7. ELEMENTARNE FUNKCIJE
|
|
- ÉΘεοκλής Σπυρόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Geodetski fkultet dr. sc. J. e-rkić Predvj iz Mtemtike 7. ELEMENTRNE FUNKIJE Među fukcijm koje su de formulom vžu ulogu imju tkozve elemetre fukcije. Pozvje svojstv elemetrih fukcij omogućit će lkše svldvje grdiv mtemtičke lize i rješvje mogih zdtk tehičke prirode. Rzmotrit ćemo ko prvo osove elemetre fukcije. Osove elemetre fukcije su:. poliomi. rciole fukcije. ekspoecijle fukcije. logritmske fukcije. opć potecij 6. trigoometrijske fukcije 7. ciklometrijske fukcije. Elemetre fukcije su fukcije koje se mogu doiti iz osovih elemetrih fukcij pomoću kočog roj ritmetičkih opercij ( - :) i kočog roj kompozicij elemetrih fukcij. Osim vedeih osovih ordit ćemo i sljedeće elemetre fukcije: 8. hiperole fukcije 9. re fukcije. lgerske fukcije su oe elemetre fukcije koje su de pomoću kompozicije rciolih fukcij potecirj s rciolim ekspoetom i s četri osove rčuske opercije. Trscedete fukcije su oe elemetre fukcije koje isu lgerske. Tu spdju ekspoecijle logritmske trigoometrijske ciklometrijske hiperole i re fukcije. Poliomi Poliomi su fukcije olik p L N i R i K i koeficijeti člov poliom poliom tog stupj p : R R p poliom ultog stupj tj. kostt 68
2 Geodetski fkultet dr. sc. J. e-rkić Predvj iz Mtemtike Pod ultočkom fukcije ul tj. f. Nultočke poliom f podrzumijevmo roj z koji fukcij poprim vrijedost p su oe vrijedosti od z koje je p ez dokz vodimo ek svojstv poliom: L. - Dv poliom po vrijli idetičo su jedk ko i smo ko su koeficijeti jedko visokih potecij međusoo jedki. - Svki se poliom -tog stupj može rstviti u produkt od lierih fktor: p ( )( ) L( ) gdje su ultočke tog poliom koje mogu iti reli i kompleksi rojevi. ko su eki od jh međusoo jedki govorimo o višestrukim ultočkm. Z komplekse ultočke vrijedi d dolze u pru tj. ko je i ultočk poliom od je i kojugiro kompleksi roj i ultočk tog poliom i im istu višestrukost. Primjer: Fktorizcij poliom. p ) ) p ( ) ( ) ( )( ) ( )( )( i)( i) Rciole fukcije Rciole fukcije su fukcije olik f P gdje su P Qm Q m zjedičkih ultočk. i poliomi stupj odoso m koji emju < m prv rciol fukcij m dijeljejem rojik s zivikom fukciju možemo pisti u oliku poliom i prve rciole fukcije. Dome: Skup svih relih rojev osim ultočk poliom Q u ziviku. Kodome: R Nultočke fukcije su ultočke poliom u rojiku tj. rješej jeddže. m P Nultočke poliom u ziviku zivmo polovim rciole fukcije. Prem tome d li se rdi o jedostrukoj ili višestrukoj ultočki fukcije (polu) govorimo o ultočki (polu) prvog ili višeg red. Osim tog ultočke (polovi) fukcije mogu iti prog i eprog red oviso o tome dli im je krtost pr ili epr roj. 69
3 Geodetski fkultet dr. sc. J. e-rkić Predvj iz Mtemtike P Kko skicirti grf rciole fukcije f? Qm. Odrediti ultočke fukcije f. U okolii ultočke prog (eprog) red fukcij e mijej (mijej) predzk.. Odrediti polove fukcije f i u jim crtti vertikle prvce koje zovemo vertiklim simptotm fukcije.u okolii pol prog (eprog) red fukcij e mijej (mijej) predzk. Grfovi ekih rciolih fukcij: H L H L H L - - H L Rstv prcijle rzlomke Rstviti rciolu fukciju f P prcijle rzlomke zči prikzti je ko Qm i ( ) gdje je ( ) ( ) lier fktor ( ) kvdrti fktor s egtivom diskrimitom zroj jedostvih rciolih fukcij pr. poliom Q. m 7
4 Geodetski fkultet dr. sc. J. e-rkić Predvj iz Mtemtike Primjer: Rstvlje prcijle rzlomke. ) ( ) 6 6 fl sustv triju jeddži s tri epozice: 6 fl rješeje sustv: 7 9 fl rstv prcijle rzlomke: 7 9. ) D D D D D fl sustv četiriju jeddži s četiri epozice: D D D fl rješeje sustv: D fl rstv prcijle rzlomke:. Ekspoecijle fukcije Fukciju olik f > zovemo ekspoecijlom fukcijom ze. 7
