Nositeljica kolegija: izv. prof. Nermina Mujaković 1 Asistentica: Sanda Bujačić 1

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Nositeljica kolegija: izv. prof. Nermina Mujaković 1 Asistentica: Sanda Bujačić 1"

Transcript

1 Uvod u numeričku matematiku Nositeljica kolegija: izv. prof. Nermina Mujaković 1 Asistentica: Sanda Bujačić 1 1 Odjel za matematiku Sveučilište u Rijeci

2 Numerička integracija O problemima integriranja Ako je f : [a, b] R neprekidna funkcija, a G njena primitivna funkcija, onda se Riemannov integral na segmentu [a, b] može izračunati primjenom Newton-Leibnizove formule I = b a f (x) dx = G(b) G(a). U praksi se najčešće pojavljuju situacije gdje nije moguće primjeniti ovu formulu. Može se dogoditi da: primitivnu funkciju G nije moguće dobiti elementarnim metodama podintegralna funkcija je poznata u samo nekoliko točaka

3 Numerička integracija O problemima integriranja Ako je f : [a, b] R neprekidna funkcija, a G njena primitivna funkcija, onda se Riemannov integral na segmentu [a, b] može izračunati primjenom Newton-Leibnizove formule I = b a f (x) dx = G(b) G(a). U praksi se najčešće pojavljuju situacije gdje nije moguće primjeniti ovu formulu. Može se dogoditi da: primitivnu funkciju G nije moguće dobiti elementarnim metodama podintegralna funkcija je poznata u samo nekoliko točaka

4 Numerička integracija Aproksimativno izračunavanje vrijednosti integrala na segmentu Kako bismo ipak aproksimativno izračunali vrijednost integrala I, podintegralnu funkciju moramo interpolirati nekom jednostavnijom funkcijom ϕ i na taj način dobiti aproksimaciju integrala I koju označavamo s I : b I = ϕ(x) dx = G(b) G(a). a Pri tome, aproksimirajuća funkcija treba biti takva da za zadanu točnost ε > 0 bude I = I I < ε. Uz pretpostavku poznavanja funkcije f u n + 1 točaka x 0, x 1,... x n [a, b] za funkciju ϕ možemo uzeti, primjerice, Lagrangeov interpolacijski polinom.

5 Numerička integracija Aproksimativno izračunavanje vrijednosti integrala na segmentu Kako bismo ipak aproksimativno izračunali vrijednost integrala I, podintegralnu funkciju moramo interpolirati nekom jednostavnijom funkcijom ϕ i na taj način dobiti aproksimaciju integrala I koju označavamo s I : b I = ϕ(x) dx = G(b) G(a). a Pri tome, aproksimirajuća funkcija treba biti takva da za zadanu točnost ε > 0 bude I = I I < ε. Uz pretpostavku poznavanja funkcije f u n + 1 točaka x 0, x 1,... x n [a, b] za funkciju ϕ možemo uzeti, primjerice, Lagrangeov interpolacijski polinom.

6 Numerička integracija Aproksimativno izračunavanje vrijednosti integrala na segmentu Kako bismo ipak aproksimativno izračunali vrijednost integrala I, podintegralnu funkciju moramo interpolirati nekom jednostavnijom funkcijom ϕ i na taj način dobiti aproksimaciju integrala I koju označavamo s I : b I = ϕ(x) dx = G(b) G(a). a Pri tome, aproksimirajuća funkcija treba biti takva da za zadanu točnost ε > 0 bude I = I I < ε. Uz pretpostavku poznavanja funkcije f u n + 1 točaka x 0, x 1,... x n [a, b] za funkciju ϕ možemo uzeti, primjerice, Lagrangeov interpolacijski polinom.

