PREGLED MINIMALNIH ZNANJA IZ MATEMATIKE ZA ZANIMANJA:
|
|
- Ζεβεδαῖος Μέλιοι
- 7 χρόνια πριν
- Προβολές:
Transcript
1 PREGLED MINIMALNIH ZNANJA IZ MATEMATIKE ZA ZANIMANJA: elektrotehičr tehičr z rčulstvo tehičr z elektroiku tehičr z električe strojeve s primijejeim rčulstvom. rzred BROJEVI - rčuske opercije s prirodim, cijelim i rciolim rojevim - prioritet upotree zgrd - odrediti jveći zjedički djeljitelj (NZD i jmji zjedički višekrtik (NZV - odrediti ritmetičku srediu i izrčuti postotk :... Odredi NZD i NZV rojev,, 0 i.
2 . N testu iz mtemtike u trećem rzredu postiguti su rezultti: edovolj dovolj dor vrlo dor 0 odlič Kolik je prosječ ocje rzred? Odredi postotk pozitivo ocijejeih učeik. POTENCIJE - rčuske opercije s potecijm zti iskzti prvil i primijeiti ih - defiicij potecije s egtivim ekspoetom i primje rojevim. y y :. : Zpiši u oliku potecije s zom : ALGEBARSKI IZRAZI - primje distriutivosti (možeje zgrd - zti kvdrte i kue formule u o smjer - izlučivje zjedičkog fktor - grupirje prirojik Izrčuj:. - -
3 - -.. c. c c. Rstvi fktore:. c c 7. y. 7. yz z y z y 0. yt yz t z.. m m ALGEBARSKI RAZLOMCI - skrćivje ( osovu miimlog rstvljj fktore - zjedički zivik (jviše do rzlike kvdrt - možeje i dijeljeje ( osovu miimlog rstvljj fktore Skrti rzlomke:. y y... Izrčuj: :
4 - - LINEARNE JEDNADŽBE - josovije s rzlomcim, te s kvdrtim formulm - s lgerskim rzlomcim... LINEARNE NEJEDNADŽBE - josovije ko i kod jeddži, - dijeljeje s egtivim rojem - prikz rješej rojevom prvcu i u oliku itervl - sustvi ejeddži..... APSOLUTNA VRIJEDNOST - zti rčuti izrze s psolutom vrijedošću - rješvti jjedostvije jeddže i ejeddže s psolutom vrijedošću.,,...
5 KOORDINATNI SUSTAV U RAVNINI - osovu formul zti izrčuti udljeost točk, odrediti koordite polovišt dužie i težišt trokut, izrčuti površiu trokut - crtti grf liere fukcije - crtti grf fukcije s psolutim vrijedostim (trslcij. U trokutu ABC, A(,, B(-,, C(,-, odredi koordite polovišt stric i težišt tog trokut, izrčuj duljie stric i površiu tog trokut. Ncrtj u koorditom sustvu.. U koorditom sustvu crtj prvce p y = i q y = - +. Odredi koordite točk: A = presjek prvc p s osi, B = presjek prvc q s y osi, C = presjek prvc p i q. Izrčuj duljiu dužie AB, odredi koordite polovišt dužie BC, izrčuj površiu trokut ABC.. Ncrtj grf fukcije: f ( SUSTAVI LINEARNIH JEDNADŽBI - zti riješiti sustve dvije jeddže s dvije epozice ilo kojom metodom y y 7. 0 y 7y y y y KORIJENI I POTENCIJE S RACIONALNIM EKSPONENTOM - osove rčuske opercije i djelomičo korjeovj - rciolizcij zivik - vez korije i potecij s rciolim ekspoetom Izrčuj:..... : c.. - -
6 0.. : 0 7 Rciolizirj zivik:... Zpiši u oliku potecije:. Zpiši u oliku korije:. rzred KOMPLEKSNI BROJEVI - rčuske opercije s kompleksim rojevim - modul kompleksog roj - potecije imgire jediice - jedkost kompleksih rojev - kompleks rvi. Zdi su rojevi z = i i w = - + i. Izrčuj koliko je: z z w, z w, z w,, z, w, z, w. Zde rojeve, te jihovu sumu i rzliku prikži w točkm komplekse rvie.. Izrčuj: i i. Odredi rele rojeve, y iz jedkosti: y y i i KVADRATNA JEDNADŽBA - zti riješiti kvdrtu jeddžu (čistu, epotpuu i potpuu - zti riješiti jeddžu s lgerskim rzlomcim (jjedostvijim - zti riješiti ikvdrtu jeddžu - odrediti diskrimitu kvdrte jeddže i iterpretirti rješej - zti Vièteove formule, te ih primjejivti u jjedostvijim zdcim - zti riješiti jjedostvije sustve liere i kvdrte jeddže - -