5 Geodetski fkultet dr. sc. J. e-rkić Predvj iz Mtemtike Svojstv ekspoecijlih fukcij:. Dome: R;. Skup vrijedosti: Skup svih pozitivih relih rojev tj. R ; f f f tj. ;. ( ). ( f f : f ) tj.. f tj. ; 6. ; 7. ijekcij s R R ; 8. > f je strogo rstuć fukcij; 9. < < f je strogo pdjuć fukcij. ; Grfovi ekih ekspoecijlih fukcij: e J N J N Logritmske fukcije Iverzu fukciju ekspoecujle fukcije ze i ozčvmo f log >. Vrijedi: log g f log ( f ) tj. > ( g ) tj. log R. Svojstv logritmskih fukcij: g zovemo logritmskom fukcijom i z jihove kompozicije:. Dome: Skup svih pozitivih relih rojev tj. R ;. Skup vrijedosti: R; f f f log log log > ;. ( tj. ). f f - f tj. log log log > ;. f () tj. log ; 7
6 Geodetski fkultet dr. sc. J. e-rkić Predvj iz Mtemtike 6. f ( ) f tj. log log > ; 7. ijekcij s R R; 8. > f je strogo rstuć fukcij; 9. < < f je strogo pdjuć fukcij; log. log > >. log Ovu vezu logritm po rzličitim zm ćemo dokzti. Iz i log log i. Td je log log ( ) log log. tj. log log log odoso log odkle slijedi tvrdj. log. Iz prethode dokze jedkosti z slijedi Neke specijle ze: log. log ko je z pišemo log umjesto log i zovemo dekdski logritm. ko je z e pišemo l umjesto log i zovemo prirodi logritm. Vez dekdskih i prirodih logritm (prem.): l log l M l log e.... l l M l 989 Grfovi ekih logritmskih fukcij: e l log log log l l l Opć potecij Općom potecijom zivmo fukciju c f e e c l cl > c R. f : R R 7
7 Geodetski fkultet dr. sc. J. e-rkić Predvj iz Mtemtike N primjer: Grfovi fukcij i K. N. Grfovi fukcij N ko iverzih fukcij od. Trigoometrijske fukcije Sius Ozk: si si : R Grf: [ ] si π π π π π π 7
8 Geodetski fkultet dr. sc. J. e-rkić Predvj iz Mtemtike Svojstv:. si si tj. si je epr fukcij ( π ). si si k k Z tj. si je periodič fukcij s periodom π. si je surjektiv fukcij Kosius Ozk: cos cos : R Grf: [ ] cos π π π π π π Svojstv:. cos cos tj. cos je pr fukcij ( π ). cos cos k k Z tj. si je periodič fukcij s periodom π. cos je surjektiv fukcij. Tges Ozk: tg si tg cos cos π tg : R \ kπ k Z R Grf: tg π π π π π π Svojstv:. tg tg tj. tg je epr fukcij ( π ). tg tg k k Z tj. tg je periodič fukcij s periodom π. 7
9 Geodetski fkultet dr. sc. J. e-rkić Predvj iz Mtemtike Kotges Ozk: ctg cos ctg si si ctg R \ kπ k Z R Grf: : { } ctg π π π π π π π Svojstv:. ctg ctg tj. ctg je epr fukcij ( π ). ctg ctg k k Z tj. ctg je periodič fukcij s periodom π. Još ek vž svojstv trigoometrijskih fukcij.. si ± si cos ± cos si cos ± cos cos ± si si tg ± tg tg ( ± ) m tgtg ctg ctg m ctg( ± ) ctg ± ctg. si cos. si si cos cos cos si. 6. si si cos ( ) cos ( ) 7. cos cos cos ( ) cos ( ) 8. si cos si( ) si( ) 9. si si si cos. si si cos si dicioe formule 76
10 Geodetski fkultet dr. sc. J. e-rkić Predvj iz Mtemtike. cos cos cos cos. cos cos si si iklometrijske fukcije rkussius Promtrmo restrikciju fukcije f si itervl π π Si si π π : [ ]. π π : Fukcij Si je strogo rstuć ijekcij. Defiirmo jeu iverzu fukciju s: π π [ ] rcsi Si :. Grf fukcije rcsi π π Dkle si rcsi rcsi( si ) π π. Npome: Uočimo d je fukcij f si strogo mooto svkom od itervl π π kπ kπ k Z i d se svki od jih preslikv itervl [ ]. Dkle svkom i se od jih mogl defiirti pripd iverz fukcij i sve i te fukcije ile međusoo rzličite. 77
11 Geodetski fkultet dr. sc. J. e-rkić Predvj iz Mtemtike rkuskosius Promtrmo restrikciju fukcije f cos itervl [ π ] : os cos [ ]: [ π ] [ π ]. Fukcij os je strogo pdjuć ijekcij. Defiirmo jeu iverzu fukciju s: [ ] [ ] rccos os π :. Grf fukcije rccos π π Dkle [ ] cos rccos rccos cos π. Vrijedi pome ko i u prethodom slučju. rkustges Promtrmo restrikciju fukcije f tg itervl π π Tg tg π π R :. π π : Fukcij Tg je strogo rstuć ijekcij. Defiirmo jeu iverzu fukciju s: :. rctg Tg R π π Grf fukcije rctg πê πê 78
12 Geodetski fkultet dr. sc. J. e-rkić Predvj iz Mtemtike Dkle tg rctg R rctg tg π π. rkuskotges Promtrmo restrikciju fukcije f ctg itervl ( π ) : tg ctg ( ): ( π ) R. π Fukcij tg je strogo pdjuć ijekcij. Defiirmo jeu iverzu fukciju s: ( ) rc ctg tg R π :. Grf fukcije rcctg π Dkle ctg ( rcctg) R rcctg ctg π ) (. πê Hiperole fukcije Sius hiperoli Kosius hiperoli Ozk: sh Ozk: ch e e e e sh sh R R ch ch : R : [ ) Svojstv: Svojstv:. sh. ch. sh sh. ch ch ( ) tj. sh je epr fukcij tj. ch je pr fukcij. sh je strogo rstuć ijekcij.. ch strogo rste itervlu [ ) ch strogo pd itervlu ( ]. ch je surjektiv fukcij. 79