7 Trapezna formula Trapezna formula Funkciju f : [a, b] R interpolirat ćemo linearnom funkcijom P 1 (interpolacijskim polinomom stupnja 1) u čvorovima interpolacije x 0 = a, x 1 = b. Graf funkcije P 1 je pravac koji prolazi točkama T 0 = (a, f (a)), T 1 = (b, f (b)), odnosno vrijedi Lako se dobije I = P 1 (x) = f (a) + b a f (b) f (a) (x a). b a P 1 (x) dx = b a (f (a) + f (b)). 2

8 Trapezna formula Trapezna formula Funkciju f : [a, b] R interpolirat ćemo linearnom funkcijom P 1 (interpolacijskim polinomom stupnja 1) u čvorovima interpolacije x 0 = a, x 1 = b. Graf funkcije P 1 je pravac koji prolazi točkama T 0 = (a, f (a)), T 1 = (b, f (b)), odnosno vrijedi Lako se dobije I = P 1 (x) = f (a) + b a f (b) f (a) (x a). b a P 1 (x) dx = b a (f (a) + f (b)). 2

9 Trapezna formula Trapezna formula Funkciju f : [a, b] R interpolirat ćemo linearnom funkcijom P 1 (interpolacijskim polinomom stupnja 1) u čvorovima interpolacije x 0 = a, x 1 = b. Graf funkcije P 1 je pravac koji prolazi točkama T 0 = (a, f (a)), T 1 = (b, f (b)), odnosno vrijedi Lako se dobije I = P 1 (x) = f (a) + b a f (b) f (a) (x a). b a P 1 (x) dx = b a (f (a) + f (b)). 2

10 Trapezna formula Trapezna formula Geometrijski, I predstavlja površinu trapeza sa stranicama f (a) i f (b) i visinom h = b a. Apsolutna greška predstavlja površinu izmedu pravca L 1 i grafa funkcije f.

11 Trapezna formula Trapezna formula Teorem Neka je f C[a,b] 3. Tada postoji c a, b takav da je I = b a f (x) dx = b a 2 (b a)3 (f (a) + f (b)) f (c). 12

12 Trapezna formula Produljena trapezna formula Ako je segment integracije [a, b] relativno velik, greška E će biti velika. U cilju postizanja bolje aproksimacije I integrala I, segment [a, b] podijelit ćemo na podsegmente i na svakom od njih primjeniti trapeznu formulu. Pretpostavimo da funkciju f poznajemo u n + 1 točaka x 0, x 1,... x n [a, b], ali je pri tome ispunjeno: x 1 x 0 = = x n x n 1 = h, x 0 = a, x n = b.

13 Trapezna formula Produljena trapezna formula

14 Trapezna formula Produljena trapezna formula Očigledno vrijedi h = b a n, a točke x 0,... x n dijele segment [a, b] na n jednakih dijelova duljine h. Označimo y i = f (x i ), i = 0,..., n. Na svakom podsegmentu primjenjujemo trapeznu formulu i za [x i 1, x i ] dobivamo xi x i 1 f (x) dx = h 2 (y i 1 + y i ) h3 12 f (c i ), c i x i 1, x i.

15 Trapezna formula Produljena trapezna formula Očigledno vrijedi h = b a n, a točke x 0,... x n dijele segment [a, b] na n jednakih dijelova duljine h. Označimo y i = f (x i ), i = 0,..., n. Na svakom podsegmentu primjenjujemo trapeznu formulu i za [x i 1, x i ] dobivamo xi x i 1 f (x) dx = h 2 (y i 1 + y i ) h3 12 f (c i ), c i x i 1, x i.

16 Trapezna formula Produljena trapezna formula Očigledno vrijedi h = b a n, a točke x 0,... x n dijele segment [a, b] na n jednakih dijelova duljine h. Označimo y i = f (x i ), i = 0,..., n. Na svakom podsegmentu primjenjujemo trapeznu formulu i za [x i 1, x i ] dobivamo xi x i 1 f (x) dx = h 2 (y i 1 + y i ) h3 12 f (c i ), c i x i 1, x i.

