Pseudoinversă şi inversă generalizată ale unei aplicaţii liniare

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Pseudoinversă şi inversă generalizată ale unei aplicaţii liniare"

Transcript

1 Pseudoinversă şi inversă generalizată ale unei aplicaţii liniare Adrian REISNER 1 1. Pseudoinversă a unui endomorfism într-un spaţiu vectorial de dimensiune finită. Fie S un R-spaţiu vectorial de dimensiune finită. Are loc Teorema 1. Fiind date două endomorfisme u, v ale spaţiului S, dacădouădin cele trei condiţii următoare: a) uvu = u, b) vuv = v, c) rangu =rangv sunt verificate, atunci a treia este de asemenea verificată. Demonstraţie. a) şi b) c) Avem: rang u =rang(uvu) rang(uv) rang v din condiţia a), rang v =rang(vuv) rang(vu) rang u din condiţia b). Deducem condiţia c). a) şi c) b) Condiţia a) conduce, înmulţind la dreapta cu v, la egalitatea uv =(uvu)v = u(vuv). ( ) Ţinând seama de a), avem, pe de altă parte, că rang u rang(uv) şi, fiindcă rang(uv) rang u, deducem egalitatea rang(uv) = rang u. Dar rangul endomorfismului uv este rangul restricţiei endomorfismului u la subspaţiul Im v. Această restricţie u / Im v este deci injectivăşi egalitatea ( ) poate fi simplificată cuu la stânga, ceea ce închide demonstraţia. b) şi c) a) rezultă imediat, endomorfismele u şi v având roluri simetrice în relaţiile a), b), c). Teorema este demonstrată. Corolar. Fiind dat un endomorfism u al spaţiului vectorial S, existăunendo- morfism v (nu unic) verificând condiţiile a), b) şi c). Demonstraţie. Ţinând seama de teoremă, ne propunem să construimendo- morfismul v verificând condiţiile b) şi c). Fiev un astfel de endomorfism. Avem pentru y Im v : vu(y) =y. Deducem că, dacă x Im v Ker u, x =0şi deci Im v Ker u = {0}. Suma acestor două spaţii vectoriale este deci directă. Folosind condiţia rang u =rangv, deducem atunci că Im v Ker u = S. Fiind dat endomorfismul u, fief un suplementar al subspaţiului vectorial Ker u şi G un suplementar al spaţiului Im u. Aplicaţia u 0 : F Im u, x 7 u(x) este un izomorfism. Definim aplicaţia v prin restricţiile salelaceledouăsubspaţii suplementare Im u şi G prin: v / Im u =(u 0 ) 1, v /G =0. Această aplicaţie v este evident liniară şi verifică: Im v =Im(u 0 ) 1 = F, deci rang v =dimf =rangu şi rezultă că v verifică c); x S, v(x) F, deci vuv(x) =v {u 0 [v(x)]} =(vu 0 )[v(x)] = v(x), i.e. v verifică vuv = v, adică b). Corolarul este astfel stabilit. 1 Cercetător, Centrul de Calcul E.N.S.T., Paris 97

2 Observaţie. Endomorfismul v nu este unic: el depinde de alegerea subspaţiilor F şi G din demonstraţia corolarului. Definiţii. Fiind dat endomorfismul u, orice endomorfism verificând condiţia a) se numeşte inversă generalizată aluiu. Fiind dat endomorfismul u, orice endomorfism verificând condiţiile a), b) se numeşte pseudoinversă aluiu. Cu aceleaşi notaţii ca în corolarul precedent, o inversă generalizată v a endomorfismului u este definită prinrestricţiile sale la subspaţiile suplementare Im u şi G prin: v / Im u =(u 0 ) 1, v /G morfism oarecare aparţinând spaţiului L(G, S). Oinversă generalizată a endomorfismului u depinde deci de alegerea subspaţiilor F, G şi de alegerea morfismului v /G.VomnumiIng(u) ={v L(S) uvu = u}. Observaţii. 1) Inversa generalizată aunuiautomorfism u este unică şi coincide cu inversa u 1 aluiu :Ing(u) = u 1ª. ) Fie v Ing(u). Avem: endomorfismul w = uv este un proiector (w = w) de imagine Im u: w =(uv)(uv) =(uvu)v = uv = w, endomorfismul w 0 = vu este un proiector (w 0 = w 0 )denucleuker u: w 0 =(vu)(vu) =v(uvu) =vu = w 0. Aplicaţie. Vom nota cu aceeaşi literă un endomorfism al spaţiului vectorial R n şi matricea acestui endomorfism în baza canonică aluir n. Fiind date trei endomorfisme A, B, C ale spaţiului vectorial R n,fieã Ing(A) şi C Ing(C). Are loc Teorema. Ecuaţia matriceală AXC = B admite o soluţie X dacă şi numai dacă avemaãb CC = B. Demonstraţie. Presupunând că AÃB CC = B, deducem că matriceax = ÃB C verifică AXC = B. VomnotaX 0 = ÃB C. Invers, dacăexistă X L(R n ) verificând AXC = B, atunci avem (AÃA)X(C CC)= B şi, în consecinţă, B = AÃ(AXC) CC = AÃB CC. Ã şi C fiind două matrice oarecare aparţinând respectiv la Ing(A) şi Ing(C), notăm n K(A, C) = Y ÃAY C C o Y M n (R). Teorema 3. Soluţia generală aecuaţiei matriceale AXC = B este X = ÃB C + Z, undez K(A, C). Demonstraţie. Soluţia generală a ecuaţiei matriceale AXC = B este X = X 0 + Z, unde X 0 = ÃB C (v. demonstraţia Teoremei ) şi Z este soluţia generală a ecuaţiei AZC = O. Ne propunem să justificăm echivalenţa următoare: a) AZC = O b) Z K(A, C). a) b) Z = Z O = Z Ã(AZC) C; 98