13 Geodetski fkultet dr. sc. J. e-rkić Predvj iz Mtemtike Grf fukcije sh : Grf fukcije ch : Tges hiperoli Kotges hiperoli Ozk: th Ozk: cth sh e e ch e e th cth ch e e sh e e th R cth : R \ R \ : {} [ ] Svojstv: Svojstv: ( ) h( ) cth. th th. ct tj. th je pr fukcij tj. cth je pr fukcij. th je strogo rstuć ijekcij.. cth je strogo pdjuć ijekcij. Grf fukcije th : Grf fukcije cth : Još ek svojstv hiperolih fukcij sh ± sh ch ± ch sh. dicioe formule ch( ± ) ch ch ± sh sh th ± th. th( ± ) ± thth 8
14 Geodetski fkultet dr. sc. J. e-rkić Predvj iz Mtemtike. cth( ) ± cth cth ± cth ± cth. ch sh. sh sh ch ch ch sh 6. th 7. th th cth 8. cth cth 9. sh sh ch( ) ch( ). ch ch ch( ) ch( ) re fukcije re fukcije su iverze fukcije hiperolih fukcij. re sius hiperoli Ozk: rsh rsh sh - : RöR Grf fukcije rsh : Izvod formule z rsh ko iverze fukcije od sh: e e e e sh e e e e e ( e ) ± ± 8
15 Geodetski fkultet dr. sc. J. e-rkić Predvj iz Mtemtike Logritmirjem posljedje jedkosti i odirom pozitivog predzk zog područj defiicije fukcije l slijedi ( l ) tj. rsh l( ) re kosius hiperoli. Ozk: rch f ch ije ijektiv (ijektiv) fukcij p ćemo promtrtu jeu Fukcij restrikciju itervl [ ) : h ch [ ) :[ ) [ ) Fukcij h je strogo rstuć ijekcij. Defiirmo jeu iverzu fukciju:. rch h :[ ) [ ). Grf fukcije rch : Izvod formule z rch ko iverze fukcije od h: e e e e h e e e e e ( e ) ± ± 8
16 Geodetski fkultet dr. sc. J. e-rkić Predvj iz Mtemtike Logritmirjem posljedje jedkosti i odirom pozitivog predzk zog područj defiicije fukcije h - tj. e e slijedi l tj. rch l. logo z h ch ( ] ( ] [ ) rch h :[ ) ( ] s rch l( ) : možemo defiirti jeu iverzu fukciju. re tges hiperoli Ozk: rth th : R ö (- ) rth th - : (- ) R Grf fukcije rth : Izvod formule z rth ko iverze fukcije od th: sh e e e e ch e e e e th e e ( ) ( ) e e e e e e e Logritmirjem posljedje jedkosti slijedi 8
17 Geodetski fkultet dr. sc. J. e-rkić Predvj iz Mtemtike l tj. rth l l re kotges hiperoli Ozk: rcth cth : R \{} ö R \[- ] rcth cth - : R \[- ]ö R \{} Izvod formule z rcth ko iverze fukcije od cth: <. ch e e e e sh e e e e cth e e e e e e e e e Logritmirjem posljedje jedkosti slijedi l tj. rcth l l >. Grf fukcije rcth : 8
PREGLED DEFINICIJA I FORMULA ZA 2. KOLOKVIJ IZ MATEMATIKE 1 (pomagalo dozvoljeno na kolokviju)
PREGLED DEFINICIJA I FORMULA ZA KOLOKVIJ IZ MATEMATIKE (pomglo dozvoljeo kolokviju) Opći pojmovi: I REALNE FUNKCIJE JEDNE REALNE VARIJABLE Nek su X, Y R Rel fukcij f : X Y je svko pridruživje koje svkom
Διαβάστε περισσότεραGeodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike 1 8. NIZOVI
Geodetski fkultet, dr sc J Beb-Brkić Predvj iz Mtemtike 8 NIZOVI Pojm iz Nek je N skup prirodih brojev Prem ekom prvilu svki broj iz N zmijeimo ekim brojem:,,,, R Št smo dobili? Budući d je svkom elemetu
Διαβάστε περισσότερα= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi
Zdtk 0 (Anstzij, gimnzij) Provjeri je li funkcij f log( 5) + + injekcij Rješenje 0 Kžemo d funkcij f im svojstvo injektivnosti ili d je on injekcij ko vrijedi f ( ) f ( ) Dkle, funkcij je injekcij ko rzličitim
Διαβάστε περισσότεραPREGLED MINIMALNIH ZNANJA IZ MATEMATIKE ZA ZANIMANJA:
PREGLED MINIMALNIH ZNANJA IZ MATEMATIKE ZA ZANIMANJA: elektrotehičr tehičr z rčulstvo tehičr z elektroiku tehičr z električe strojeve s primijejeim rčulstvom. rzred BROJEVI - rčuske opercije s prirodim,
Διαβάστε περισσότερα7 neg. ( - ) neg. ( - ) poz. (+ ) poz. (+ )
X. gimzij Iv Supek Zgre, Klićev 7. lipj 000. godie Mturl zdć iz mtemtike Rješej zdtk. ) Riješi jeddžu 7 Rješeje: Njprije se tre riješiti psolutih vrijedosti tko d z svki izrz uutr psolute vrijedosti odredimo
Διαβάστε περισσότεραELEKTROTEHNIČKI ODJEL PREGLED DEFINICIJA I FORMULA ZA PISANI DIO ISPITA IZ MATEMATIKE 2
PREGLED DEFINICIJA I FORMULA ZA PISANI DIO ISPIA IZ MAEMAIKE PREGLED DEFINICIJA I FORMULA ZA PISANI DIO ISPIA IZ MAEMAIKE SADRŽAJ. INEGRALNI RAČUN I PRIMJENE..... Priitiv fukcij i eodređei itegrl.....