7 . Riješi jeddže: d e 0 f. Odredi prmetr p tko d jeddž p 0 p im rel rješej.. Ne rješvjući jeddžu 0 odredi sumu recipročih vrijedosti rješej te jeddže.. Npiši kvdrtu jeddžu s cjelorojim koeficijetim i čije je jedo rješeje i čij su rješej, y. Riješi sustv jeddži: y KVADRATNA FUNKCIJA - zti skicirti grf kvdrte fukcije trslcijom, ko i pomoću ul-točki i tjeme - zti riješiti kvdrtu ejeddžu. Skicirj grf fukcije: f (. Skicirj grf fukcije: f (. Riješi ejeddže: EKSPONENCIJALNA I LOGARITAMSKA FUNKCIJA - izrčuti poteciju s rciolim ekspoetom - vez između ekspoecijlog i logritmskog zpis - rčuje i svojstv logritm - crtti grfove ekspoecijle i logritmske fukcije - ekspoecijle i logritmske jeddže - -
8 . Izrčuj: 0.0. Zpiši u logritmskom oliku:. Zpiši u ekspoecijlom oliku: log. U istom koorditom sustvu crtj grfove fukcij f ( i g( log.. Izrčuj: log log7 log log log. d log e log log. Riješi jeddže: 7 d e log f log 7 0 log log log 0 TRIGONOMETRIJA PRAVOKUTNOG TROLUTA - defiicij trigoometrijskih fukcij šiljstog kut zti iskzti i primijeiti - rčuje vrijedosti trigoometrijskih fukcij i određivje veličie kut (klkultor - osovo rješvje prvokutog i jedkokrčog trokut (zde duljie stric i veličie kutov. U prvokutom trokutu PRS ozči strice u skldu s vrhovim, te odredi trigoometrijske fukcije ozčeog kut
9 . Odredi epozte duljie stric i veličie kutov, te površiu prvokutog trokut u kojem je: c c. Odredi epozte duljie stric i veličie kutov, te površiu jedkokrčog trokut u kojem je: 0 v 7.cm 0.cm STEOREOMETRIJA - kock i kvdr, trostr i četverostr prizm - vljk, stožc i kugl. Odredi oplošje i volume kocke kojoj prostor dijgol im duljiu.. Stre kvdr imju površie cm, cm i cm. Koliki je volume tog kvdr?. Bz kvdr je kvdrt površie, volume mu izosi 00. Koliko je oplošje tog kvdr?. Duljie osovih ridov usprve trostre prizme su u omjeru :0:7, jezi visi je 0 cm, oplošje cm. Koliki je volume te prizme?. Izrčuj volume vljk kojemu je polumjer ze jedk visii, oplošje π.. Dulji polumjer ze usprvog stošc je cm, dulji izvodice 0 cm. Koliki je kut pri vrhu kružog isječk u mreži stošc? 7. Stotiu metlih kuglic polumjer pretopimo u jedu kuglu? Koliki je polumjer tko doivee kugle?. rzred TRIGONOMETRIJSKE FUNKCIJE - defiicij trigoometrijskih fukcij relog roj (iskzti i primijeiti - glv mjer kut i svođeje I. kv. - veze između trigoometrijskih fukcij - trigoometrijski idetiteti - osove trigoometrijske jeddže i oe koje se svode kvdrte. N trigoometrijskoj kružici odredi točke E( z koje vrijedi: si, cos 0 cos tg. d ctg, si 0 - -
10 . Izrčuj: 7 si cos tg. Odredi vrijedost ostlih trigoometrijskih fukcij ko je: si,, ctg, III. kv.. Pojedostvi: tg tg si cos si si si cos d cos cos cos cos si si f si siy cos cos si siy. Riješi jeddže: si d cos tg cos cos 0 e si si cos cos 0 TRIGONOMETRIJA - osovo rješvje trokut (zde duljie stric i veličie kutov. Odredi epozte duljie stric i veličie kutov, te površiu trokut u kojem je: d c 7 VEKTORI - rčuske opercije s vektorim - koorditi zpis vektor - jedkost vektor - lier komicij vektor - dulji vektor - kut između vektor - sklri produkt. U trokutu ABC odredi vektor AB BC AC. - -