17 Trapezna formula Produljena trapezna formula Cijeli integral I postaje: b I = f (x) dx = a n i=1 xi x i 1 f (x) dx = h 2 (y 0 + 2y y n 1 + y n) h3 12 n f (c i ). i=1 Na ovaj način dobivamo produljenu (generaliziranu) trapeznu formulu: I = I + E n, gdje je I = h 2 (y 0 + 2y y n 1 + y n ), E n = b a 12 h2 f (c).

18 Trapezna formula Greška produljene trapezne formule Ako je zadana točnost ε s kojom treba izračunati integral I i ako označimo M 2 = max x [a,b] f (x), onda je apsolutna greška I b a 12 h2 M 2 < ε. Broj podsegmenata n na koji treba podijeliti početni segment da bi se postigla zadana točnost ε je M 2 n > (b a) ε b a 12.

19 Trapezna formula Greška produljene trapezne formule Ako je zadana točnost ε s kojom treba izračunati integral I i ako označimo M 2 = max x [a,b] f (x), onda je apsolutna greška I b a 12 h2 M 2 < ε. Broj podsegmenata n na koji treba podijeliti početni segment da bi se postigla zadana točnost ε je M 2 n > (b a) ε b a 12.

20 Trapezna formula Zadatak 1. Produljenom trapeznom formulom izračunati približnu vrijednost odredenog integrala uz korak h = 0.2. Rješenje. 4 3 x ln x dx

21 Trapezna formula Zadatak 2. (vježba) Produljenom trapeznom formulom izračunati približnu vrijednost odredenog integrala x sin x dx uz korak h = 0.3. Rješenje x sin x dx

22 Trapezna formula Zadatak 3. Produljenom trapeznom formulom izračunati približnu vrijednost broja π računajući površinu jediničnog kruga pomoću odredenog integrala za korak h = 0.1. Rješenje.

23 Trapezna formula Zadatak 4. (vježba) Neka je zadano 2 0 dx 1 + x 2. Koristimo li produljenu trapeznu formulu za izračunavanje aproksimacije vrijednosti zadanog integrala, koliki bi trebao biti n ako je uvjet da je greška aproksimacije E n ? Rješenje. n 517.

24 Newton - Cotesove formule Newton - Cotesove formule Newton - Cotesova formula reda n + 1 za aproksimaciju odredenog integrala b f (x) dx a dobiva se tako da se funkcija f zamijeni Lagrangeovim interpolacijskim polinomom stupnja n koji interpolira vrijednosti funkcije f u n + 1 ekvidistantnih točaka. Ukoliko su krajnje točke segmenta [a, b] ujedno i interpolacijske točke, onda govorimo o zatvorenoj Newton - Cotesovoj formuli, a u protivnom o otvorenoj.

25 Newton - Cotesove formule Newton - Cotesove formule Promotrimo zatvorenu Newton - Cotesovu formulu reda n + 1. Interpolacijske točke su x i = a + h i, h = b a, i = 0, 1, 2,... n. n Lagrangeov interpolacijski polinom je oblika L n (x) = n f (x i )L i (x), i=0 gdje je L i (x) = j=0,j i (x x j) j=0,j i (x i x j ).

26 Newton - Cotesove formule Newton - Cotesove formule Lako dolazimo do formule: b a f (x) dx n i=0 b f (x i ) L i (x) dx. a U ovoj formuli integrale na desnoj strani uvijek možemo egzaktno izračunati pa nakon zamjene varijabli x = a + th dobivamo: b a n L i (x) dx = h 0 j=0,j i t j i j dt = hλ n,i, što nam daje eksplicitnu ovisnost koeficijenata formule o parametru h.