3 b) a) Y M n (R), matricea Z = Y ÃAY C C verifică AZC = AY C AÃAY C CC = AY C (AÃA)Y (C CC)=O şi Teorema 3 este demonstrată. Exemplu. Fie ecuaţia matriceală X = k 0 0, unde k R. (1) Să găsim soluţia generală X M 3 (R) a acestei ecuaţii. Avem: A = şi à = Ing(A); C = şi C = C Ing(C). Cum B = k 0 0 = AÃB CC, ecuaţia (1) admite soluţii, osoluţie fiind matricea X = ÃB C = k 0 0. Ţinând seama de Teorema 3, soluţia generală aecuaţiei (1) este X = ÃB C + Y ÃAY C C = k Y ÃAY C C, unde Y este o matrice oarecare aparţinând spaţiului de matrice M 3 (R). Considerând a, b, c, d, e, f, g, h, i numere reale oarecare, obţinem, cu Y = a b c d e f, căsoluţia generală aecuaţiei matriceale (1) este X = 0 b c k e f, g h i g h i unde b, c, e, f, g, h, i sunt numere reale oarecare.. Pseudoinversa unui endomorfism într-un spaţiu euclidian. E fiind un spaţiu euclidian, produsul scalar va fi notat h, i. [Aceleaşi definiţii şi rezultate sunt valabile dacă spaţiul E este un spaţiu hermitian, adică unc -spaţiu vectorial înzestrat cu un produs scalar, formă hermitianăpozitivdefinităpee.] Amintim definiţia şi teorema următoare: Definiţie şi teoremă. Fiind dat un endomorfism al spaţiului euclidian E, există un singur endomorfism u al spaţiului E verificând x, y E, hu(x),yi = hx, u (y)i. Acest endomorfism se numeşte adjunctul endomorfismului u. Avem Ker u =(Imu) şi Im u =(Keru). Demonstrăm că Ker u =(Imu) ;într-adevăr, y (Im u) x E, hu(x),yi =0 x E, hx, u (y)i =0 y Ker u. Asemănător procedăm pentru egalitatea Im u =(Keru). 99

4 Fie u un endomorfism al spaţiului euclidian E.Notăm K =(Keru) ortogonalul nucleului lui u şi I =(Imu) ortogonalul imaginii endomorfismului u. Notăm P proiecţia ortogonală de imagine K (de nucleu Ker u), P 0 proiecţia ortogonală de imagine Im u (de nucleu I = (Imu) ). Avem: P 0 u = u = up ; P 0 (y) Im u, y E; u ( 1) P 0 (y) (imaginea reciprocă a elementului P 0 (y)) este oclasă modulo Ker u aspaţiului euclidian E (atenţie: u ( 1) nu este o aplicaţie!). Imaginea acestei clase prin proiecţia P este un element unic al spaţiului K. Definiţie. Aplicaţia liniară u + = Pu ( 1) P 0 se numeşte pseudoinversă aendomorfismului u. Teorema 4. Aplicaţia pseudoinversă u + a endomorfismului u verifică relaţiile: a) uu + u = u, b) u + uu + = u +, c) uu + şi u + u sunt endomorfisme ortogonale, i.e. (uu + ) = uu +, (u + u) = u + u. Mai mult, u + este singurul endomorfism al spaţiului E verificând aserţiunile a), b) şi c). Demonstraţie. P şi P 0 fiind proiectori, avem Pu + = u + P 0 = u +. Atunci: u + u = Pu ( 1) P 0 u = Pu ( 1) u = P, proiector ortogonal, uu + = up u ( 1) P 0 = uu ( 1) P 0 = P 0, proiector ortogonal, şi, în consecinţă, uu + u = up = u; u + uu + = u + P 0 = u +.Înplus, Im u + =ImP = K =(Keru) =Imu, Ker u + =KerP 0 = I =(Imu) =Keru. Demonstrăm acum unicitatea endomorfismului u +. Fie u 0 un alt endomorfism verificând condiţiile a), b) şi c). Avem: u 0 = u 0 uu 0 = u 0 u 0 u = u 0 u 0 (u u + u )=u 0 (uu 0 )(uu + )=u 0 uu + ; u 0 uu + = u u 0 u + =(u u + u )u 0 u + =(u + u)(u 0 u)u + = u + uu + = u +. Deci u 0 = u +, c.c.t.d. Observaţie. Am văzut în prima parte că opseudoinversăaluiu depinde în particular de alegerea subspaţiilor suplementare F şi G ale spaţiilor Ker u şi respectiv Im u. În cazul în care E este un spaţiu euclidian F şi G sunt unic definite prin F =(Keru) şi G =(Imu), de unde unicitatea pseudoinversei. Dacă y este un vector oarecare al spaţiului euclidian E, notăm x 0 = u + (y). Avem Teorema 5. Vectorul x 0 = u + (y) verifică: a) kux 0 ykeste minimum, i.e. kux 0 yk kux yk, x E; b) kx 0 k este minim din toate elementele x verificând kux yk = kux 0 yk. Demonstraţie. a) kux 0 yk = uu + y y = kp 0 y yk, kux yk = ku(x x 0 )+ux 0 yk = ku(x x 0 )+P 0 y yk = = ku(x x 0 )k + kp 0 y yk kux 0 yk. b) Avem kux yk = kux 0 yk numai când u(x x 0 )=0. În cazul acesta, x = x 0 + z, unde x 0 K =(Keru) şi z Ker u. Deci kxk = kx 0 k + kzk kx 0 k şi deducem b). 100

5 Observaţie. Din teorema precedentă deducem că x 0 = u + (y) este cea mai bună soluţie apropiată înnormă a ecuaţiei y = ux. Pseudoinversa unei matrice. Dacă alegem în spaţiul euclidian E o bază ortonormată B,obţinem U-matricea endomorfismului u în aceastăbază: Mat(u,B)= U = U T.[În cazul în care E este hermitian avem Mat(u, B) =U = U T.] Traducând cele de mai sus în limbaj matriceal, obţinem Fiind dată o matrice U M n (R), existăosingurămatricev verificând condiţiile următoare: UVU = U, V UV = V, (UV) = UV, (VU) = VU. Această unică matrice V se numeşte pseudoinversa matricei U şi se notează U +. X 0 = U + Y este cea mai bună aproximaţie cuadratică aecuaţiei UX = Y. Exemplu de calcul al pseudoinversei unei matrice. Fie matricea U = M 3 (R) Să calculăm matricea U +. Matricea U fiind simetrică, avem Ker u =(Imu). Fie B = {e 1,e,e 3 } baza canonică aspaţiului R 3 înzestrat cu produsul scalar canonic. Pentru endomorfismul u asociat matricei U în această bază, avem: Im u =Vect{e,e 1 + e 3 }, Ker u = R(e 1 e 3 ). Endomorfismul v de matrice U + în baza canonică B verifică atunci Ker v =(Imu) =Keru; Imv =(Keru) =Imu. Pe de altă parte: uvu(e )=u(e ) uv(e )=u(e ) v(e )=e + λ(e 1 e 3 ); v(e ) Im v = Im u λ =0,deciv(e )=e ; uvu(e 1 )=u(e 1 ) uv(e 1 + e 3 )=e 1 + e 3 = u( e 1 + e 3 ) v(e 1 + e 3 )= e 1 + e 3 + µ (e 1 e 3 ); v(e 1 + e 3 ) Im u µ =0,deciv(e 1 + e 3 )= e 1 + e 3. Dat fiind că v(e 1 e 3 )=0[Ker v =Keru], deducem că v(e 1 )=v(e 3 )= e 1 + e 3. 4 Finalmente matricea U + este U + =

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)).