11 . Odredi četvrti vrh prlelogrm ABCD ko je A(,, B(-,, D(,-.. Koliki je kut između vektor i j i i j?. Vektor i j zpiši ko lieru komiciju vektor i j i c i j.. U trokutu ABC zdom koorditm vrhov A(,, B(-,, C(-,- izrčuj pomoću vektor kut β. PRAVAC - olici jeddže prvc - prvc kroz dvije točke - presjek prvc - segmeti olik jeddže prvc - uvjeti prlelost i okomitosti - kut između prvc - udljeost točke od prvc. U trokutu ABC zdom koorditm vrhov A(,, B(-,, C(-,- odredi: jeddžu strice jeddžu visie v duljiu visie v d kut α. Odredi površiu trokut što g prvc y + = 0 ztvr s koorditim osim.. Odredi jeddžu prvc koji prolzi sjecištem prvc y + = 0 i + y = 0, te je prlel je s prvcem + y + = 0. KRUŽNICA - odrediti središte i polumjer kružice iz jeddže - pisti jeddžu ko su pozte koordite središt i polumjer - kružic kroz tri točke - ći jeddžu tgete u točki kružice - tgete prlele (okomite s zdim prvcem. Npiši jeddžu kružice s središtem S(-,0 polumjer. y. Odredi koordite središt i polumjer kružice: y 0 y 0. Odredi jeddžu kružice koj prolzi točkm A(-,, (-,, C(0,.. Odredi jeddžu tgete u točki D(,y< kružice y 0.. Odredi jeddže tgeti kružicu 7 y 7y + = 0. prlelih s prvcem - 0 -
12 KRIVULJE II. REDA - prepozti krivulju iz zde jeddže - skicirti krivulju, zti odrediti koordite tjeme i fokus, jeddže simptot i rvlice (što već tre kod koje krivulje - odrediti jeddžu krivulje koj prolzi zdim točkm - ći jeddžu tgete u točki krivulje. Skicirj krivulju i odredi koordite tjeme i fokus, jeddže simptot ili rvlice (što tre kod koje krivulje y 00 y y. Odredi jeddžu elipse koj prolzi točkm A(,- i B(-,.. Odredi jeddžu hiperole koj im fokus u točki F(-,0, prvc y = joj je simptot.. Odredi jeddžu tgete u točki D(-, y > 0 elipse y 0.. rzred BROJEVI - veze između rojevih sustv - zti rčuti s fktorijelm i iome koeficijete - riješiti jjedostvije jeddže s fktorijelm i iomim koeficijetim - rspisti po iomoj formuli - kompleksi roj pretvoriti u trigoometrijski olik - rčuske opercije u trigoometrijskom oliku. Broj 7 ( pretvori u heksdekdski roj.. Broj 7 pretvori u roj u sustvu s zom.. Broj 7 ( pretvori u dekdski roj.. Izrčuj:. Riješi jeddže:! 7! 7!!! 7!!! - -
13 - -. Rspiši: i c 7. Pretvori u trigoometrijski olik: i z i z. Izrčuj : z z z, ko je si cos, 7 si 7 cos i z i z, si cos z i.. Odredi: i NIZOVI - odrediti prvih ekoliko člov iz zdog rekurzivo ili formulom - odrediti ritmetički iz (A.N. ili geometrijski iz (G.N. i pisti prvih ekoliko člov, ko su pozt dv čl tog iz ili ko je pozt sum (rzlik ekoliko člov - izrčuti sumu geometrijskog red (G.R. zdog s prvih ekoliko člov - zti izrčuti osove limese (skrćivje rzlomk jvećom potecijom. Npiši prvih 0 člov iz:,,. Odredi A.N. u kojem je: 0. Npiši prvih člov.. Odredi G.N. u kojem je Npiši prvih člov.. Izrčuj sumu.... Izrčuj limese: lim 7 lim
14 FUNKCIJE - odrediti domeu fukcije - zti izrčuti kompoziciju i iverz fukcije - izrčuti osove limese (uvrsti, rzlik kvdrt, u eskočosti, s siusim - s zdog grf zti očitti domeu i sliku fukcije, ul točke, ekstreme, itervl rst i pd, predzk fukcije. Odredi f( ko je f(+ =.. Odredi domeu fukcije: f ( f ( log f (. Odredi iverzu fukciju od f ( f ( f ( log. Odredi kompozicije f g, g f, f f, g g ko je f (, g(. f g g f ko je f ( i. Riješi jeddžu g (.. Izrčuj limese: lim lim d 7. Z fukciju zdu grfom odredi: lim si lim 0 si o domeu: o sliku: o ultočke: o itervle gdje je t fukcij pozitiv: o itervle rst: o lokli miimum: o d li je vrijedost te fukcije u pozitiv? DA NE o miimlu vrijedost itervlu [-7,-]: - -