27 Newton - Cotesove formule Newton - Cotesove formule Konačno, Newton - Cotesova formula reda n + 1 ima oblik: b a f (x) dx h n f (x i )λ n,i, gdje koeficijenti λ n,i ne ovise o a, b. Newton - Cotesova formula reda n + 1 točna je na polinomima stupnja manjeg ili jednakog n. Greška n + 1-ve Newton - Cotesove formule dana je formulom gdje je E n+1 (f ) = b a i=0 f [x 0, x 1,... x n, x]w n (x) dx, w n (x) = n (x x j ). j=0

28 Newton - Cotesove formule Simpsonova formula Ako koristeći Newton - Cotesove formule funkciju aproksimiramo kvadratnim polinomom kroz točke ( ( )) a + b a + b (a, f (a)), 2, f, (b, f (b)) 2 dobivamo specijalan slučaj Newton-Cotesove formule kojeg nazivamo Simpsonova formula. Vrijedi I b a 6 ( f (a) + 4f ( a + b 2 ) ) + f (b).

29 Newton - Cotesove formule Simpsonova formula Za grešku Simpsonove formule vrijedi E 3 = I I = (b a)5 f (4) (c), 90 c a, b.

30 Newton - Cotesove formule Produljena Simpsonova formula Ako je segment integracije [a, b] relativno velik, i greška E će biti velika. U cilju postizanja bolje aproksimacije I integrala I segment [a, b] podijelit ćemo na paran broj (n = 2m) podsegmenata duljine h = b a n u čvorovima x i = a + ih, i = 0, 1,..., n. Uz oznaku y i = f (x i ), i = 0, 1,..., n redom, na po dva podsegmenta primjenjujemo Simpsonovo pravilo Na ovaj način dobivamo produljeno (generalizirano) Simpsonovo pravilo

31 Newton - Cotesove formule Produljena Simpsonova formula

32 Newton - Cotesove formule Produljena Simpsonova formula Vrijedi: I = I + E n, I = h 3 ((y 0 + y 2m + 4(y y 2m 1 ) + 2(y y 2m 2 )), E n = b a 180 h4 f (4) (c), c a, b.

33 Newton - Cotesove formule Greška produljene Simpsonove formule Ako je zadana točnost ε s kojom treba izračunati integral I i ako označimo M 4 = max x [a,b] f (4) (x), onda je apsolutna greška I b a 180 h4 M 4 < ε. Broj podsegmenata n na koji treba podijeliti početni segment da bi se postigla zadana točnost ε je n > (b a) 4 M 4 ε b a 180.

34 Newton - Cotesove formule Zadatak 1. Produljenom Simpsonovom formulom izračunati približnu vrijednost odredenog integrala uz korak h = Rješenje. 2 1 x 2 arctan x dx

35 Newton - Cotesove formule Zadatak 2. Produljenom Simpsonovom formulom izračunati približnu vrijednost broja ln 2 računajući ga pomoću odredenog integrala za korak h = 0.1. Rješenje. ln

36 Newton - Cotesove formule Zadatak 3. Neka je zadano 2 0 dx 1 + x 2. Koristimo li produljenu Simpsonovu formulu za izračunavanje aproksimacije vrijednosti zadanog integrala, koliki bi trebao biti n ako je uvjet da je greška aproksimacije E n ? Rješenje. n 31.

37 Newton - Cotesove formule Simpsonova formula 3/8 Simpsonova formula 3/8 je još jednan način aproksimativne integracije izveden iz Newton - Cotesovih formula (za n = 4) koji se oslanja na aproksimaciju kubičnim polinomom na zadanom segmentu b a f (x) dx b a 8 ( f (a) + 3f Greška ove metode je ( 2a + b 3 ) + 3f E 4 = (b a) f (4) (ζ), ζ a, b. ( ) ) a + 2b + f (b), b a = 3h. 3

38 Newton - Cotesove formule Produljena Simpsonova formula 3/8 Za h = b a n, x i = a + ih, i = 0, 1,... n 1 definiramo Produljenu Simpsonovu formulu 3/8: b f (x) dx 3 8 (f (x 0) + 3f (x 1 ) + 3f (x 2 ) + 2f (x 3 ) + 3f (x 4 ) + 3f (x 5 ) + 2f (x 6 ) + + f (x n)). a Greška koja se dogada pri aproksimaciji vrijednosti integrala ovim pravilom je E n = 1 80 (b a)4 f (4) (ζ), ζ a, b.