Διαβάστε περισσότεραOpćenito, iznos normalne deformacije u smjeru normale n dan je izrazom:
Otporost mterijl. Zdtk ZDTK: U točki čeliče kostrukije postvlje su tri osjetil z mjereje deformij prem slii. ri opterećeju kostrukije izmjeree su reltive ormle (dužiske deformije: b ( - b 3 - -6 - ( b
Διαβάστε περισσότεραAnalitička geometrija i linearna algebra. Kartezijev trodimenzionalni pravokutni koordinatni sustav čine 3 međusobno okomite osi: Ox os apscisa,
Alitičk geoetrij i lier lger Vektori KOORDINATNI SUSTAV Krteijev prvokuti koorditi sustv Krteijev trodieioli prvokuti koorditi sustv čie eđusoo okoite osi: O os pscis O os ordit O os plikt točk O ishodište
Διαβάστε περισσότεραFURIJEOVI REDOVI ZADACI ( II
FURIJEOVI REDOVI ZADACI ( II deo Primer. Fukciju f ( = rzviti u Furijeov red segmetu [,] ztim izrčuti sumu red. ( Rešeje: Kko je f ( = = = f ( zkjučujemo d je fukcij pr. Koristimo formue: = f ( = + ( cos
Διαβάστε περισσότεραDodatak B. Furijeovi redovi. Posmatrajmo na intervalu [ l, neku funkciju f (x)
Dodtk B Furijeovi redovi Posmtrjmo itervu [, eku fukciju f () i ek je o tom itervu eprekid u deovim (im koč roj prekid prve vrste - prekidi u kojim fukcij im koč skok s eve desu griču vredost (vidi S.
Διαβάστε περισσότεραSkripta za usmeni ispit iz IM1
Skript z usmei ispit iz IM T Pojmovi (logičkog) iskz i predikt Defiicij: Sud ili iskz je deklrtiv izjv koj u pogledu istiitosti zdovoljv dv pricip: sud je ili istiit ili eistiit (pricip iskljucej treceg)
Διαβάστε περισσότεραRijeseni neki zadaci iz poglavlja 4.5
Rijeseni neki zdci iz poglvlj 4.5 Prije rijesvnj zdtk prisjetimo se itnih stvri koje ce ns prtiti tijekom njihovog promtrnj. Definicij: (Trigonometrij prvokutnog trokut) ktet nsuprot kut ϕ sin ϕ hipotenuz
Διαβάστε περισσότερα2.6 Nepravi integrali
66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,
Διαβάστε περισσότεραFOURIEROVI REDOVI I INTEGRALI
FOURIEROVI REDOVI I INEGRALI Pri rješvju rzličitih ižijerskih prole koriste se periodičke fukcije. Pojvljuju se pod terio periodičke fukcije, u ovu skupiu spdju trigooetrijske fukcije, sius i kosius, koje
Διαβάστε περισσότεραMate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza
Mte Vijug: Rijesei zdci iz mtemtike z sredju skolu. ARITMETICKI I GEOMETRIJKI NIZ, RED, BINOMNI POUCAK. Aritmeticki iz Opci oblik ritmetickog iz: + - d Gdje je: prvi cl ritmetickog iz ti cl ritmetickog
Διαβάστε περισσότεραskupa prirodnih brojeva u skup realnih brojeva, nazivamo realnim nizom.
Nizovi. Osovi pojmovi kod izov.. Defiicij i osovi pojmovi Defiicij... Svko preslikvje f : N R, skup prirodih brojev u skup relih brojev, zivmo re izom. Broj koji se ovim preslikvjem dodeljuje prirodom
Διαβάστε περισσότεραα =. n n n Vježba 001 Koliko stranica ima pravilni mnogokut ako jedan njegov unutarnji kut iznosi 144? Rezultat: n = 10.