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)). Teoremă. (Y = f(x)). Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism Demonstraţie. f este continuă pe X: x 0 X, S Y (f(x 0 ), ε), S X (x 0, ε) aşa ca f(s X (x 0, ε)) = S Y (f(x 0 ), ε) : y

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

Algebră liniară CAPITOLUL 3

Algebră liniară CAPITOLUL 3 Algebră liniară CAPITOLUL 3 TRANSFORĂRI LINIARE 3.. Definiţia transformării liniare Definiţia 3... Fie V şi W două spaţii vectoriale peste un corp comutativ K. O funcţie u: V W se numeşte transformare

Διαβάστε περισσότερα

CURS 11: ALGEBRĂ Spaţii liniare euclidiene. Produs scalar real. Spaţiu euclidian. Produs scalar complex. Spaţiu unitar. Noţiunea de normă.

CURS 11: ALGEBRĂ Spaţii liniare euclidiene. Produs scalar real. Spaţiu euclidian. Produs scalar complex. Spaţiu unitar. Noţiunea de normă. Sala: 2103 Decembrie 2014 Conf. univ. dr.: Dragoş-Pătru Covei CURS 11: ALGEBRĂ Specializarea: C.E., I.E., S.P.E. Nota: Acest curs nu a fost supus unui proces riguros de recenzare pentru a fi oficial publicat.

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Curs 2 Şiruri de numere reale

Curs 2 Şiruri de numere reale Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un

Διαβάστε περισσότερα

Conice - Câteva proprietǎţi elementare

Conice - Câteva proprietǎţi elementare Conice - Câteva proprietǎţi elementare lect.dr. Mihai Chiş Facultatea de Matematicǎ şi Informaticǎ Universitatea de Vest din Timişoara Viitori Olimpici ediţia a 5-a, etapa I, clasa a XII-a 1 Definiţii

Διαβάστε περισσότερα

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt.

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt. liberi 1 liberi 2 3 4 Segment orientat liberi Fie S spaţiul geometric tridimensional cu axiomele lui Euclid. Orice pereche de puncte din S, notată (A, B) se numeşte segment orientat. Dacă A B, atunci direcţia

Διαβάστε περισσότερα

1.3 Baza a unui spaţiu vectorial. Dimensiune

1.3 Baza a unui spaţiu vectorial. Dimensiune .3 Baza a unui spaţiu vectorial. Dimensiune Definiţia.3. Se numeşte bază a spaţiului vectorial V o familie de vectori B care îndeplineşte condiţiile de mai jos: a) B este liniar independentă; b) B este

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15

Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15 MĂSURI RELE Cursul 13 15 Măsuri reale Fie (,, µ) un spaţiu cu măsură completă şi f : R o funcţie -măsurabilă. Cum am văzut în Teorema 11.29, dacă f are integrală pe, atunci funcţia de mulţime ν : R, ν()

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,...

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,... 1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,..., X n şi coeficienţi în K se înţelege un ansamblu de egalităţi formale

Διαβάστε περισσότερα

2.9 Forme biafine Forme pătratice afine. Aducerea la forma canonică Centre de simetrie Varietăţi pătratice...

2.9 Forme biafine Forme pătratice afine. Aducerea la forma canonică Centre de simetrie Varietăţi pătratice... Geometrie Afină Contents 1 Spaţii vectoriale 3 1.1 Spaţii vectoriale peste un corp K........................ 3 1.2 Exemple de spaţii vectoriale........................... 4 1.3 Dependenţă liniară de vectori..........................

Διαβάστε περισσότερα

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, aprilie 7 Proba scrisă la MATEMATICĂ SUBIECTUL I (3 puncte) ) (5 puncte) Fie matricele A = 3 4 9 8

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

Spaţii vectoriale. Definiţia 1.1. Fie (K, +, ) un corp şi (V, +) un grup abelian.

Spaţii vectoriale. Definiţia 1.1. Fie (K, +, ) un corp şi (V, +) un grup abelian. Spaţii vectoriale 1. Spaţii vectoriale. Definiţii şi proprietăţi de bază În continuare prin corp vom înţelege corp comutativ. Dacă nu se precizează altceva, se vor folosi notaţiile standard pentru elementele

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

Geometrie afină. Conf. Univ. Dr. Cornel Pintea

Geometrie afină. Conf. Univ. Dr. Cornel Pintea Geometrie afină Conf Univ Dr Cornel Pintea E-mail: cpintea mathubbclujro Cuprins 1 Săptămâna 13 1 2 Endomorfismele unui spaţiu afin 1 21 Translaţia 1 22 Subspaţii invariante 2 23 Omotetii 2 24 Proiecţii

Διαβάστε περισσότερα

CONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ

CONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ CONCURS DE ADMITERE, 7 iulie 207 Proba scrisă la MATEMATICĂ SUBIECTUL I (30 puncte) ) (0 puncte) Să se arate că oricare ar

Διαβάστε περισσότερα

Lucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b.

Lucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b. Lucrare Soluţii 28 aprilie 2015 Varianta 1 I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2 Definiţie. Numărul întreg p se numeşte număr prim dacă p 0,

Διαβάστε περισσότερα

Seminar Algebra. det(a λi 3 ) = 0

Seminar Algebra. det(a λi 3 ) = 0 Rezolvari ale unor probleme propuse "Matematica const în a dovedi ceea ce este evident în cel mai puµin evident mod." George Polya P/Seminar Valori si vectori proprii : Solutie: ( ) a) A = Valorile proprii:

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

2.3 Geometria analitică liniarăînspaţiu

2.3 Geometria analitică liniarăînspaţiu 2.3 Geometria analitică liniarăînspaţiu Pentru început sădefinim câteva noţiuni de bază în geometria analitică. Definitia 2.3.1 Se numeşte reper în spaţiu o mulţime formată dintr-un punct O (numit originea

Διαβάστε περισσότερα

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială

Διαβάστε περισσότερα

1.4 Schimbarea bazei unui spaţiu vectorial

1.4 Schimbarea bazei unui spaţiu vectorial Algebră liniară, geometrie analitică şi diferenţială. Schimbarea bazei unui spaţiu vectorial După cum s-a văzut deja, într-un spaţiu vectorial V avem mai multe baze, iar un vector x V va avea câte un sistem

Διαβάστε περισσότερα

Criterii de comutativitate a grupurilor

Criterii de comutativitate a grupurilor Criterii de comutativitate a grupurilor Marius Tărnăuceanu 10.03.2017 Abstract În această lucrare vom prezenta mai multe condiţii suficiente de comutativitate a grupurilor. MSC (2010): 20A05, 20K99. Key

Διαβάστε περισσότερα

CURS 5 Spaţii liniare. Spaţiul liniar R n

CURS 5 Spaţii liniare. Spaţiul liniar R n CURS 5 Spaţii liniare. Spaţiul liniar R n A. Arusoaie arusoaie.andreea@gmail.com andreea.arusoaie@info.uaic.ro Facultatea de Informatică, Universitatea Alexandru Ioan Cuza din Iaşi 30 Octombrie 2017 Structura

Διαβάστε περισσότερα

GEOMETRIE ANALITICĂ. Mihai-Sorin Stupariu

GEOMETRIE ANALITICĂ. Mihai-Sorin Stupariu GEOMETRIE ANALITICĂ Mihai-Sorin Stupariu Sem. al II-lea, 007-008 Cuprins 1 Elemente de algebră liniară 3 1.1 Spaţii vectoriale. Definiţie. Exemple................ 3 1. Combinaţii liniare. Baze şi repere..................

Διαβάστε περισσότερα

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l +

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l + Semnul local al unei funcţii care are limită. Propoziţie. Fie f : D (, d) R, x 0 D. Presupunem că lim x x 0 f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl,

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

Esalonul Redus pe Linii (ERL). Subspatii.

Esalonul Redus pe Linii (ERL). Subspatii. Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste

Διαβάστε περισσότερα

Sala: 2103 Octombrie 2014 CURS 1: ALGEBRĂ. Fie K corp comutativ cu elementul neutru la înmulţire notat prin 1 iar 0 la adunare.

Sala: 2103 Octombrie 2014 CURS 1: ALGEBRĂ. Fie K corp comutativ cu elementul neutru la înmulţire notat prin 1 iar 0 la adunare. Sala: 2103 Octombrie 2014 Conf. univ. dr.: Dragoş-Pătru Covei CURS 1: ALGEBRĂ Specializarea: C.E., I.E., S.P.E. Nota: Acest curs nu a fost supus unui proces riguros de recenzare pentru a fi oficial publicat.

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

Lucian Maticiuc CURS I II. 1 Matrice şi determinanţi. Sisteme de ecuaţii liniare. 1.1 Matrice şi determinanţi

Lucian Maticiuc CURS I II. 1 Matrice şi determinanţi. Sisteme de ecuaţii liniare. 1.1 Matrice şi determinanţi Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr Lucian MATICIUC http://mathettituiasiro/maticiuc/ CURS I II Matrice şi determinanţi Sisteme de ecuaţii

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

Nicolae Cotfas ELEMENTE DE EDITURA UNIVERSITĂŢII DIN BUCUREŞTI

Nicolae Cotfas ELEMENTE DE EDITURA UNIVERSITĂŢII DIN BUCUREŞTI Nicolae Cotfas ELEMENTE DE ALGEBRĂ LINIARĂ EDITURA UNIVERSITĂŢII DIN BUCUREŞTI Introducere Pe parcursul acestei cărţi ne propunem să prezentăm într-un mod cât mai accesibil noţiuni si rezultate de bază

Διαβάστε περισσότερα

Sala: Octombrie 2014 SEMINAR 1: ALGEBRĂ. este un Q-spaţiu vectorial, faţă de operaţiile uzuale de adunare şi înmulţire cu un număr raţional.