39 Newton - Cotesove formule Boolova formula Boolova formula je način aproksimativne integracije izveden iz Newton - Cotesovih formula za n = 5. x5 x 1 f (x) dx 2h 45 (7f (x 1) + 32f (x 2 ) + 12f (x 3 ) + 32f (x 4 ) + 7f (x 5 )), b a = 4h. Greška ove metode je E 5 = h7 f (6) (c), ζ x 1, x 5

40 Gaussova kvadratura Gaussova kvadratura Sve metode koje smo do sad upoznali za aproksimativno izračunavanje vrijednosti odredenog integrala b a f (x) dx n ω j f (x j ), j=0 gdje su x j, j = 0,..., n imale su svojstvo da su zadani čvorovi bili ekvidistantni. Možemo li drugačije rasporediti te čvorove kako bi smanjili grešku integracije? Cilj je rasporediti čvorove tako da minimiziramo grešku

41 Gaussova kvadratura Gaussova kvadratura Početni problem ostaje isti b a f (x) dx n ω j f (x j ), j=0 gdje su nepoznanice ω j, x j, j = 0, 1,..., n. Promatramo n + 1 nepoznatu točku x j [a, b], a x 0 < x 1 <... x n 1 < x n b i n + 1 realan koeficijent ω j što znači da u ovom slučaju postoje 2n + 2 nepoznanice U slučaju trapezne formule postoje dvije nepoznanice U slučaju Simpsonove formule postoje tri nepoznanice U slučaju Newton - Cotesovih formula, općenito, postoji n + 1 nepoznanica

42 Gaussova kvadratura Gaussova kvadratura Promatramo slučaj za n = 1 (2 točke) i [a, b] = [ 1, 1] radi jednostavnosti Znamo da je trapezna formula u ovom slučaju primjenjiva i interesira nas kako konstruirati što točniju formulu 1 1 f (x) dx ω 0 f (x 0 ) + ω 1 f (x 1 ).

43 Gaussova kvadratura Gaussova kvadratura

44 Gaussova kvadratura Gaussova kvadratura Cilj je pronaći ω 0, ω 1, x 0, x 1 tako da je aproksimacija 1 f (x) dx ω 0 f (x 0 ) + ω 1 f (x 1 ) 1 bude točna za polinome do trećeg stupnja - ovako dobivamo još jednu metodu za aproksimaciju integracije koju nazivamo Gauss - Legendreova kvadratura Definiramo Dobivamo: 1 1 f (x) dx = f (x) = c 0 + c 1 x + c 2 x 2 + c 3 x (c 0 + c 1 x + c 2 x 2 + c 3 x 3 ) dx = = ω 0 (c 0 + c 1 x + c 2 x 2 + c 3 x 3 ) + ω 1 (c 0 + c 1 x + c 2 x 2 + c 3 x 3 ).

45 Gaussova kvadratura Gaussova kvadratura Jednostavnim računom dobivamo: Vrijedi: ω 0 + ω 1 = ω 0 x 0 + ω 1 x 1 = ω 0 x ω 1 x 2 1 = dx = 2, x dx = 0, x 2 dx = 2 3, 1 ω 0 x0 3 + ω 1x1 3 = x 3 dx = 0. 1 ω 0 = 1, ω 1 = 1, x 0 = 3 3 3, x 1 = 3.