Zdtk (Mrij, gimzij) Koliko stric im prvili mogokut ko jed jegov uutrji kut izosi 8? Rješeje Formul z veličiu jedog uutrjeg kut prvilog mogokut je: ( ) 8 α = ( ) 8 8 = / 8 = ( ) 8 8 = 8 6 8 8 = 6 7 = 6
Διαβάστε περισσότεραMatematika - usmeni dio ispita Pitanja i rješenja
Mtemtik - usmei dio ispit itj i rješej. itgori poučk c vrijedi smo z prvokuti trokut Dokz: potoji mogo dokz itgoriog poučk/teorem, 69 dokz možete ći ovdje: HTUhttp://www.cut-the-kot.org/pthgors/ UTH Geometrijski
Διαβάστε περισσότεραRiješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Διαβάστε περισσότερα4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i
Sdržj 4 INTEGRALI 64 4. Neodredeni integrl........................ 64 4. Integrirnje supstitucijom.................... 68 4. Prcijln integrcij....................... 7 4.4 Odredeni integrl i rčunnje površine
Διαβάστε περισσότεραELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Διαβάστε περισσότερα( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( )
Zadatak (Mariela, gimazija) Nađite derivaciju fukcije f() a + b c + d Rješeje Neka su f(), g(), h() fukcije ezavise varijable, a f (), g (), h () derivacije tih fukcija po Osova pravila deriviraja Derivacija
Διαβάστε περισσότερα4. Trigonometrija pravokutnog trokuta
4. Trigonometrij prvokutnog trokut po školskoj ziri od Dkić-Elezović 4. Trigonometrij prvokutnog trokut Formule koje koristimo u rješvnju zdtk: sin os tg tg ktet nsuprot kut hipotenuz ktet uz kut hipotenuz
Διαβάστε περισσότεραUNIVERZITET U SARAJEVU ELEKTROTEHNIČKI FAKULTET SARAJEVO
UNIVERZITET U SARAJEVU ELEKTROTEHNIČKI FAKULTET SARAJEVO -------------------------------------------------------------------------------------------------------------------------- Srjevo, 5... I S P I
Διαβάστε περισσότερα3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1
Nizovi 5 a = 5 +3+ + 6 a = 3 00 + 00 3 +5 7 a = +)+) ) 3 3 8 a = 3 +3+ + +3 9 a = 3 5 0 a = 43/ ++ 5 3/ +5+ a = + + a = + ) 3 a = + + + 4 a = 3 3 + 3 ) 5 a = +++ 6 a = + ++ 3 a = +)!++)! +3)! a = ) +3
Διαβάστε περισσότερα2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Διαβάστε περισσότεραDETERMINANTE I MATRICE
Gimzij: Lucij Vrji Mturl rdj: ETERMINANTE I MATRICE Izrdio: iko Koruić, učeik 4 G Metor: Mile Broić, profesor U Zgreu, 0 siječj 996 SARŽAJ I UVO II ETERMINANTE etermite drugog red etermite trećeg red 3
Διαβάστε περισσότεραradni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Διαβάστε περισσότεραUvođenje pojma određenog integrala u srednjoškolskoj nastavi matematike 1
Uvođeje pojm određeog itegrl u sredjoškolskoj stvi mtemtike 1 1. Uvod Iv Božić 2, Tomislv Šikić 3 S pojmom itegrl i itegrlim rčuom učeici se prvi put susreću u četvrtom rzredu sredje škole. S ozirom d
Διαβάστε περισσότεραIZVOD FUNKCIJE Predpostvimo d je unkcij deinisn u nekom intervlu, i d je tčk iz intervl, iksirn. Uočimo neku proizvoljnu tčku iz tog intervl,. Ov tčk može d se pomer levo desno, p ćemo je zvti promenljiv
Διαβάστε περισσότεραdužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor
I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto
Διαβάστε περισσότεραNeodreeni integrali. Glava Teorijski uvod
Glv Neodreeni integrli. Teorijski uvod Nek je funkcij f :, b R. Definicij: ϕ- primitivn funkcij funkcije f ϕ f, b Teorem: ϕ- primitivn funkcij funkcije f ϕ+c- primitivn funkcij funkcije f Definicij: f
Διαβάστε περισσότεραMatematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
Διαβάστε περισσότεραDvanaesti praktikum iz Analize 1
Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.
Διαβάστε περισσότεραlim lim lim lim (criteriul cu şiruri); lim lim = lim ; Limite de funcńii NotaŃii: f :D R, D R, α - punct de acumulare a lui D;
Limit d fucńii Aliz mtmtică, cls XI- Limit d fucńii NotŃii: f :D R, D R, α - puct d cumulr lui D DfiiŃii l iti DfiiŃi f ( = l, l R, dcă ptru oric vciătt V lui l istă o vciătt α U lui α stfl îcât D U, α,
Διαβάστε περισσότεραa M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Διαβάστε περισσότεραTRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Διαβάστε περισσότεραI N Ţ E N J E R S K A M A T E M A T I K A 1
I N Ţ E N J E R S K A M A T E M A T I K A Quod ert demostrdum. [ Što je treblo dokzti. Skrćeo: Q.e.d.] LATINSKI PREVOD EUKLIDOVIH RIJEČI. P r e d v j z š e s t u s e d m i u s t v e u kdemskoj 8/9. odii
Διαβάστε περισσότεραIZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Διαβάστε περισσότεραSvojstvene vrednosti matrice
6 Svojstvee vredosti mtrice 6. LINERN TRNSFORMCIJ VEKTOR ko je... eki skup promeljivih y y... y drugi skup promeljivih koje su s prvim veze ekim relcijm: ili u vektorskoj formi: (... ) i y f... i i y f()
Διαβάστε περισσότεραVALJAK. Valjak je geometrijsko telo ograničeno sa dva kruga u paralelnim ravnima i delom cilindrične površi čije su
ALJAK ljk je geometijsko telo ogničeno s dv kug u plelnim vnim i delom ilindične povši čije su izvodnie nomlne n vn ti kugov. Os vljk je pv koj polzi koz ente z. Nvno ko i do sd oznke su: - je povšin vljk
Διαβάστε περισσότεραradni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
Διαβάστε περισσότεραM086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Διαβάστε περισσότεραTrigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
Διαβάστε περισσότεραA MATEMATIKA Zadana je z = x 3 y + 1
A MATEMATIKA (.5.., treći kolokvij). Zdn je z 3 + os. () Izrčunjte ngib plohe u pozitivnom smjeru -osi. (b) Izrčunjte ngib pod ) u točki T(, ). () Izrčunjte z u T(, ). (5 bodov). Zdn je z 3 ln. () Izrčunjte
Διαβάστε περισσότεραf(x) = a x, 0<a<1 (funkcija strogo pada)
Eksponencijalna funkcija (baze a) f() a, a > 0, a domena D(f) R; slika funkcije f(d) (0,+ ); nema nultočaka, jer je a > 0, za sve R; graf G(f) je krivulja u ravnini prikazana na slici desno; f() a, 0
Διαβάστε περισσότεραR A D N I M A T E R I J A L I
Krmen Rivier R A D N I M A T E R I J A L I M A T E M A T I K A II. dio SPLIT 7. IV. FUNKCIJE 4.. POTREBNO PREDZNANJE 4.. REALNE FUNKCIJE JEDNE VARIJABLE 4.. INTERPOLACIJA 7 4.. NEKE OSNOVNE ELEMENTARNE
Διαβάστε περισσότερα(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
Διαβάστε περισσότερα1. ELEMENTI LOGIKE I TEORIJE SKUPOVA IZJAVE, VEZNICI, KVANTIFIKATORI
Geodetsi fultet, dr. sc. J. eb-rić Predvj iz Mtemtie. ELEMETI LOGIKE I TEORIJE KUPOV IZJVE, VEZICI, KVTIFIKTORI eolio riječi o mtemtičoj logici. Upotrebljvt ćemo pojmove mtemtiče logie li se ećemo jom
Διαβάστε περισσότεραNEJEDNAKOSTI I PRIMENE
NEJEDNAKOSTI I PRIMENE dr Jele Mojlović Prirodo-mtemtički fkultet Niš SADRŽAJ Nejedkosti izmed u brojih sredi Prime ejedkosti izmed u brojih sredi 6 Geometrijske ejedkosti Nejedkosti z elemete trougl Stereometrijske
Διαβάστε περισσότεραKinematika materijalne toke. 2. Prirodni koordinatni sustav. 1. Vektorski nain definiranja gibanja. Krivocrtno gibanje materijalne toke
Kioco gibje meijle oke Kiemik meijle oke. dio ) Zje kiocog gibj b) Bi i ubje Položj meijle oke u skom euku eme možemo defiii slijedee ie:. Vekoski i defiij gibj (). Piodi i defiij gibj s s (). Vekoski
Διαβάστε περισσότεραMališa Žižoviæ Olivera Nikoliæ
Mliš Žižoviæ Oliver Nikoliæ UNIVERZITET SINGIDUNUM Prof. dr Mliš Žižović Prof. dr Oliver Nikolić KVANTITATIVNE METODE Šesto izmejeo i dopujeo izdje Beogrd,. KVANTITATIVNE METODE Autori: Prof. dr Mliš Žižović
Διαβάστε περισσότερα7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Διαβάστε περισσότεραTrigonometrijske funkcije
9 1. Trigoometrijske fukcije 1.1. Ako je α + β π,izračuaj 1 + tg α)1 + tg β). 4 1.. Izračuaj zbroj log a tg 1 + log a tg +...+ log a tg 89. 1.3. Izračuaj 40 0 si 0 bez uporabe tablica ili račuala. 1.4.
Διαβάστε περισσότεραGRANIČNE VREDNOSTI FUNKCIJA zadaci II deo
GRANIČNE VREDNOSTI FUNKCIJA zdci II deo U sledećim zdcim ćemo korisii poznu grničnu vrednos: li i mnje vrijcije n i 0 n ( Zdci: ) Odredii sledeće grnične vrednosi: Rešenj: 4 ; 0 g ; 0 cos v) ; g) ; 4 ;
Διαβάστε περισσότεραOBRASCI ELEMENTARNE MATEMATIKE SY jun 2008.
OBRASCI ELEMENTARNE MATEMATIKE SY347 9. ju 008. Priroi rojevi u kup vih pozitivih elih rojev, N {,, 3,...}. Celi rojevi u kup vih pozitivih i etivih elih rojev i ule, Z {...,, 3, 0,,, 3,...}. Rioli rojevi
Διαβάστε περισσότεραNiz i podniz. Definicija Svaku funkciju a : N S zovemo niz u S. Za n N pišemo a(n) = a n i nazivamo n-tim članom niza.
2. NIZOVI 1 / 78 Niz i podiz 2 / 78 Niz i podiz Defiicija Svaku fukciju a : N S zovemo iz u S. Za N pišemo a() = a i azivamo -tim člaom iza. Ozaka za iz je (a ) N ili (a ) ili samo (a ). Kodomea iza može
Διαβάστε περισσότεραIskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Διαβάστε περισσότεραRiješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
Διαβάστε περισσότερα18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Διαβάστε περισσότεραSLIČNOST TROUGLOVA. kažemo da su slične ( sa koeficijentom sličnosti k ) ako postoji transformacija sličnosti koja figuru F prevodi u figuru F
SLIČNOST TROUGLOV Z dve figure F i F kžemo d su slične ( s koefiijentom sličnosti k ) ko postoji trnsformij sličnosti koj figuru F prevodi u figuru F. Činjeniu d su dve figure slične obeležvmo s F F. Sličnost
Διαβάστε περισσότερα4.1 Elementarne funkcije
. Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom
Διαβάστε περισσότεραFunkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
Διαβάστε περισσότεραĈetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
Διαβάστε περισσότερα9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE
Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )
Διαβάστε περισσότεραČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla.
Mnogougo oji im četii stnice nziv se četvoougo. ČETVOROUGAO D δ δ γ C A α β B β Z svi četvoougo vži im je zi unutšnji i spoljšnji uglov isti i iznosi 0 0 α β γ δ 0 0 α β γ δ 0 0 Njpe žemo četvoouglovi
Διαβάστε περισσότεραТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА
ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА empertur sežeg beton menj se tokom remen i zisi od ećeg broj utijnih prmetr: Početne temperture mešine (n izsku iz mešie), emperture sredine, opote hidrtije ement, Rzmene topote
Διαβάστε περισσότεραTRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA
TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA Trignmetrij je prvitn predstvlj lst mtemtike kje se vil izrčunvnjem nepzntih element trugl pmću pzntih. Sm njen nziv ptiče d dve grčke reči TRIGONOS- št znči trug
Διαβάστε περισσότεραPoučak o kosinusu (kosinusov poučak) U trokutu ABC vrijede ove jednakosti b + c a a + c b a + b c.
Zdtk 4 (4, TUŠ) Kolik je mjer njmnjeg kut u trokutu kojemu su strnie duljin 7 m, 8 m i 9 m? Rješenje 4 Trokut je dio rvnine omeñen s tri dužine Te dužine zovemo strnie trokut Nsuprot većoj strnii u trokutu
Διαβάστε περισσότεραNumerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
Διαβάστε περισσότερα1 FUNKCIJE. Pretpostavljamo poznavanje prirodnih brojeva N = {1, 2, 3,... },
FUNKCIJE Pretpostavljamo pozavaje prirodih brojeva N = {,, 3,... }, cijelih brojeva Z = {...,,, 0,,,... }, racioalih brojeva Q = { m : m Z, N}. Nećemo defiirati reale brojeve R jer bi as to odvelo previše
Διαβάστε περισσότεραOdred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.
Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),
Διαβάστε περισσότεραNacionalni centar za vanjsko vrednovanje obrazovanja MATEMATIKA
Ncioli cetr z vjsko vredovje orzovj MATEMATIKA viš rzi KNJIŽICA FORMULA VIŠA VIŠA RAZINA RAZINA Kopleks roj: i i Mtetik Kopleks roj: Kopleks roj: i z i i z i i z R Kjižic forul VIŠA (cos RAZINA si Kopleks
Διαβάστε περισσότεραDIFERENCIJALNI RAČUN FUNKCIJA VIŠE VARIJABLI Skica rješenja 1. kolokvija (16. studenog 2015.)