15 DERIVACIJA - derivcij elemetrih fukcij - derivirje po prvilim. f (. f. f ( si. f. f e. f ( 7. f ( si. f ( cos - -
Analitička geometrija i linearna algebra. Kartezijev trodimenzionalni pravokutni koordinatni sustav čine 3 međusobno okomite osi: Ox os apscisa,
Alitičk geoetrij i lier lger Vektori KOORDINATNI SUSTAV Krteijev prvokuti koorditi sustv Krteijev trodieioli prvokuti koorditi sustv čie eđusoo okoite osi: O os pscis O os ordit O os plikt točk O ishodište
7 neg. ( - ) neg. ( - ) poz. (+ ) poz. (+ )
X. gimzij Iv Supek Zgre, Klićev 7. lipj 000. godie Mturl zdć iz mtemtike Rješej zdtk. ) Riješi jeddžu 7 Rješeje: Njprije se tre riješiti psolutih vrijedosti tko d z svki izrz uutr psolute vrijedosti odredimo
α =. n n n Vježba 001 Koliko stranica ima pravilni mnogokut ako jedan njegov unutarnji kut iznosi 144? Rezultat: n = 10.
Zdtk (Mrij, gimzij) Koliko stric im prvili mogokut ko jed jegov uutrji kut izosi 8? Rješeje Formul z veličiu jedog uutrjeg kut prvilog mogokut je: ( ) 8 α = ( ) 8 8 = / 8 = ( ) 8 8 = 8 6 8 8 = 6 7 = 6
Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza
Mte Vijug: Rijesei zdci iz mtemtike z sredju skolu. ARITMETICKI I GEOMETRIJKI NIZ, RED, BINOMNI POUCAK. Aritmeticki iz Opci oblik ritmetickog iz: + - d Gdje je: prvi cl ritmetickog iz ti cl ritmetickog
Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom:
Otporost mterijl. Zdtk ZDTK: U točki čeliče kostrukije postvlje su tri osjetil z mjereje deformij prem slii. ri opterećeju kostrukije izmjeree su reltive ormle (dužiske deformije: b ( - b 3 - -6 - ( b
7. ELEMENTARNE FUNKCIJE
Geodetski fkultet dr. sc. J. e-rkić Predvj iz Mtemtike 7. ELEMENTRNE FUNKIJE Među fukcijm koje su de formulom vžu ulogu imju tkozve elemetre fukcije. Pozvje svojstv elemetrih fukcij omogućit će lkše svldvje
Nacionalni centar za vanjsko vrednovanje obrazovanja MATEMATIKA
Ncioli cetr z vjsko vredovje orzovj MATEMATIKA viš rzi KNJIŽICA FORMULA VIŠA VIŠA RAZINA RAZINA Kopleks roj: i i Mtetik Kopleks roj: Kopleks roj: i z i i z i i z R Kjižic forul VIŠA (cos RAZINA si Kopleks
Matematika - usmeni dio ispita Pitanja i rješenja
Mtemtik - usmei dio ispit itj i rješej. itgori poučk c vrijedi smo z prvokuti trokut Dokz: potoji mogo dokz itgoriog poučk/teorem, 69 dokz možete ći ovdje: HTUhttp://www.cut-the-kot.org/pthgors/ UTH Geometrijski
( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( )
Zadatak (Mariela, gimazija) Nađite derivaciju fukcije f() a + b c + d Rješeje Neka su f(), g(), h() fukcije ezavise varijable, a f (), g (), h () derivacije tih fukcija po Osova pravila deriviraja Derivacija
c = α a + β b, [sustav rješavamo metodom suprotnih koeficijenata]
Zdtk (Tihomir, tehničk škol) c = 8 i. Rješenje Prikži vektor c ko linernu kombinciju vektor i b ko je = i + 3 j, b = 4 i 3 j, Nek su i b vektori i α, β relni brojevi. Vektor c = α + β b nzivmo linernom
x y 2 9. Udaljenost točke na osi y od pravca 4x+3y=12 jednaka je 4. Koja je to točka?
MATEMATIKA Zdci s držvne mture viš rzin Brojevi i lgebr Funkcije Jedndžbe i nejedndžbe Geometrij Trigonometrij LINEARNA FUNKCIJA 1. Uz koji uvjet jedndžb A+By+C=0 predstvlj prvc?. Koje je znčenje broj
6 Primjena trigonometrije u planimetriji
6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Rijeseni neki zadaci iz poglavlja 4.5
Rijeseni neki zdci iz poglvlj 4.5 Prije rijesvnj zdtk prisjetimo se itnih stvri koje ce ns prtiti tijekom njihovog promtrnj. Definicij: (Trigonometrij prvokutnog trokut) ktet nsuprot kut ϕ sin ϕ hipotenuz
PREGLED DEFINICIJA I FORMULA ZA 2. KOLOKVIJ IZ MATEMATIKE 1 (pomagalo dozvoljeno na kolokviju)
PREGLED DEFINICIJA I FORMULA ZA KOLOKVIJ IZ MATEMATIKE (pomglo dozvoljeo kolokviju) Opći pojmovi: I REALNE FUNKCIJE JEDNE REALNE VARIJABLE Nek su X, Y R Rel fukcij f : X Y je svko pridruživje koje svkom
4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i
Sdržj 4 INTEGRALI 64 4. Neodredeni integrl........................ 64 4. Integrirnje supstitucijom.................... 68 4. Prcijln integrcij....................... 7 4.4 Odredeni integrl i rčunnje površine
OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA
OSNOVE TRIGONOMETRIJE PRVOKUTNOG TROKUT - DEFINIIJ TRIGONOMETRIJSKIH FUNKIJ - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKIJ KUTOV OD - PRIMJEN N PRVOKUTNI TROKUT - PRIMJEN U PLNIMETRIJI 4.1. DEFINIIJ TRIGONOMETRIJSKIH
a C 1 ( ) = = = m.
Zdtk 4 (Petr, gimzij) Dvije tke leće, koverget jkosti + dpt i diverget jkosti 5 dpt, slijepljee su zjedo Predmet se lzi 5 cm ispred kovergete leće Odredite gdje je slik predmet ješeje 4 C = + m -, C =
FURIJEOVI REDOVI ZADACI ( II
FURIJEOVI REDOVI ZADACI ( II deo Primer. Fukciju f ( = rzviti u Furijeov red segmetu [,] ztim izrčuti sumu red. ( Rešeje: Kko je f ( = = = f ( zkjučujemo d je fukcij pr. Koristimo formue: = f ( = + ( cos
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
A MATEMATIKA Zadana je z = x 3 y + 1
A MATEMATIKA (.5.., treći kolokvij). Zdn je z 3 + os. () Izrčunjte ngib plohe u pozitivnom smjeru -osi. (b) Izrčunjte ngib pod ) u točki T(, ). () Izrčunjte z u T(, ). (5 bodov). Zdn je z 3 ln. () Izrčunjte
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
4. Trigonometrija pravokutnog trokuta
4. Trigonometrij prvokutnog trokut po školskoj ziri od Dkić-Elezović 4. Trigonometrij prvokutnog trokut Formule koje koristimo u rješvnju zdtk: sin os tg tg ktet nsuprot kut hipotenuz ktet uz kut hipotenuz
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
2. KOLOKVIJ IZ MATEMATIKE 1
2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Poučak o kosinusu (kosinusov poučak) U trokutu ABC vrijede ove jednakosti b + c a a + c b a + b c.