Sala: Octombrie 2014 SEMINAR 1: ALGEBRĂ. este un Q-spaţiu vectorial, faţă de operaţiile uzuale de adunare şi înmulţire cu un număr raţional. Sala: Octombrie 24 SEMINAR : ALGEBRĂ Conf univ dr: Dragoş-Pătru Covei Programul de studii: CE, IE, SPE Nota: Acest curs nu a fost supus unui proces riguros de recenzare pentru a fi oficial publicat distribuit

Διαβάστε περισσότερα

Vladimir BALAN. Algebră Liniară, Geometrie Analitică, şi Elemente de Geometrie Diferenţială. Student Web Copy. = Bucureşti 2011 =

Vladimir BALAN. Algebră Liniară, Geometrie Analitică, şi Elemente de Geometrie Diferenţială. Student Web Copy. = Bucureşti 2011 = Vladimir BALAN Algebră Liniară, Geometrie Analitică, şi Elemente de Geometrie Diferenţială = Bucureşti 2011 = Prefaţă Acest material include noţiunile, rezultatele teoretice de bază, precum şi probleme

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

Lectia IV Produsul vectorial a doi vectori liberi

Lectia IV Produsul vectorial a doi vectori liberi Orientarea spatiului E 3 Denitia produsului vectorial. Proprietati Rezolvari de ecuatii vectoriale Schimbari de baze ortonormate in spatiu Aplicatii Lectia IV Produsul vectorial a doi vectori liberi Oana

Διαβάστε περισσότερα

Matrice. Determinanti. Sisteme liniare

Matrice. Determinanti. Sisteme liniare Matrice 1 Matrice Adunarea matricelor Înmulţirea cu scalar. Produsul 2 Proprietăţi ale determinanţilor Rangul unei matrice 3 neomogene omogene Metoda lui Gauss (Metoda eliminării) Notiunea de matrice Matrice

Διαβάστε περισσότερα

ELEMENTE DE GEOMETRIE. Dorel Fetcu

ELEMENTE DE GEOMETRIE. Dorel Fetcu ELEMENTE DE GEOMETRIE ANALITICĂ ŞI DIFERENŢIALĂ Dorel Fetcu Acest curs este un fragment din manualul D. Fetcu, Elemente de algebră liniară, geometrie analitică şi geometrie diferenţială, Casa Editorială

Διαβάστε περισσότερα

Funcţii Ciudate. Beniamin Bogoşel

Funcţii Ciudate. Beniamin Bogoşel Funcţii Ciudate Beniamin Bogoşel Scopul acestui articol este construcţia unor funcţii neobişnuite din punct de vedere intuitiv, care au anumite proprietăţi interesante. Construcţia acestor funcţii se face

Διαβάστε περισσότερα

Criptosisteme cu cheie publică III

Criptosisteme cu cheie publică III Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Contract POSDRU/86/1.2/S/ POSDRU ID * Bucureşti 2012

Contract POSDRU/86/1.2/S/ POSDRU ID * Bucureşti 2012 Contract POSDRU/86/1.2/S/62485 Algebră Liniară POSDRU ID 62485 * Bucureşti 212 Prefaţă Algebra liniară şi geometria analitică stau la baza pregătirii matematice universitare, oferind modelări bazate pe

Διαβάστε περισσότερα

Gheorghe PROCOPIUC PROBLEME DE ALGEBRĂ LINIARĂ GEOMETRIE

Gheorghe PROCOPIUC PROBLEME DE ALGEBRĂ LINIARĂ GEOMETRIE Gheorghe PROCOPIUC PROBLEME DE ALGEBRĂ LINIARĂ ŞI GEOMETRIE IAŞI, 005 CUPRINS 1 MATRICE ŞI SISTEME ALGEBRICE LINIARE 5 1.1 Matrice şi determinanţi.......................... 5 1. Sisteme de ecuaţii algebrice

Διαβάστε περισσότερα

Ecuatii exponentiale. Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. a x = b, (1)

Ecuatii exponentiale. Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. a x = b, (1) Ecuatii exponentiale Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. Cea mai simpla ecuatie exponentiala este de forma a x = b, () unde a >, a. Afirmatia.

Διαβάστε περισσότερα

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă Coordonatori DANA HEUBERGER NICOLAE MUŞUROIA Nicolae Muşuroia Gheorghe Boroica Vasile Pop Dana Heuberger Florin Bojor MATEMATICĂ DE EXCELENŢĂ pentru concursuri, olimpiade şi centre de excelenţă Clasa a

Διαβάστε περισσότερα

Algebră liniară CAPITOLUL 1

Algebră liniară CAPITOLUL 1 Algebră liniară CAPITOLUL SPAŢII VECTORIALE FINIT DIMENSIONALE. Definiţia spaţiilor vectoriale Pentru a introduce noţiunea de spaţiu vectorial avem nevoie de noţiunea de corp comutativ de caracteristică

Διαβάστε περισσότερα

Matrici şi sisteme de ecuaţii liniare

Matrici şi sisteme de ecuaţii liniare Matrici şi sisteme de ecuaţii liniare 1. Matrici şi determinanţi Reamintim aici câteva proprietăţi ale matricilor şi determinanţilor. Definiţia 1.1. Fie K un corp (comutativ) şi m, n N. O funcţie A : {1,...,

Διαβάστε περισσότερα

Principiul Inductiei Matematice.

Principiul Inductiei Matematice. Principiul Inductiei Matematice. Principiul inductiei matematice constituie un mijloc important de demonstratie in matematica a propozitiilor (afirmatiilor) ce depind de argument natural. Metoda inductiei

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

O generalizare a unei probleme de algebră dată la Olimpiada de Matematică, faza judeţeană, 2013

O generalizare a unei probleme de algebră dată la Olimpiada de Matematică, faza judeţeană, 2013 O generalizare a unei probleme de algebră dată la Olimpiada de Matematică, faza judeţeană, 2013 Marius Tărnăuceanu 1 Aprilie 2013 Abstract În această lucrare vom prezenta un rezultat ce extinde Problema

Διαβάστε περισσότερα

Lectia III Produsul scalar a doi vectori liberi

Lectia III Produsul scalar a doi vectori liberi Produsul scalar: denitie, proprietati Schimbari de repere ortonormate in plan Aplicatii Lectia III Produsul scalar a doi vectori liberi Oana Constantinescu Oana Constantinescu Lectia III Produsul scalar:

Διαβάστε περισσότερα

CAPITOLUL 4 FUNCŢIONALE LINIARE, BILINIARE ŞI PĂTRATICE

CAPITOLUL 4 FUNCŢIONALE LINIARE, BILINIARE ŞI PĂTRATICE CAPITOLUL FUNCŢIONALE LINIAE BILINIAE ŞI PĂTATICE FUNCŢIONALE LINIAE BEIA TEOETIC Deiniţia Fie K X un spaţiu vecorial de dimensiune iniă O aplicaţie : X K se numeşe uncţională liniară dacă: ese adiivă

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

a) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A.

a) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A. Bac Variata Proil: mate-izica, iormatica, metrologie Subiectul I (3 p) Se cosidera matricele: X =, Y = ( ) si A= a) (3p) Sa se calculeze XY A b) (4p) Sa se calculeze determiatul si ragul matricei A c)

Διαβάστε περισσότερα

Concurs MATE-INFO UBB, 25 martie 2018 Proba scrisă la MATEMATICĂ

Concurs MATE-INFO UBB, 25 martie 2018 Proba scrisă la MATEMATICĂ UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, 5 martie 18 Proba scrisă la MATEMATICĂ NOTĂ IMPORTANTĂ: 1 Problemele tip grilă (Partea A pot avea unul

Διαβάστε περισσότερα

Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare

Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R În cele ce urmează, vom studia unele proprietăţi ale mulţimilor din R. Astfel, vom caracteriza locul" unui punct în cadrul unei mulţimi (în limba

Διαβάστε περισσότερα

Ion CRĂCIUN CAPITOLE DE MATEMATICI SPECIALE EDITURA PIM

Ion CRĂCIUN CAPITOLE DE MATEMATICI SPECIALE EDITURA PIM Ion CRĂCIUN CAPITOLE DE MATEMATICI SPECIALE EDITURA PIM IAŞI 2007 2 Cuprins 1 Ecuaţii diferenţiale liniare de ordin superior 7 1.1 Ecuaţii diferenţiale liniare de ordinul n cu coeficienţi variabili 7 1.2

Διαβάστε περισσότερα

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I. Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea

Διαβάστε περισσότερα

1Ecuaţii diferenţiale

1Ecuaţii diferenţiale 1Ecuaţii diferenţiale 1.1 Introducere Definitia 1.1 Se numeşte ecuaţie diferenţială ordinarădeordin1: y 0 (x) =f (x, y (x)) (EDO) unde y este funcţia necunoscută, iar f este o funcţie de două variabile

Διαβάστε περισσότερα

3 FUNCTII CONTINUE Noţiuni teoretice şi rezultate fundamentale Spaţiul euclidian R p. Pentru p N *, p 2 fixat, se defineşte R