DIFERENCIJALNI RAČUN FUNKCIJA VIŠE VARIJABLI Skica rješeja 1. kolokvija (16. studeog 2015.) Zadatak 1 (20 bodova) Neka je fukcija d: R 2 R 2 R daa formulom { x 1 + y d(x, y) = 1, ako je x y, 0, ako je
Διαβάστε περισσότεραPIRAMIDA I ZARUBLJENA PIRAMIDA. - omotač se sastoji od bočnih strana(najčešće jednakokraki trouglovi), naravno trostrana piramida u omotaču
PIRAMIDA I ZARULJENA PIRAMIDA Slično ko i kod pizme i ovde ćemo njpe ojniti oznke... - oeležvmo dužinu onovne ivice - oeležvmo dužinu viine pimide - oeležvmo dužinu viine očne tne ( potem) - oeležvmo dužinu
Διαβάστε περισσότεραPOVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA
POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica
Διαβάστε περισσότεραMetode rješavanja izmjeničnih krugova
Strnic: V - u,i u(t) i(t) etode rešvn izmeničnih kruov uf(t) konst if(t)konst etod konturnih stru etod npon čvorov hevenin-ov teorem Norton-ov teorem illmn-ov teorem etod superpozicie t Strnic: V - zdtk
Διαβάστε περισσότεραII. ANALITIČKA GEOMETRIJA PROSTORA
II. NLITIČK GEMETRIJ RSTR I. I (Točka. Ravia.) d. sc. Mia Rodić Lipaović 9./. Točka u postou ( ; i, j, k ) Kateijev pavokuti koodiati sustav k i j T T (,, ) oložaj točke u postou je jedoačo odeñe jeim
Διαβάστε περισσότεραc = α a + β b, [sustav rješavamo metodom suprotnih koeficijenata]
Zdtk (Tihomir, tehničk škol) c = 8 i. Rješenje Prikži vektor c ko linernu kombinciju vektor i b ko je = i + 3 j, b = 4 i 3 j, Nek su i b vektori i α, β relni brojevi. Vektor c = α + β b nzivmo linernom
Διαβάστε περισσότεραKUPA I ZARUBLJENA KUPA
KUPA I ZAUBLJENA KUPA KUPA Povšin bze B Povšin omotč M P BM to jet P B to jet S O o kupe Oni peek Obim onog peek O op Povšin onog peek P op Pimen pitgoine teoeme vnotn jednkotn kup je on kod koje je, p
Διαβάστε περισσότεραMJERA I INTEGRAL završni ispit 4. srpnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!)
1. (ukupo 8 bodova) MJERA I INTEGRAL završi ispit 4. srpja 216. (Kjige, bilježice, dodati papiri i kalkulatori isu dozvoljei!) (a) (2 boda) Defiirajte p za ekspoete p [1, +. (b) (6 bodova) Dokažite da
Διαβάστε περισσότεραZadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Διαβάστε περισσότεραREALNA FUNKCIJA realnom funkcijom n realnih nezavisno-promjenljivih
REALNA FUNKCIJA Fukciju f čiji je skup vrijedosti V podskup skupa R realih brojeva zovemo realom fukcijom. Ako je, pritom, oblast defiisaosti D eki podskup skupa R uređeih -torki realih brojeva, kažemo
Διαβάστε περισσότεραGeodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike OSNOVNI TEOREMI DIFERENCIJALNOG RAČUNA
Geodetski akultet dr s J Beba-Brkić Predavaja iz Matematike OSNOVNI TEOREMI DIFERENCIJALNOG RAČUNA Teoremi koje ćemo avesti u ovom poglavlju su osovi teoremi koji osiguravaju ispravost primjea diereijalog
Διαβάστε περισσότεραMETODA SEČICE I REGULA FALSI
METODA SEČICE I REGULA FALSI Zadatak: Naći ulu fukcije f a itervalu (a,b), odoso aći za koje je f()=0. Rešeje: Prvo, tražimo iterval (a,b) a kome je fukcija eprekida, mootoa i važi: f(a)f(b)
Διαβάστε περισσότεραOperacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Διαβάστε περισσότεραIZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Διαβάστε περισσότεραSume kvadrata. mn = (ax + by) 2 + (ay bx) 2.
Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.
Διαβάστε περισσότερα2. KOLOKVIJ IZ MATEMATIKE 1
2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.
Διαβάστε περισσότεραPRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
Διαβάστε περισσότερα3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Διαβάστε περισσότερα4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.
4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos
Διαβάστε περισσότερα1 Neprekidne funkcije na kompaktima
Neprekide fukcije a kompaktima.. Teorem. Neka je K kompakta podskup metričkog prostora X, a f : X Y eprekido preslikavaje u metrički prostor Y. Tada je slika f(k) kompakta skup u Y..2. Zadatak. Neka su
Διαβάστε περισσότεραNizovi. Definicija. Niz je funkcija. a: R. Oznake: (a n ) ili a n } Zadatak 2.1 Napišite prvih nekoliko članova nizova zadanih općim članom:
Nizovi Defiicija Niz je fukcija Ozake: (a ) ili a } a: R Zadatak Napišite prvih ekoliko člaova izova zadaih općim člaom: a = a = ( ) (c) a = Zadatak Odredite opće člaove izova: 3 5 7 9 ; 3 7 5 3 ; (c)
Διαβάστε περισσότερα6 Polinomi Funkcija p : R R zadana formulom
6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s
Διαβάστε περισσότερα( ) p a. poklopac. Rješenje:
5 VJEŽB - RIJEŠENI ZDI IZ MENIKE LUID 1 1 Treb odrediti silu koj drži u rvnoteži poklopc B jedinične širine, zlobno vezn u točki, u položju prem slici Zdno je : =0,84 m; =0,65 m; =5,5 cm; =999 k/m B p
Διαβάστε περισσότερα1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
Διαβάστε περισσότεραCauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
Διαβάστε περισσότεραKOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa
Διαβάστε περισσότεραI N Ž E N J E R S K A M A T E M A T I K A 1
I N Ž E N J E R S K A M A T E M A T I K A P r e d v j z č e t v r t u s e d m i c u s t v e (u demsoj 009/00. godii) G L A V A N I Z O V I I R E D O V I.. Općeito o izovim Izdržti, to je temelj vrlie.
Διαβάστε περισσότερα