је део механике деформабилног тела, који изучава стање напона и деформације чврстог тела при различитим дејствима, увођењем извесних претпоставки и поједностављених математичких

Διαβάστε περισσότερα

Писмени испит из Теорије површинских носача. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.

Писмени испит из Теорије површинских носача. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2. За плочу

Διαβάστε περισσότερα

1.2. Сличност троуглова

1.2. Сличност троуглова математик за VIII разред основне школе.2. Сличност троуглова Учили смо и дефиницију подударности два троугла, као и четири правила (теореме) о подударности троуглова. На сличан начин наводимо (без доказа)

Διαβάστε περισσότερα

6.2. Симетрала дужи. Примена

6.2. Симетрала дужи. Примена 6.2. Симетрала дужи. Примена Дата је дуж АВ (слика 22). Тачка О је средиште дужи АВ, а права је нормална на праву АВ(p) и садржи тачку О. p Слика 22. Права назива се симетрала дужи. Симетрала дужи је права

Διαβάστε περισσότερα

ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда

ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда ОБЛАСТИ: ) Тачка ) Права Jov@soft - Март 0. ) Тачка Тачка је дефинисана (одређена) у Декартовом координатном систему са своје две коодринате. Примери: М(5, ) или М(-, 7) или М(,; -5) Jov@soft - Март 0.

Διαβάστε περισσότερα

TAЧКАСТА НАЕЛЕКТРИСАЊА

TAЧКАСТА НАЕЛЕКТРИСАЊА TЧКАСТА НАЕЛЕКТРИСАЊА Два тачкаста наелектрисања оптерећена количинама електрицитета и налазе се у вакууму као што је приказано на слици Одредити: а) Вектор јачине електростатичког поља у тачки А; б) Електрични

Διαβάστε περισσότερα

Слика 1. Слика 1.2 Слика 1.1

Слика 1. Слика 1.2 Слика 1.1 За случај трожичног вода приказаног на слици одредити: а Вектор магнетне индукције у тачкама А ( и ( б Вектор подужне силе на проводник са струјом Систем се налази у вакууму Познато је: Слика Слика Слика

Διαβάστε περισσότερα

2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА

2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА . колоквијум. Наставни колоквијум Задаци за вежбање У свим задацима се приликом рачунања добија само по једна вредност. Одступање појединачне вредности од тачне вредности је апсолутна грешка. Вредност

Διαβάστε περισσότερα

Писмени испит из Теорије плоча и љуски. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.

Писмени испит из Теорије плоча и љуски. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. = 0.2 dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2.

Διαβάστε περισσότερα

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: МЕХАНИКА 1 студијски програми: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 3. 1 Садржај предавања: Статичка одређеност задатака

Διαβάστε περισσότερα

2.3. Решавање линеарних једначина с једном непознатом

2.3. Решавање линеарних једначина с једном непознатом . Решимо једначину 5. ( * ) + 5 + Провера: + 5 + 0 5 + 5 +. + 0. Број је решење дате једначине... Реши једначину: ) +,5 ) + ) - ) - -.. Да ли су следеће једначине еквивалентне? Провери решавањем. ) - 0

Διαβάστε περισσότερα

Предмет: Задатак 4: Слика 1.0

Предмет: Задатак 4: Слика 1.0 Лист/листова: 1/1 Задатак 4: Задатак 4.1.1. Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 +

Διαβάστε περισσότερα

6.5 Површина круга и његових делова

6.5 Површина круга и његових делова 7. Тетива је једнака полупречнику круга. Израчунај дужину мањег одговарајућег лука ако је полупречник 2,5 сm. 8. Географска ширина Београда је α = 44 47'57", а полупречник Земље 6 370 km. Израчунај удаљеност

Διαβάστε περισσότερα

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ 8.. Линеарна једначина с две непознате Упознали смо појам линеарног израза са једном непознатом. Изрази x + 4; (x 4) + 5; x; су линеарни изрази. Слично, линеарни