46 Gaussova kvadratura Gaussova kvadratura Dobivamo: 1 1 ( ) ( ) 3 3 f (x) dx f + f. 3 3 Jednostavnim transformacijama možemo doći i do izraza za integraciju na općenitom segmentu [a, b] b a f (x) dx = 1 1 ( ) (b a)t + b + a b a f dt. 2 2

47 Gaussova kvadratura Gaussova kvadratura Potrebno je poopćiti ovu formulu, odnosno odrediti čvorove u slučaju da ih je više unutar zadanog segmenta Formula koja bi odgovarala jednom čvoru na segmentu [ 1, 1] koristila bi čvor x = 0 što je korijen od Brojevi ± 1 3 su korijeni od Koji je opći izraz za Φ(x)? Φ(x) = x. Φ(x) = 3x 2 1.

48 Gaussova kvadratura Legendreovi polinomi Radi se o Legendreovim polinomima Φ 0 (x) = 1, Općenito, Φ 1 (x) = x, Φ 2 (x) = 3x 2 1, 2 Φ 3 (x) = 5x 3 3x, Φ n (x) = 2n 1 n xφ n 1 (x) n 1 n Φ n 2(x).

49 Gaussova kvadratura Legendreovi polinomi n x i ω i 2 ± = ± = 8 9 ± = ± = ± = ± (3 2 6/5)/ = ± = ± ( /5)/ = = 128/225 ± = ± / = ± ± / =

50 Gaussova kvadratura Zadatak 1. Aproksimirati x 2 ln x dx koristeći Gaussovu kvadraturu s n = 1.

51 Gaussova kvadratura Zadatak 2. Aproksimirati 1 0 x 2 e x dx koristeći Gaussovu kvadraturu s n = 1.

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

6 Polinomi Funkcija p : R R zadana formulom

6 Polinomi Funkcija p : R R zadana formulom 6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos . KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

NUMERIČKA INTEGRACIJA

NUMERIČKA INTEGRACIJA NUMERČKA NTEGRACJA ZADATAK: Odrediti približnu vrednost integrala ntegral određujemo pomoću formule: f ( x) = p( x) + R( x) vrednost integrala polinoma R ocena greške a b f ( xdx ) Kvadraturne formule

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i Sdržj 4 INTEGRALI 64 4. Neodredeni integrl........................ 64 4. Integrirnje supstitucijom.................... 68 4. Prcijln integrcij....................... 7 4.4 Odredeni integrl i rčunnje površine

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj

( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj Zadaak (Ines, hoelijerska škola) Ako je g, izračunaj + 5 + Rješenje Korisimo osnovnu rigonomerijsku relaciju: + Znači svaki broj n možemo zapisai n n n ( + ) + + + + 5 + 5 5 + + + + + 7 + Zadano je g Tangens

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Integrali Materijali za nastavu iz Matematike 1

Integrali Materijali za nastavu iz Matematike 1 Integrali Materijali za nastavu iz Matematike Kristina Krulić Himmelreich i Ksenija Smoljak 202/3 / 44 Definicija primitivne funkcije i neodredenog integrala Funkcija F je primitivna funkcija (antiderivacija)

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Uvod u teoriju brojeva

Uvod u teoriju brojeva Uvod u teoriju brojeva 2. Kongruencije Borka Jadrijević Borka Jadrijević () UTB 2 1 / 25 2. Kongruencije Kongruencija - izjava o djeljivosti; Teoriju kongruencija uveo je C. F. Gauss 1801. De nicija (2.1)

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

Nenad Ujević Fakultet prirodoslovno-matematičkih znanost i odgojnih područja. January 30, 2004

Nenad Ujević Fakultet prirodoslovno-matematičkih znanost i odgojnih područja. January 30, 2004 UVOD U NUMERIČKU MATEMATIKU Nenad Ujević Fakultet prirodoslovno-matematičkih znanost i odgojnih područja Sveučilište u Splitu January 30, 004 1 Contents 1 Aproksimacija funkcija 5 1.1 Hornerov algoritam........................