3 FUNCTII CONTINUE Noţiuni teoretice şi rezultate fundamentale Spaţiul euclidian R p. Pentru p N *, p 2 fixat, se defineşte R 3 FUNCTII CONTINUE 3.. Noţiuni teoretice şi rezultate fundamentale. 3... Saţiul euclidian R Pentru N *, fixat, se defineşte R = R R R = {(x, x,, x : x, x,, x R} de ori De exemlu, R = {(x, y: x, yr} R 3

Διαβάστε περισσότερα

a carei ecuatie matriceala este data in raport cu R.

a carei ecuatie matriceala este data in raport cu R. POZITIA RELATIVA A UNEI DREPTE FATA DE O HIPERCUADRICA AFINA REALA. TANGENTE SI ASIMPTOTE. OANA CONSTANTINESCU Pentru studiul pozitiei relative a unei drepte fata de o hipercuadrica, remarcam ca nu mai

Διαβάστε περισσότερα

Capitolul II. Grupuri. II.1. Grupuri; subgrupuri; divizori normali; grupuri factor

Capitolul II. Grupuri. II.1. Grupuri; subgrupuri; divizori normali; grupuri factor Capitolul II Grupuri II.1. Grupuri; subgrupuri; divizori normali; grupuri factor Definiţia 1. Fie G o mulţime nevidă şi " " operaţie algebrică pe G. Cuplul (G, ) se numeşte grup, dacă sunt satisfăcute

Διαβάστε περισσότερα

Activitatea A5. Introducerea unor module specifice de pregătire a studenţilor în vederea asigurării de şanse egale

Activitatea A5. Introducerea unor module specifice de pregătire a studenţilor în vederea asigurării de şanse egale Investeşte în oameni! FONDUL SOCIAL EUROPEAN Programul Operaţional Sectorial pentru Dezvoltarea Resurselor Umane 2007 2013 Axa prioritară nr. 1 Educaţiaşiformareaprofesionalăînsprijinulcreşteriieconomiceşidezvoltăriisocietăţiibazatepecunoaştere

Διαβάστε περισσότερα

CURS VII-IX. Capitolul IV: Funcţii derivabile. Derivate şi diferenţiale. 1 Derivata unei funcţii. Interpretarea geometrică.

CURS VII-IX. Capitolul IV: Funcţii derivabile. Derivate şi diferenţiale. 1 Derivata unei funcţii. Interpretarea geometrică. Lect dr Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr Lucian MATICIUC CURS VII-IX Capitolul IV: Funcţii derivabile Derivate şi diferenţiale 1

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

OANA CONSTANTINESCU. ( a carei ecuatie matriceala este data in raport cu un reper cartezian R = {O; ē 1,, ē n }.

OANA CONSTANTINESCU. ( a carei ecuatie matriceala este data in raport cu un reper cartezian R = {O; ē 1,, ē n }. ELEMENTE DE SIMETRIE ALE UNEI HIPERCUADRICE IN SPATII AFINE EUCLIDIENE OANA CONSTANTINESCU 1. Centru de simetrie pentru o hipercuadrica afina Pentru inceput cadrul de lucru este un spatiu an real de dimensiune

Διαβάστε περισσότερα

Sisteme de ecuaţii diferenţiale

Sisteme de ecuaţii diferenţiale Curs 5 Sisteme de ecuaţii diferenţiale 5. Sisteme normale Definiţie 5.. Se numeşte sistem normal sistemul de ecuaţii diferenţiale de ordinul întâi dx dt = f (t, x, x 2,..., x n ) dx 2 dt = f 2(t, x, x

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα

1 Preliminarii. M 3, (a b) c = a (b c) (notăm a b c, obţinând astfel şi x 1 x 2... x n

1 Preliminarii. M 3, (a b) c = a (b c) (notăm a b c, obţinând astfel şi x 1 x 2... x n 1 Preliminarii Fie M, A mulţimi nevide şi n N. Se muneşte operaţie n ară (sau lege de compoziţie n-ară) definită pe M orice aplicaţie τ : M n M (M n = } M {{... M } ). In cazul n = 2, obţinem operaţiile

Διαβάστε περισσότερα

Puncte de extrem pentru funcţii reale de mai multe variabile reale.

Puncte de extrem pentru funcţii reale de mai multe variabile reale. Puncte de extrem pentru funcţii reale de mai multe variabile reale. Definiţie. Fie f : A R n R. i) Un punct a A se numeşte punct de extrem local pentru f dacă diferenţa f(x) f păstrează semn constant pe

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi

Διαβάστε περισσότερα