Διαβάστε περισσότερα

Анализа Петријевих мрежа

Анализа Петријевих мрежа Анализа Петријевих мрежа Анализа Петријевих мрежа Мере се: Својства Петријевих мрежа: Досежљивост (Reachability) Проблем досежљивости се састоји у испитивању да ли се може достићи неко, жељено или нежељено,

Διαβάστε περισσότερα

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе:

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: Њутнови закони 1 Динамика Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: када су објекти довољно велики (>димензија атома) када се крећу брзином много мањом

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки

Διαβάστε περισσότερα

г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве

г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве в) дијагонала dd и страница aa квадрата dd = aa aa dd = aa aa = није рац. бр. нису самерљиве г) страница aa и пречник RR описаног круга правилног шестоугла RR = aa aa RR = aa aa = 1 јесте рац. бр. јесу

Διαβάστε περισσότερα

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7.1. ДИОФАНТОВА ЈЕДНАЧИНА ху = n (n N) Диофантова једначина ху = n (n N) има увек решења у скупу природних (а и целих) бројева и њено решавање није проблем,

Διαβάστε περισσότερα

Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила.

Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила. Вектори 1 Вектори vs. скалари Векторске величине се описују интензитетом и правцем Примери: Померај, брзина, убрзање, сила. Скаларне величине су комплетно описане само интензитетом Примери: Температура,

Διαβάστε περισσότερα

Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја.

Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја. СЛУЧАЈНА ПРОМЕНЉИВА Једнодимензионална случајна променљива X је пресликавање у коме се сваки елементарни догађај из простора елементарних догађаја S пресликава у вредност са бројне праве Први корак у дефинисању

Διαβάστε περισσότερα

Количина топлоте и топлотна равнотежа

Количина топлоте и топлотна равнотежа Количина топлоте и топлотна равнотежа Топлота и количина топлоте Топлота је један од видова енергије тела. Енергија коју тело прими или отпушта у топлотним процесима назива се количина топлоте. Количина

Διαβάστε περισσότερα

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде математик за VIII разред основне школе 4. Прво наћи дужину апотеме. Како је = 17 cm то је тражена површина P = 18+ 4^cm = ^4+ cm. 14. Основа четворостране пирамиде је ромб чије су дијагонале d 1 = 16 cm,

Διαβάστε περισσότερα

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице.

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. КРУГ У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. Архимед (287-212 г.п.н.е.) 6.1. Централни и периферијски угао круга Круг

Διαβάστε περισσότερα

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни ТАЧКА. ПРАВА. РАВАН Талес из Милета (624 548. пре н. е.) Еуклид (330 275. пре н. е.) Хилберт Давид (1862 1943) 3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни Настанак геометрије повезује

Διαβάστε περισσότερα

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10 Tестирање хипотеза 5.час 30. март 2016. Боjана Тодић Статистички софтвер 2 30. март 2016. 1 / 10 Монте Карло тест Монте Карло методе су методе код коjих се употребљаваjу низови случаjних броjева за извршење

Διαβάστε περισσότερα

Еластичне и пластичне деформације рекристализација

Еластичне и пластичне деформације рекристализација Машински материјали Предавање број 4 Понашање метала при деловању спољних силаеластична деформација, пластична деформација, рекристализација, обрада деформисањем у хладном и топлом стању. Својства метала

Διαβάστε περισσότερα

10.3. Запремина праве купе

10.3. Запремина праве купе 0. Развијени омотач купе је исечак чији је централни угао 60, а тетива која одговара том углу је t. Изрази површину омотача те купе у функцији од t. 0.. Запремина праве купе. Израчунај запремину ваљка

Διαβάστε περισσότερα

РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 2004

РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 2004 РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 004 ТРАНСФОРМАТОРИ Tрофазни енергетски трансформатор 100 VA има напон и реактансу кратког споја u 4% и x % респективно При номиналном оптерећењу

Διαβάστε περισσότερα

ЈАКОСТ НА МАТЕРИЈАЛИТЕ

ЈАКОСТ НА МАТЕРИЈАЛИТЕ диј е ИКА ски ч. 7 ч. Универзитет Св. Кирил и Методиј Универзитет Машински Св. факултет Кирил и Скопје Методиј во Скопје Машински факултет МОМ ТЕХНИЧКА МЕХАНИКА професор: доц. др Виктор Гаврилоски. ТОРЗИЈА

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола Др Милка Потребић, ванредни професор, Теорија електричних кола, предавања, Универзитет у Београду Електротехнички факултет, 07. Вишефазне електричне системе је патентирао српски истраживач Никола Тесла

Διαβάστε περισσότερα

L кплп (Калем у кплу прпстпперипдичне струје)

L кплп (Калем у кплу прпстпперипдичне струје) L кплп (Калем у кплу прпстпперипдичне струје) i L u=? За коло са слике кроз калем ппзнате позната простопериодична струја: индуктивности L претпоставићемо да протиче i=i m sin(ωt + ψ). Услед променљиве

Διαβάστε περισσότερα

Слика 1 Ако се са RFe отпорника, онда су ова два температурно зависна отпорника везана на ред, па је укупна отпорност,

Слика 1 Ако се са RFe отпорника, онда су ова два температурно зависна отпорника везана на ред, па је укупна отпорност, Температурно стабилан отпорник састоји се од два једнака цилиндрична дела начињена од различитих материјала (гвожђе и графит) У ком односу стоје отпорности ова два дела отпорника ако се претпостави да

Διαβάστε περισσότερα

4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април Суботица, СРБИЈА

4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април Суботица, СРБИЈА 4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април 2016. Суботица, СРБИЈА УПОРЕДНА АНАЛИЗА ЕЛАСТИЧНЕ И ЕЛАСТО- ПЛАСТИЧНЕ НОСИВОСТИ ПОПРЕЧНОГ ПРЕСЕКА Аљоша Филиповић 1 Љубо Дивац

Διαβάστε περισσότερα

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x,

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, Већи број: 1 : 4x + 1, (4 бода) Њихов збир: 1 : 5x + 1, Збир умањен за остатак: : 5x = 55, 55 : 5 = 11; 11 4 = ; + 1 = 45; : x = 11. Дакле, први број је 45

Διαβάστε περισσότερα

Машински факултет Универзитета у Београду/ Машински елементи 1/ Предавање 4

Машински факултет Универзитета у Београду/ Машински елементи 1/ Предавање 4 1. ОСОВИНЕ И ВРАТИЛА 1..1. Увод Вратила и осовине, као основни елементи обртног кретања, морају увек бити преко клизних и котрљајних лежаја ослоњени на носећу конструкцију. Два вратила међусобно се спајају

Διαβάστε περισσότερα

ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису.

ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису. ЛИНЕАРНА ФУНКЦИЈА 5.. Функција = a + b Функционалне зависности су веома значајне и са њиховим применама често се сусрећемо. Тако, већ су нам познате директна и обрнута пропорционалност ( = k; = k, k ),

Διαβάστε περισσότερα

1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1

1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1 1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1 Метод разликовања случајева је један од најексплоатисанијих метода за решавање математичких проблема. У теорији Диофантових једначина он није свемогућ, али је сигурно

Διαβάστε περισσότερα

ТЕХНИЧКА МЕХАНИКА Проф. Др Драган Т. Стојиљковић Мр Дарко Михајлов, асистент

ТЕХНИЧКА МЕХАНИКА Проф. Др Драган Т. Стојиљковић Мр Дарко Михајлов, асистент Техничка Механика ТЕХНИЧКА МЕХАНИКА Проф. Др Драган Т. Стојиљковић Мр Дарко Михајлов, асистент Техничка Механика ОСНОВНИ ПОЈМОВИ МЕХАНИКЕ ПОДЕЛА МЕХАНИКЕ Процеси у Васељени (Универзуму) представљају непрекидно

Διαβάστε περισσότερα

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ ТРАПЕЗ Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце Ментор :Криста Ђокић, наставник математике Власотинце, 2011. године Трапез

Διαβάστε περισσότερα

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре 0 6.. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре У обичном говору се често каже да су неки предмети симетрични. Примери таквих објеката, предмета, геометријских

Διαβάστε περισσότερα

РИЗИК ОД МЕХАНИЧКИХ ДЕЈСТАВА

РИЗИК ОД МЕХАНИЧКИХ ДЕЈСТАВА Ризик од механичких дјстава Увод РИЗИК ОД МЕХАНИЧКИХ ДЕЈСТАВА Ризик је вероватноћа настанка повреде, обољења или оштећења здравља запосленог услед опасности; ризик на раду се односи на могућност и на тежину

Διαβάστε περισσότερα

ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ I група

ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ I група ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ 21.11.2009. I група Име и презиме студента: Број индекса: Термин у ком студент ради вежбе: Напомена: Бира се и одговара ИСКЉУЧИВО на шест питања заокруживањем

Διαβάστε περισσότερα

σ d γ σ M γ L = ЈАКОСТ 1 x A 4М21ОМ02 АКСИЈАЛНИ НАПРЕГАЊА (дел 2) 2.6. СОПСТВЕНА ТЕЖИНА КАКО АКСИЈАЛНА СИЛА Напонска состојаба

σ d γ σ M γ L = ЈАКОСТ 1 x A 4М21ОМ02 АКСИЈАЛНИ НАПРЕГАЊА (дел 2) 2.6. СОПСТВЕНА ТЕЖИНА КАКО АКСИЈАЛНА СИЛА Напонска состојаба 4МОМ0 ЈАКОСТ АКСИЈАЛНИ НАПРЕГАЊА (дел ) наставник:.6. СОПСТВЕНА ТЕЖИНА КАКО АКСИЈАЛНА СИЛА Напонска состојаба γ 0 ( специфична тежина) 0 ak() G γ G ΣX0 ak() G γ ak ( ) γ Аксијалната сила и напонот, по

Διαβάστε περισσότερα

I Тачка 1. Растојање две тачке: 2. Средина дужи y ( ) ( ) 2. II Права 1. Једначина прамена правих 2. Једначина праве кроз две тачке ( )

I Тачка 1. Растојање две тачке: 2. Средина дужи y ( ) ( ) 2. II Права 1. Једначина прамена правих 2. Једначина праве кроз две тачке ( ) Шт треба знати пре почетка решавања задатака? АНАЛИТИЧКА ГЕОМЕТРИЈА У РАВНИ I Тачка. Растојање две тачке:. Средина дужи + ( ) ( ) + S + S и. Деоба дужи у односу λ: 4. Површина троугла + λ + λ C + λ и P

Διαβάστε περισσότερα

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима 50. Нацртај било које унакрсне углове. Преношењем утврди однос унакрсних углова. Какво тврђење из тога следи? 51. Нацртај угао чија је мера 60, а затим нацртај њему унакрсни угао. Колика је мера тог угла?

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола Др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола Милка Потребић Др Милка Потребић, ванредни професор,

Διαβάστε περισσότερα

Семинарски рад из линеарне алгебре

Семинарски рад из линеарне алгебре Универзитет у Београду Машински факултет Докторске студије Милош Живановић дипл. инж. Семинарски рад из линеарне алгебре Београд, 6 Линеарна алгебра семинарски рад Дата је матрица: Задатак: a) Одредити

Διαβάστε περισσότερα

Математички модел осциловања система кугли око равнотежног положаја под утицајем гравитационог поља

Математички модел осциловања система кугли око равнотежног положаја под утицајем гравитационог поља Универзитет у Машински факултет Београду Математички модел осциловања система кугли око равнотежног положаја под утицајем гравитационог поља -семинарски рад- ментор: Александар Томић Милош Живановић 65/

Διαβάστε περισσότερα

Кинематика и динамика у структуралном инжењерству, Звонко Ракарић, Механика 2, грађевинарство, Факултет техничких наука, Нови Сад,2017

Кинематика и динамика у структуралном инжењерству, Звонко Ракарић, Механика 2, грађевинарство, Факултет техничких наука, Нови Сад,2017 КИНЕМАТИКА ТЕЛА МЕХАНИКА 2 ГРАЂЕВИНАРСТВО ФТН НОВИ САД Верзија 3 Октобар 207 ГЛАВА V КИНЕМАТИКА КРУТОГ ТЕЛА 5. УВОД У претходним Поглављима смо научили како да се у потпуности дефинише кретање једне (било

Διαβάστε περισσότερα

КРИТИЧНИ НАПОНИ И СТЕПЕН СИГУРНОСТИ

КРИТИЧНИ НАПОНИ И СТЕПЕН СИГУРНОСТИ Машински факултет Универзитета у Београду/ Машински елементи / Предавање 3 КРИТИЧНИ НАПОНИ И СТЕПЕН СИГУРНОСТИ Критична стања машинских делова У критичном стањеу машински делови не могу да извршавају своју

Διαβάστε περισσότερα

(1) Дефиниција функције више променљивих. Околина тачке (x 0, y 0 ) R 2. График и линије нивоа функције f: (x, y) z.

(1) Дефиниција функције више променљивих. Околина тачке (x 0, y 0 ) R 2. График и линије нивоа функције f: (x, y) z. Дефиниција функције више променљивих Околина тачке R График и линије нивоа функције : Дефиниција Величина се назива функцијом променљивих величина и на скупу D ако сваком уређеном пару D по неком закону

Διαβάστε περισσότερα

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2 8. ПИТАГОРИНА ЈЕДНАЧИНА х + у = z Један од најзанимљивијих проблема теорије бројева свакако је проблем Питагориних бројева, тј. питање решења Питагорине Диофантове једначине. Питагориним бројевима или

Διαβάστε περισσότερα

2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ

2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ 2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ 2.1. МАТЕМАТИЧКИ РЕБУСИ Најједноставније Диофантове једначине су математички ребуси. Метод разликовања случајева код ових проблема се показује плодоносним, јер је раздвајање

Διαβάστε περισσότερα

РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА

РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА 006. Задатак. Одредити вредност израза: а) : за, и 69 0, ; б) 9 а) Како је за 0 и 0 дати израз идентички једнак изразу,, : : то је за дате вредности,

Διαβάστε περισσότερα

Аксиоме припадања. Никола Томовић 152/2011

Аксиоме припадања. Никола Томовић 152/2011 Аксиоме припадања Никола Томовић 152/2011 Павле Васић 104/2011 1 Шта је тачка? Шта је права? Шта је раван? Да бисмо се бавили геометријом (и не само геометријом), морамо увести основне појмове и полазна

Διαβάστε περισσότερα

4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април Суботица, СРБИЈА

4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април Суботица, СРБИЈА 4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству. април 01. Суботица, СРБИЈА ПРОРАЧУН ПОМЕРАЊА ТАНКОЗИДНИХ НОСАЧА ПРИМЕНОМ МЕТОДА КОНАЧНИХ ТРАКА Смиља Живковић 1 УДК: 4.07. : 519.73 DOI:10.14415/konferencijaGFS

Διαβάστε περισσότερα

Тангента Нека је дата крива C са једначином y = f (x)

Тангента Нека је дата крива C са једначином y = f (x) Dbić N Извод као појам се први пут појављује крајем XVII вијека у вези са израчунавањем неравномјерних кретања. Прецизније, помоћу извода је било могуће увести појам тренутне брзине праволинијског кретања.

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 013/014. година ТЕСТ

Διαβάστε περισσότερα

ДОЊА И ГОРЊА ГРАНИЦА ОПТЕРЕЋЕЊА ПРАВОУГАОНИХ И КРУЖНИХ ПЛОЧА

ДОЊА И ГОРЊА ГРАНИЦА ОПТЕРЕЋЕЊА ПРАВОУГАОНИХ И КРУЖНИХ ПЛОЧА ДОЊА И ГОРЊА ГРАНИЦА ОПТЕРЕЋЕЊА ПРАВОУГАОНИХ И КРУЖНИХ ПЛОЧА Саша Ковачевић 1 УДК: 64.04 DOI:10.14415/zbornikGFS6.06 Резиме: Тема рада се односи на одређивање граничног оптерећења правоугаоних и кружних

Διαβάστε περισσότερα

Пешачки мостови. Метални мостови 1

Пешачки мостови. Метални мостови 1 Пешачки мостови Метални мостови 1 Особености пешачких мостова Мање оптерећење него код друмских мостова; Осетљиви су на вибрације. Неопходна је контрола SLS! Посебна динамичка анализа се захтева када је:

Διαβάστε περισσότερα

Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ:

Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ: Ваљак ВАЉАК P=B + M V= B H B= r p M=rp H Pосн.пресека = r H. Површина омотача ваљка је π m, а висина ваљка је два пута већа од полупрчника. Израчунати запремину ваљка. π. Осни пресек ваљка је квадрат површине

Διαβάστε περισσότερα

ТАНГЕНТА. *Кружница дели раван на две области, једну, спољашњу која је неограничена и унутрашњу која је ограничена(кружницом).

ТАНГЕНТА. *Кружница дели раван на две области, једну, спољашњу која је неограничена и унутрашњу која је ограничена(кружницом). СЕЧИЦА(СЕКАНТА) ЦЕНТАР ПОЛУПРЕЧНИК ТАНГЕНТА *КРУЖНИЦА ЈЕ затворена крива линија која има особину да су све њене тачке једнако удаљене од једне сталне тачке која се зове ЦЕНТАР КРУЖНИЦЕ. *Дуж(OA=r) која

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки

Διαβάστε περισσότερα

4. ЗАКОН ВЕЛИКИХ БРОЈЕВА

4. ЗАКОН ВЕЛИКИХ БРОЈЕВА 4. Закон великих бројева 4. ЗАКОН ВЕЛИКИХ БРОЈЕВА Аксиоматска дефиниција вероватноће не одређује начин на који ће вероватноће случајних догађаја бити одређене у неком реалном експерименту. Зато треба наћи

Διαβάστε περισσότερα

Михаило М. Бошковић, професор НОВO У МАТЕМАТИЦИ

Михаило М. Бошковић, професор НОВO У МАТЕМАТИЦИ Мајци Душанки Михаило М. Бошковић, професор НОВO У МАТЕМАТИЦИ подела угла на три једнака дела подела угла на n једнаких делова конструкција сваког правилног многоугла уз помоћ једног шестара и једног лењира

Διαβάστε περισσότερα

5.2. Имплицитни облик линеарне функције

5.2. Имплицитни облик линеарне функције математикa за VIII разред основне школе 0 Слика 6 8. Нацртај график функције: ) =- ; ) =,5; 3) = 0. 9. Нацртај график функције и испитај њен знак: ) = - ; ) = 0,5 + ; 3) =-- ; ) = + 0,75; 5) = 0,5 +. 0.

Διαβάστε περισσότερα

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 2 (13Е013ЕП2) октобар 2016.

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 2 (13Е013ЕП2) октобар 2016. ЕНЕРГЕТСКИ ПРЕТВАРАЧИ (3Е03ЕП) октобар 06.. Батерија напона B = 00 пуни се преко трофазног полууправљивог мосног исправљача, који је повезан на мрежу 3x380, 50 Hz преко трансформатора у спрези y, са преносним

Διαβάστε περισσότερα

МАШИНЕ НЕПРЕКИДНОГ ТРАНСПОРТА. ttl. тракасти транспортери, капацитет - учинак, главни отпори кретања. Машине непрекидног транспорта. предавање 2.

МАШИНЕ НЕПРЕКИДНОГ ТРАНСПОРТА. ttl. тракасти транспортери, капацитет - учинак, главни отпори кретања. Машине непрекидног транспорта. предавање 2. МАШИНЕ НЕПРЕКИДНОГ ТРАНСПОРТА предавање.3 тракасти транспортери, капацитет учинак, главни отпори кретања Капацитет Капацитет представља полазни параметар при прорачуну транспортера задаје се пројектним

Διαβάστε περισσότερα

Универзитет у Крагујевцу Факултет за машинство и грађевинарство у Краљеву Катедра за основне машинске конструкције и технологије материјала

Универзитет у Крагујевцу Факултет за машинство и грађевинарство у Краљеву Катедра за основне машинске конструкције и технологије материјала Теоријски део: Вежба број ТЕРМИЈСКА AНАЛИЗА. Термијска анализа је поступак који је 903.год. увео G. Tamman за добијање криве хлађења(загревања). Овај поступак заснива се на принципу промене топлотног садржаја

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 014/01. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ

АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ У БЕОГРАДУ КАТЕДРА ЗА ЕЛЕКТРОНИКУ АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ВЕЖБА БРОЈ 2 ПОЈАЧАВАЧ СНАГЕ У КЛАСИ Б 1. 2. ИМЕ И ПРЕЗИМЕ БР. ИНДЕКСА ГРУПА ОЦЕНА ДАТУМ ВРЕМЕ ДЕЖУРНИ

Διαβάστε περισσότερα

6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c

6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c 6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c Ако су а, b и с цели бројеви и аb 0, онда се линеарна једначина ах + bу = с, при чему су х и у цели бројеви, назива линеарна Диофантова једначина. Очигледно

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

Хомогена диференцијална једначина је она која може да се напише у облику: = t( x)

Хомогена диференцијална једначина је она која може да се напише у облику: = t( x) ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? Врсте диференцијалних једначина. ДИФЕРЕНЦИЈАЛНА ЈЕДНАЧИНА КОЈА РАЗДВАЈА ПРОМЕНЉИВЕ Код ове методе поступак је следећи: раздвојити

Διαβάστε περισσότερα

& 2. Брзина. (слика 3). Током кратког временског интервала Δt тачка пређе пут Δs и изврши елементарни (бесконачно мали) померај Δ r

& 2. Брзина. (слика 3). Током кратког временског интервала Δt тачка пређе пут Δs и изврши елементарни (бесконачно мали) померај Δ r &. Брзина Да би се окарактерисало кретање материјалне тачке уводи се векторска величина брзина, коју одређује како интензитет кретања тако и његов правац и смер у датом моменту времена. Претпоставимо да

Διαβάστε περισσότερα

У к у п н о :

У к у п н о : ГОДИШЊИ (ГЛОБАЛНИ) ПЛАН РАДА НАСТАВНИКА Наставни предмет: ФИЗИКА Разред: Седми Ред.број Н А С Т А В Н А Т Е М А / О Б Л А С Т Број часова по теми Број часова за остале обраду типове часова 1. КРЕТАЊЕ И

Διαβάστε περισσότερα

F( x) НЕОДРЕЂЕНИ ИНТЕГРАЛ

F( x) НЕОДРЕЂЕНИ ИНТЕГРАЛ НЕОДРЕЂЕНИ ИНТЕГРАЛ Штa треба знати пре почетка решавања задатака? Дефиниција: Интеграл једне функције је функција чији је извод функција којој тражимо интеграл (подинтегрална функција). Значи: f d F F

Διαβάστε περισσότερα

ЗБИРКА РЕШЕНИХ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ ИЗ МАТЕМАТИКЕ

ЗБИРКА РЕШЕНИХ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ ИЗ МАТЕМАТИКЕ Универзитет у Крагујевцу Машински факултет Краљево ЗБИРКА РЕШЕНИХ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ ИЗ МАТЕМАТИКЕ Краљево, март 011. године 1 Публикација Збирка решених задатака за пријемни испит из математике

Διαβάστε περισσότερα

Лом услед замора материјала

Лом услед замора материјала Лом услед замора материјала Замор материјала представља процес постепеног разарања материјала услед настанка и раста прслине до лома, под дејством дуготрајног дејства периодично променљивих оптерећења

Διαβάστε περισσότερα

Примена првог извода функције

Примена првог извода функције Примена првог извода функције 1. Одреди дужине страница два квадрата тако да њихов збир буде 14 а збир површина тих квадрата минималан. Ре: x + y = 14, P(x, y) = x + y, P(x) = x + 14 x, P (x) = 4x 8 Први

Διαβάστε περισσότερα

ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА

ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА 1. Допуни шта недостаје: а) 5m = dm = cm = mm; б) 6dm = m = cm = mm; в) 7cm = m = dm = mm. ПОЈАМ ПОВРШИНЕ. Допуни шта недостаје: а) 10m = dm = cm = mm ; б) 500dm = a

Διαβάστε περισσότερα

АНАЛИТИЧКА ГЕОМЕТРИЈА. - удаљеност између двије тачке. 1 x2

АНАЛИТИЧКА ГЕОМЕТРИЈА. - удаљеност између двије тачке. 1 x2 АНАЛИТИЧКА ГЕОМЕТРИЈА d AB x x y - удаљеност између двије тачке y x x x y s, y y s - координате средишта дужи x x y x, y y - подјела дужи у заданом односу x x x y y y xt, yt - координате тежишта троугла

Διαβάστε περισσότερα

Статика флуида. Хидростатички притисак

Статика флуида. Хидростатички притисак Статика флуида Проучавање флуида у стању мировања најстарија је дисциплина механике флуида, што обавезује на познавање свих проблема ове области. Појмови уведени у статици флуида: спољашње силе, притисак

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 011/01. година ТЕСТ МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

1. Модел кретања (1.1)

1. Модел кретања (1.1) 1. Модел кретања Кинематика, у најопштијој формулацији, може да буде дефинисана као геометрија кретања. Другим речима, применом основног апарата математичке анализе успостављају се зависности између елементарних

Διαβάστε περισσότερα

Факултет организационих наука Центар за пословно одлучивање. PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation)

Факултет организационих наука Центар за пословно одлучивање. PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation) Факултет организационих наука Центар за пословно одлучивање PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation) Студија случаја D-Sight Консултантске услуге за Изградња брзе пруге

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ школска 016/017. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ

Διαβάστε περισσότερα

СИМУЛАЦИЈА ПРОЦЕСА ОБРАДЕ ПЛАСТИЧНИМ ДЕФОРМИСАЊЕМ (МЕТОД КОНАЧНИХ ЕЛЕМЕНАТА)

СИМУЛАЦИЈА ПРОЦЕСА ОБРАДЕ ПЛАСТИЧНИМ ДЕФОРМИСАЊЕМ (МЕТОД КОНАЧНИХ ЕЛЕМЕНАТА) ТЕХНОЛОГИЈА МАШИНОГРАДЊЕ ЛЕТЊИ СЕМЕСТАР 3. лабораторијска вежба СИМУЛАЦИЈА ПРОЦЕСА ОБРАДЕ ПЛАСТИЧНИМ ДЕФОРМИСАЊЕМ (МЕТОД КОНАЧНИХ ЕЛЕМЕНАТА) Дефиниција Метод коначних елемената (МКЕ) се заснива на одређеној

Διαβάστε περισσότερα

8.2 ЛАБОРАТОРИЈСКА ВЕЖБА 2 Задатак вежбе: Израчунавање фактора појачања мотора напонским управљањем у отвореној повратној спрези

8.2 ЛАБОРАТОРИЈСКА ВЕЖБА 2 Задатак вежбе: Израчунавање фактора појачања мотора напонским управљањем у отвореној повратној спрези Регулциј електромоторних погон 8 ЛАБОРАТОРИЈСКА ВЕЖБА Здтк вежбе: Изрчунвње фктор појчњ мотор нпонским упрвљњем у отвореној повртној спрези Увод Преносн функциј мотор којим се нпонски упрвљ Кд се з нулте

Διαβάστε περισσότερα