Zdtk 4 (4, TUŠ) Kolik je mjer njmnjeg kut u trokutu kojemu su strnie duljin 7 m, 8 m i 9 m? Rješenje 4 Trokut je dio rvnine omeñen s tri dužine Te dužine zovemo strnie trokut Nsuprot većoj strnii u trokutu
= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi
Zdtk 0 (Anstzij, gimnzij) Provjeri je li funkcij f log( 5) + + injekcij Rješenje 0 Kžemo d funkcij f im svojstvo injektivnosti ili d je on injekcij ko vrijedi f ( ) f ( ) Dkle, funkcij je injekcij ko rzličitim
( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
ISPITNI ZADACI FORMULE. A, B i C koeficijenti (barem jedan A ili B različiti od nule)
FORMULE Implicitni oblik jednadžbe pravca A, B i C koeficijenti (barem jedan A ili B različiti od nule) Eksplicitni oblik jednadžbe pravca ili Pravci paralelni s koordinatnim osima - Kada je u općoj jednadžbi
ELEKTROTEHNIČKI ODJEL PREGLED DEFINICIJA I FORMULA ZA PISANI DIO ISPITA IZ MATEMATIKE 2
PREGLED DEFINICIJA I FORMULA ZA PISANI DIO ISPIA IZ MAEMAIKE PREGLED DEFINICIJA I FORMULA ZA PISANI DIO ISPIA IZ MAEMAIKE SADRŽAJ. INEGRALNI RAČUN I PRIMJENE..... Priitiv fukcij i eodređei itegrl.....
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike 1 8. NIZOVI
Geodetski fkultet, dr sc J Beb-Brkić Predvj iz Mtemtike 8 NIZOVI Pojm iz Nek je N skup prirodih brojev Prem ekom prvilu svki broj iz N zmijeimo ekim brojem:,,,, R Št smo dobili? Budući d je svkom elemetu
dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor
I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Zdaci iz trigonometrije trokuta Izračunaj ostale elemente trokuta pomoću zadanih:
Zdaci iz trigonometrije trokuta... 1. Izračunaj ostale elemente trokuta pomoću zadanih: a) a = 1 cm, α = 66, β = 5 ; b) a = 7.3 cm, β =86, γ = 51 ; c) b = 13. cm, α =1 48`, β =13 4`; d) b = 44.5 cm, α
FOURIEROVI REDOVI I INTEGRALI
FOURIEROVI REDOVI I INEGRALI Pri rješvju rzličitih ižijerskih prole koriste se periodičke fukcije. Pojvljuju se pod terio periodičke fukcije, u ovu skupiu spdju trigooetrijske fukcije, sius i kosius, koje
2.7 Primjene odredenih integrala
. INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
POPIS ZADATAKA: 1.Odredi modul IZI iz kompleksnog broja Z=4+3i 2.Riješi zadatak:izi= *
POPIS ZADATAKA:.Odredi modul IZI iz kompleksnog broja Z=+i i i.riješi zadatak:izi= * i i.izračunaj:(8+6i)(8-6i)=.odredi realne brojeve i y za koje vrijedi:(-i)+(+i)y=i.riješi kvadratnu jednadžbu :9²-=0
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
DETERMINANTE I MATRICE
Gimzij: Lucij Vrji Mturl rdj: ETERMINANTE I MATRICE Izrdio: iko Koruić, učeik 4 G Metor: Mile Broić, profesor U Zgreu, 0 siječj 996 SARŽAJ I UVO II ETERMINANTE etermite drugog red etermite trećeg red 3
γ = 120 a 2, a, a + 2. a + 2
Zdtk (Slvi, gimnzij) Duljine strni trokut čine ritmetički niz (slijed) s rzlikom Jedn kut iznosi Koliki je opseg trokut? Rješenje inči udući d duljine strni trokut čine ritmetički niz (slijed) s rzlikom,
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1
Ispit održan dana 9 0 009 Naći sve vrijednosti korjena 4 z ako je ( ) 8 y+ z Data je prava a : = = kroz tačku A i okomita je na pravu a z = + i i tačka A (,, 4 ) Naći jednačinu prave b koja prolazi ( +
Rješenje: F u =221,9 N; A x = F u =221,9 N; A y =226,2 N.
Osnove strojrstv Prvilo izolcije i uvjeti rvnoteže Prijeri z sostlno rješvnje 1. Gred se, duljine uležišten je u točki i obješen je n svoje krju o horizontlno uže. Izrčunjte horizontlnu i vertiklnu koponentu
5. PARCIJALNE DERIVACIJE
5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
Repetitorij matematike zadaci za maturu 2008.
Repetitorij matematike zadaci za maturu 008 Izračunaj : 7 : 5 + : = 5 5 8 Izračunaj : a ( 05 y ) = y b 8 n 7 9 n+ n n Rastavi na faktore : 5 a + a 8a 6= Skrati razlomke : a ( ) + + a b a b a + a b+ ab
ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA. školska 2013./2014. godina TEST MATEMATIKA UPUTE ZA RAD
ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA školsk 0./04. godin TEST MATEMATIKA UPUTE ZA RAD Test koji trebš riješiti im 0 zdtk. Z rd je predviđeno 0 minut. Zdtke ne morš rditi prem redoslijedu
π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE
**** MLADEN SRAGA **** 00. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTENCIJE α M-- uiverzl zbirk potpuo riješeih zdtk Rješej svih zdtk s kopleti postupko i uput. Koristio
2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u 1.zadatku.
. Na brojevnoj kružnici označi točke: A (05π), A 2 ( 007π 2 ), A 3 ( 553π 3 ) i A 4 ( 40 o ). 2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u.zadatku. 3.
Skripta za usmeni ispit iz IM1
Skript z usmei ispit iz IM T Pojmovi (logičkog) iskz i predikt Defiicij: Sud ili iskz je deklrtiv izjv koj u pogledu istiitosti zdovoljv dv pricip: sud je ili istiit ili eistiit (pricip iskljucej treceg)
Trigonometrijske funkcije
9 1. Trigoometrijske fukcije 1.1. Ako je α + β π,izračuaj 1 + tg α)1 + tg β). 4 1.. Izračuaj zbroj log a tg 1 + log a tg +...+ log a tg 89. 1.3. Izračuaj 40 0 si 0 bez uporabe tablica ili račuala. 1.4.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
ZBIRKA POTPUNO RIJEŠENIH ZADATAKA
**** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.
MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.
Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.
Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum
27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.
1. Trigonometrijske funkcije
. Trigonometrijske funkcije . Trigonometrijske funkcije.. Ponovimo Brojevna kružnica Kružnicu k polumjera smjestimo u koordinatnu ravninu tako da joj je središte u ishodištu. Na kružnicu k prislonimo brojevni
Pošto se trebaju napisati sve nastavne cjeline i gradivo sva četiri razreda (opće i jezično) potrajati će duži vremenski period.
Zadaci s rješenjima, a ujedno i s postupkom rada biti će nadopunjavani tokom čitave školske godine. Tako da će u slijedećem vremenskom periodu nastati mala zbirka koja će biti popraćena s teorijom. Pošto
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Trigonometrija 1. Trigonometrijska kružnica. Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
Trigonometrija Trigonometrijska kružnica Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije Projektna nastava Osnovne trigonometrijske relacije:. +. tgx. ctgx tgx.
FORMULE VEZANE UZ MATEMATIČKE KOLEGIJE PREDDIPLOMSKOG STUDIJA
FORMULE VEZANE UZ MATEMATIČKE KOLEGIJE PREDDIPLOMSKOG STUDIJA Vrijednoti inu i koinu π π π π ϕ 6 4 3 in ϕ 3 co ϕ 3 Trigonometrijke funkcije polovičnih rgument in x = co x co x = + co x Trigonometrijke
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
PROSTORNI STATIČKI ODREĐENI SUSTAVI
PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y
OBRASCI ELEMENTARNE MATEMATIKE SY jun 2008.
OBRASCI ELEMENTARNE MATEMATIKE SY347 9. ju 008. Priroi rojevi u kup vih pozitivih elih rojev, N {,, 3,...}. Celi rojevi u kup vih pozitivih i etivih elih rojev i ule, Z {...,, 3, 0,,, 3,...}. Rioli rojevi
Odredjeni integral je granicna vrijednost sume beskonacnog broja clanova a svaki clan tezi k nuli i oznacava se sa : f x dx f x f x f x f x b a f
Mte ijug: Rijeseni zdci iz vise mtemtike 8. ODREDJENI INTEGRALI 8. Opcenito o odredjenom integrlu Odredjeni integrl je grnicn vrijednost sume eskoncnog roj clnov svki cln tezi k nuli i ozncv se s : n n
Dodatak B. Furijeovi redovi. Posmatrajmo na intervalu [ l, neku funkciju f (x)
Dodtk B Furijeovi redovi Posmtrjmo itervu [, eku fukciju f () i ek je o tom itervu eprekid u deovim (im koč roj prekid prve vrste - prekidi u kojim fukcij im koč skok s eve desu griču vredost (vidi S.
4.1 Elementarne funkcije
. Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom
( ) p a. poklopac. Rješenje:
5 VJEŽB - RIJEŠENI ZDI IZ MENIKE LUID 1 1 Treb odrediti silu koj drži u rvnoteži poklopc B jedinične širine, zlobno vezn u točki, u položju prem slici Zdno je : =0,84 m; =0,65 m; =5,5 cm; =999 k/m B p
Analitička geometrija Zadaci. 13. siječnja 2014.
Analitička geometrija Zadaci 13. siječnja 2014. 2 Sadržaj 1 Poglavlje 5 1.1 Ponavljanje. Uvod............................ 5 1.2 Koordinatizacija............................. 6 1.3 Skalarni produkt.............................
2.6 Nepravi integrali
66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,
PRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
Analitička geometrija u ravnini
Analitička geometrija u ravnini September 5, 2008 1 Vektori u koordinatnom sustavu 1.1 Udaljenost točaka u koordinatnom sustavu pravokutni koordinatni sustav potpuno je odred en ishodištem jediničnim vektorima
MATEMATIKA I 1.kolokvij zadaci za vježbu I dio
MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
Gauss, Stokes, Maxwell. Vektorski identiteti ( ),
Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i
1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
skupa prirodnih brojeva u skup realnih brojeva, nazivamo realnim nizom.
Nizovi. Osovi pojmovi kod izov.. Defiicij i osovi pojmovi Defiicij... Svko preslikvje f : N R, skup prirodih brojev u skup relih brojev, zivmo re izom. Broj koji se ovim preslikvjem dodeljuje prirodom
II. ANALITIČKA GEOMETRIJA PROSTORA
II. NLITIČK GEMETRIJ RSTR I. I (Točka. Ravia.) d. sc. Mia Rodić Lipaović 9./. Točka u postou ( ; i, j, k ) Kateijev pavokuti koodiati sustav k i j T T (,, ) oložaj točke u postou je jedoačo odeñe jeim
ALFA List - 1. Festival matematike "Split 2013." Otvoreno ekipno natjecanje učenika osnovnih i srednjih škola Split, 10. svibnja 2013.
ALFA List - 1 Točan odgovor: 10 bodova Pogrešan odgovor: 5 bodova Bez odgovora: 0 bodova 1. Ako je (x+ 3): 4=( x ):3, onda je x jednako: A) 1 B) 1 C) 17 D) 17 E) 6. Kut od 1º30' gleda se kroz povećalo
f(x) = a x, 0<a<1 (funkcija strogo pada)
Eksponencijalna funkcija (baze a) f() a, a > 0, a domena D(f) R; slika funkcije f(d) (0,+ ); nema nultočaka, jer je a > 0, za sve R; graf G(f) je krivulja u ravnini prikazana na slici desno; f() a, 0
Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu
7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc
Uvođenje pojma određenog integrala u srednjoškolskoj nastavi matematike 1
Uvođeje pojm određeog itegrl u sredjoškolskoj stvi mtemtike 1 1. Uvod Iv Božić 2, Tomislv Šikić 3 S pojmom itegrl i itegrlim rčuom učeici se prvi put susreću u četvrtom rzredu sredje škole. S ozirom d
Popis zadataka. 1. Odredi Re
Pops zdtk. Odred Re. Odred, ko vrjed: (-) +(-b) = (-b). Zbroj znmenk dvoznmenkstog broj jednk je, umnožk. Koj je to broj?. U koordntnom sustvu prkž grf funkcje f() = -(+)(-). Izrčunj vrjednost ostlh funkcj
1.PRIZMA ( P=2B+M V=BH )
.RIZMA ( =+M = ).Izrčunti površinu i zpreminu kvr čij je ijgonl ug 0m, užine osnovnih ivi su m i m. D 0m m b m,? D 00 b 00 8 8 b b 87 87 0 87 8 87 b 87 87 87 8 87. Ivie kvr onose se ko :: ijgonl je ug.oreiti
a) Kosi hitac Krivolinijsko gibanje materijalne toke Sastavljeno gibanje Specijalni sluajevi kosog hica: b) Horizontalni hitac c) Vertikalni hitac
) Kosi hic Kriolinijsko ibnje merijlne oke Ssljeno ibnje 5. dio 3 4 Specijlni slujei koso hic: b) orizonlni hic c) Veriklni hic b) orizonlni hic c) Veriklni hic 5 6 7 ) Kosi hic 8 Kosi hic (bez opor zrk)
Primjene odreženog integrala
VJEŽBE IZ MATEMATIKE Ivn Brnović Miroslv Jerković Lekcij 5 Primjen određenog integrl Poglvlje Primjene odreženog integrl. Povr²in rvninskog lik Z dni rvninski lik omežen krivuljm y = f(x) i y = g(x) te