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Redovi funkcija. Redovi potencija. Franka Miriam Brückler

Redovi funkcija. Redovi potencija. Franka Miriam Brückler Franka Miriam Brückler Redovi funkcija 1 + (x 2) + 1 + x + x 2 + x 3 + x 4 +... = (x 2)2 2! + (x 2)3 3! + +... = sin(x) + sin(2x) + sin(3x) +... = x n, + + n=1 (x 2) n, n! sin(nx). Redovi funkcija 1 +

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno. JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

Dijagonalizacija operatora

Dijagonalizacija operatora Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

2.6 Nepravi integrali

2.6 Nepravi integrali 66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

Signali i sustavi Zadaci za vježbu. III. tjedan

Signali i sustavi Zadaci za vježbu. III. tjedan Signali i sustavi Zadaci za vježbu III. tjedan 1. Neka je kontinuirani kompleksni eksponencijalni signal. Neka je diskretni eksponencijalni signal dobiven iz kontinuiranog signala uniformnim otipkavanjem

Διαβάστε περισσότερα

Potpuno pivotiranje. Faktorizacija Choleskog

Potpuno pivotiranje. Faktorizacija Choleskog Potpuno pivotiranje Potpuno pivotiranje kao pivota odabire po modulu najveći element iz cijele podmatrice dolje desno Osim zamjene redaka, ovdje je dozvoljena i zamjena stupaca (preimenovanje tj mijenjanje

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

MJERA I INTEGRAL 2. kolokvij 30. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!)

MJERA I INTEGRAL 2. kolokvij 30. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) JMBAG IM I PZIM BOJ BODOVA MJA I INTGAL 2. kolokvij 30. lipnja 2017. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (ukupno 6 bodova) Neka je (, F, µ) prostor mjere i neka je (

Διαβάστε περισσότερα

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a. Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a

Διαβάστε περισσότερα

16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum

16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum 16 Lokalni ekstremi Važna primjena Taylorovog teorema odnosi se na analizu lokalnih ekstrema (minimuma odnosno maksimuma) relanih funkcija (više varijabli). Za n = 1 i f : a,b R ako funkcija ima lokalni

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Iterativne metode - vježbe

Iterativne metode - vježbe Iterativne metode - vježbe 5. Numeričke metode za ODJ Zvonimir Bujanović Prirodoslovno-matematički fakultet - Matematički odjel 21. studenog 2010. Sadržaj 1 Eulerove metode (forward i backward). Trapezna

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

6 Primjena trigonometrije u planimetriji

6 Primjena trigonometrije u planimetriji 6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije

Διαβάστε περισσότερα

Neodred eni integrali

Neodred eni integrali Neodred eni integrali Definicija. Za funkciju F : I R, gde je I interval, kažemo da je primitivna funkcija funkcije f : I R ako je za svako I. F () f() Teorema 1. Ako je F : I R primitivna funkcija za

Διαβάστε περισσότερα

Slučajne varijable. Diskretna slučajna varijabla X je promjenjiva veličina koja poprima vrijednosti iz skupa

Slučajne varijable. Diskretna slučajna varijabla X je promjenjiva veličina koja poprima vrijednosti iz skupa Slučajne varijable Statistički podaci su distribuirani po odredenoj zakonitosti. Za matematičko (apstraktno) opisivanje te zakonitosti potrebno je definirati slučajnu varijablu kojoj pripada odredena razdioba

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:

Διαβάστε περισσότερα

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se

Διαβάστε περισσότερα

5. Aproksimacija i interpolacija

5. Aproksimacija i interpolacija APROKSIMACIJA I INTERPOLACIJA 56 5. Aproksimacija i interpolacija 5.. Opći problem aproksimacije Što je problem aproksimacije? Ako su poznate neke informacije o funkciji f, definiranoj na nekom skupu X

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα