8 Tangencijalna ravnina plohe
|
|
- Θήρων Ζαφειρόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 8 Tangencijalna ravnina plohe Sferu kao plohu pokrili smo sa šest, odnosno sa dvije karte u Primjeru 2. Dakle, općenito, neka točka sfere ležat će u slikama od više karata. Proučimo stoga što se dogada pri promjeni karte. Neka su x : U S W, x : Ũ S W dvije karte i neka je p S W W. Kako su x, x homeomorfizmi, to su V := x 1 (S W W ) U i Ṽ := x 1 (S W W ) Ũ otvoreni skupovi. Kompoziciju θ := x 1 x : Ṽ V nazivamo funkcijom prijelaza s x na x. Vrijedi x(ũ, ṽ) =x(θ(ũ, ṽ)). Teorem 8.1 Funkcije prijelaza regularne plohe su glatke. Dokaz. Neka je p = x(u 0,v 0 )= x(ũ 0, ṽ 0 ). Kako je Jacobijeva matrica J preslikavanja x ranga 2, to postoji regularna minora od J reda 2. Neka je to minora ( ) xu x v. Po Teoremu o inverznim funkcijama primijenjenom na preslikavanje y u F : U R 2, F(u, v)=(x(u, v),y(u, v)), postoji otvoren podskup W 1 R 2 oko (u 0,v 0 ) i otvoren podskup W 2 R 2 oko F (u 0,v 0 ) takvi da je F : W 1 W 2 glatka bijekcija s glatkim inverzom. Preslikavanje x : W 1 x(w 1 ) bijekcija, te je kompozicija F x 1 bijekcija na x(w 1 ). Uočimo da je F x 1 (x,y,z)=(x, y) =π(x,y,z), gdje je π projekcija na prve dvije koordinate. Nadalje, vrijedi da je W := x 1 (x(w 1 )) otvoren podskup od Ũ, te vrijedi y v x 1 x = F 1 F na Ṽ, gdje je F = π x. Kako su F 1 i F glatka preslikavanja na Ṽ, to je i preslikavanje x 1 x je glatko na otvorenom skupu koji sadrži proizvoljnu točku (u 0,v 0 ). Prema tome, x 1 x je glatko. Sljedeći je rezultat neka vrst obrata: Propozicija 8.1 Neka su U i Ũ podskupovi od R2 i x : U R 3 regularna karta. Neka je θ : Ũ U glatka bijekcija s glatkim inverzom. Tada je regularna karta. x θ : Ũ R 3 45
2 Dokaz. Označimo x = x θ, (u, v)=θ(ũ, ṽ). Po lančanom pravilu imamo xũ = u ũ x u + v ũ x v, xṽ = u ṽ x u + v ṽ x v. Prema tome je ( u v xũ xṽ = ũ ṽ u ) v x u x v. ṽ ũ Izraz u zagradi je determinanta Jacobijeve matrice preslikavanja θ koja je zbog pretpostavki različita od 0. Prema tome, uvjet x u x v 0 povlači xũ xṽ 0. Definicija 8.2 Parametrizacija x je reparametrizacija od x ako postoji glatka bijekcija s glatkim inverzom θ : Ũ U takva da je x = x θ. Važan princip u diferencijalnoj geometriji definirati svojstva plohe koje ne ovise o parametrizaciji, tj. ne mijenjaju se pri promjeni karte. Definicija 8.3 Svako glatko preslikavanje c : I S nazivamo krivuljom na plohi. Pritom, za preslikavanje c : I S kažemo da je glatko ako je preslikavanje x 1 c : I U glatko, za kartu x : U S. Zbog Teorema 8.1 pojam krivulje na plohi je dobro definiran. Definicija 8.4 Neka je x : U R 3 karta i (u 0,v 0 ) U. Krivulje nazivaju se parametarskim u i v-krivuljama. u x(u, v 0 ), v x(u 0,v) Propozicija 8.2 Neka je c : I R 3 krivulja takva da je c(i) x(u). Tada postoje jedinstvene glatke funkcije u = u(t), v = v(t) :I R takve da je c(t) =x(u(t),v(t)). (8.12) Dokaz. Promotrimo preslikavanje x 1 c : I R 2. Ono je glatko preslikavanje, jer su preslikavanja c i x glatka. Označimo sa u(t), v(t) koordinatne funkcije tog preslikavanja. Tada je x 1 c(t) =(u(t),v(t)). Prema tome, vrijedi (8.12). Jedinstvenost izlazi iz sljedećeg: ako su ũ =ũ(t), ṽ =ṽ(t) :I R neke druge funkcije s tim svojstvom, tada je (ũ, ṽ) =x 1 c(t) =x 1 x(u(t),v(t)) = (u(t),v(t)). 46
3 Primjer 1. 1 Obična cilindrična spirala c(t) =(a cos t, a sin t, bt) na cilindru može se prikazati kao c(t) = x(t, t). x(u, v)=(a cos u, a sin u, bv) 2 Vivijanijev prozor c(t) = (2 cos 2 t, sin 2t, 2 sin t) na sferi može se prikazati kao c(t) = x(t, t). x(u, v) = (2 cos u cos v, 2 cos u sin v, 2 sinv) Definicija 8.5 Neka je S regularna ploha, x : U R 3 karta i p x(u). Tangencijalni vektor karte x u točki p = x(u 0,v 0 ) je vektor v p R 3 p za koji postoji krivulja c : I S, c(i) x(u), takva da je c(0) = p, c (0) = v p. Skup svih tangencijalnih vektora u p označavamo s T p S. Teorem 8.6 Skup T p S je potprostor prostora T p R 3 dimenzije 2. Dokaz. Koristeći kriterij za potprostor, pokažimo najprije da za svaka dva vektora v p,w p T p S i svaka dva skalara α, β R vrijedi αv p + βw p T p S. Zaista, kako su v p,w p T p S, to postoje krivulje c, c : I S takve da je c(0) = p, c (0) = v p, c(0) = p, c (0) = w p. Zapisano pomoću karata c(t) =x(u(t),v(t)), c(t) =x(ū(t), v(t)), c(0) = x(u(0),v(0)) = c(0) = x(ū(0), v(0)) = x(u 0,v 0 )=p, v p = c (0) = x u (u 0,v 0 )u (0) + x v (u 0,v 0 )v (0), w p = c (0) = x u (u 0,v 0 )ū (0) + x v (u 0,v 0 ) v (0). Promotrimo krivulju d : I S d(t) =x(u 0 + t(αu (0) + βū (0),v 0 + t(αv (0) + β v (0))). Za nju vrijedi d(0) = x(u 0,v 0 )=p d (0) = x u (u 0,v 0 ) ( αu (0) + βū (0) ) + x v (u 0,v 0 ) ( αv (0) + β v (0) ) = αv p + βw p. Prema tome, αv p + βw p je tangencijalni vektor plohe S u točki p. Nadalje, pokažimo da je {x u (u 0,v 0 ), x v (u 0,v 0 )} baza za T p S. Već smo u prethodnom koraku pokazali da je navedeni skup skup izvodnica. Još trebamo utvrditi da je linearno nezavisan, a ta činjenica izlazi upravo iz uvjeta regularnosti plohe u točki p. Potprostor T p S se naziva tangencijalna ravnine plohe S u točki p. 47
4 9 Prva fundamentalna forma plohe Definicija 9.1 Prva fundamentalna forma plohe S u točki p S je simetričan, bilinearan funkcional I : T p S T p S R definiran s I(v p,w p )=v p w p = v w. Pridruženi kvadratni funkcional I : T p S R I(v p )=v p v p takoder nazivamo prvom fundamentalnom formom. Zapišimo prvu fundamentalnu formu u karti x : U R 3. Neka je v p T p S. Tada postoji krivulja c : I S takva da je c(0) = p, c (0) = v p. Neka je p = x(u 0,v 0 ). Krivulju c prikazujemo u karti c(t) =x(u(t),v(t)), te vrijedi Dakle, v p = c (0) = x u (u 0,v 0 )u (0) + x v (u 0,v 0 )v (0). I(v p )=v p v p = x 2 u(u 0,v 0 )(u (0)) 2 +2x u (u 0,v 0 ) x v (u 0,v 0 )u (0)v (0) + x 2 v(u 0,v 0 )(v (0)) 2. Definiramo funkcije E,F,G: U R E = x 2 u, F = x u x 2 v, G = x2 v. Funkcije E,F,Gnazivamo fundamentalnim veličinama prvog reda plohe S u karti x : U R 3. Neka je c : I S krivulja na plohi, c(i) x(u). Sjetimo se da je duljina luka od c definirana je s t s(t) = c (t) dt. t 0 Možemo pisati t s(t) = I c(t) (c (t))dt. Ako je c(t) = x(u(t),v(t)), tada je t s(t) = Eu (t) 2 +2Fu (t)v (t)+gv (t) 2 dt. t 0 Prethodnu jednakost pišemo i u obliku ( ds dt )2 = Eu (t) 2 +2Fu (t)v (t)+gv (t) 2, t 0 48
5 odnosno ds 2 = Edu 2 +2F dudv + Gdv 2, što takoder nazivamo prvom fundamentalnom formom (ili metričkim tenzorom) plohe S. Koeficijente prve fundamentalne forme ponekad pišemo i kao E = g 11, F = g 12 = g 21, G = g 22, što zapisujemo i matrično ( ) ( ) E F g11 g (g)= = 12. F G g 21 g 2 Kao što smo sad utvrdili, pomoću prve fundamentalne forme možemo mjeriti duljinu luka krivulja na plohi. Nadalje, možemo odrediti kut medu krivuljama i računati površinu dijela plohe. Neka su c, c : I S dvije krivulje na plohi. Tada je kut medu njima u točki njihovog presjeka c(t 0 )= c( t 0 ) jednak cos ϕ = c (t 0 ) c ( t 0 ) c (t 0 ) c ( t 0 ) = Eu ū + F (u v + v ū )+Gv v Eu 2 +2Fu v + Gv 2 Eū 2 +2F ū v + G v 2, ako je c(t) = x(u(t),v(t)), c(t) = x(ū(t), v(t)). Posebno, kut izmedu parametarskih krivulja (njihovi tangencijalni vektori su x u i x v ) jednak je cos ϕ = F. EG Površina dijela plohe definirana je kao P = U EG F 2 dudv. Primjer 1. Neka je ravnina zadana točkom p i dvama ortonormiranim vektorima a, b. Tada je x(u, v)=p + ua + vb. Prva fundamentalna forma ravnine u karti x je ds 2 = du 2 + dv 2. Primjer 2. Neka je zadan kružni cilindar parametrizacijom x(u, v)=(rcos u, r sin u, v). Prva fundamentalna forma cilindra u karti x je ds 2 = du 2 + dv 2. Primjer 3. Prva fundamentalna forma sfere radijusa r parametrizirane geografskom parametrizacijom je ds 2 = r 2 (cos u 2 du 2 + dv 2 ). 49
6 1 Odredite duljinu ekvatora. 2 Odredite duljinu nultog meridijana. 3 Odredite površinu sfere. Primjer 4. Prva fundamentalna forma torusa parametriziranog s x(u, v)=((r + r cos u) cos v, (R + r cos u) sin v, rsin u) je ds 2 = r 2 du 2 +(R + r cos u) 2. Površina torusa je P =4rRπ 2. Propozicija 9.1 Neka je x(ũ, ṽ) reparametrizacija parametrizacije x(u, v) funkcijom θ i neka su Ẽ, F, G, E,F,G pripadni koeficijenti prve fundamentalne forme. Neka je ) J = ( u ũ v ũ u ṽ v ṽ Jacobijeva matrica preslikavanja θ(ũ, ṽ) =(u, v). Tada vrijedi ( ) ( ) Ẽ F = J F G t E F J. F G Zadatak. Pokažite da se 1 duljina luka krivulje na plohi, 2 površina dijela plohe ne mijenjaju pri reparametrizaciji. 50
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
2.7 Primjene odredenih integrala
. INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
Dijagonalizacija operatora
Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite
5. PARCIJALNE DERIVACIJE
5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
M086 LA 1 M106 GRP Tema: Uvod. Operacije s vektorima.
M086 LA 1 M106 GRP Tema:.. 5. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 2 M086 LA 1, M106 GRP.. 2/17 P 1 www.fizika.unios.hr/grpua/
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE
1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar
2. KOLOKVIJ IZ MATEMATIKE 1
2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.
Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.
Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.
Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a
6 Primjena trigonometrije u planimetriji
6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije
2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos
. KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..
Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.
σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
6 Polinomi Funkcija p : R R zadana formulom
6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s
16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum
16 Lokalni ekstremi Važna primjena Taylorovog teorema odnosi se na analizu lokalnih ekstrema (minimuma odnosno maksimuma) relanih funkcija (više varijabli). Za n = 1 i f : a,b R ako funkcija ima lokalni
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
LINEARNA ALGEBRA 1, ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ, VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ
LINEARNA ALGEBRA 1 ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ 2. VEKTORSKI PROSTORI - LINEARNA (NE)ZAVISNOST SISTEM IZVODNICA BAZA Definicija 1. Neka je F
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
k a k = a. Kao i u slučaju dimenzije n = 1 samo je jedan mogući limes niza u R n :
4 Nizovi u R n Neka je A R n. Niz u A je svaka funkcija a : N A. Označavamo ga s (a k ) k. Na primjer, jedan niz u R 2 je dan s ( 1 a k = k, 1 ) k 2, k N. Definicija 4.1. Za niz (a k ) k R n kažemo da
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
APROKSIMACIJA FUNKCIJA
APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
MATEMATIKA /2012.
MATEMATIKA 2 2011./2012. 1 MATEMATIKA 2 1 MATEMATIKA 2 2 MATEMATIKA 2 3 MATEMATIKA 2 4 2 ρ O 0 1 ϕ T=(ϕ,ρ) MATEMATIKA 2 5 MATEMATIKA 2 6 z z T'' 1 O ϕ ρ T=(ϕ,ρ,z) T'=(ϕ,ρ) Π z z z0 T'' 0 z0=z0 ravnina
KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr
KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
1 Diferencijabilnost Motivacija. Kažemo da je funkcija f : a, b R derivabilna u točki c a, b ako postoji limes f f(x) f(c) (c) = lim.
1 Diferencijabilnost 11 Motivacija Kažemo da je funkcija f : a, b R derivabilna u točki c a, b ako postoji es f f(x) f(c) (c) x c x c Najbolja linearna aproksimacija funkcije f je funkcija l(x) = f(c)
MJERA I INTEGRAL 2. kolokvij 30. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!)
JMBAG IM I PZIM BOJ BODOVA MJA I INTGAL 2. kolokvij 30. lipnja 2017. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (ukupno 6 bodova) Neka je (, F, µ) prostor mjere i neka je (
PLOHE KONSTANTNE SREDNJE ZAKRIVLJENOSTI U MINKOWSKIJEVOM PROSTORU
SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Davor Devald PLOHE KONSTANTNE SREDNJE ZAKRIVLJENOSTI U MINKOWSKIJEVOM PROSTORU Diplomski rad Zagreb, 017. Voditelj rada: prof.
MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.
Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.
1 / 79 MATEMATIČKA ANALIZA II REDOVI
/ 79 MATEMATIČKA ANALIZA II REDOVI 6.. Definicija reda Promatrajmo niz Definicija reda ( ) n 2 :, 2 2 3 2 4 2,... Postupno zbrajajmo elemente niza: = + 2 2 = 5 4 + 2 2 + 3 2 = 49 36 + 2 2 + 3 2 + 4 2 =
Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.
Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Gauss, Stokes, Maxwell. Vektorski identiteti ( ),
Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
1 Aksiomatska definicija skupa realnih brojeva
1 Aksiomatska definicija skupa realnih brojeva Definicija 1 Polje realnih brojeva je skup R = {x, y, z...} u kojemu su definirane dvije binarne operacije zbrajanje (oznaka +) i množenje (oznaka ) i jedna binarna
MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2
(kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
Osnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
Poglavlje 1 GRAM-SCHMIDTOV POSTUPAK ORTOGONALIZACIJE. 1.1 Ortonormirani skupovi
Poglavlje 1 GRAM-SCHMIDTOV POSTUPAK ORTOGONALIZACIJE 1.1 Ortonormirani skupovi Prije nego krenemo na sami algoritam, uvjerimo se koliko je korisno raditi sa ortonormiranim skupovima u unitarnom prostoru.
Linearna algebra I, zimski semestar 2007/2008
Linearna algebra I, zimski semestar 2007/2008 Predavanja: Nenad Bakić, Vježbe: Luka Grubišić i Maja Starčević 22. listopada 2007. 1 Prostor radijvektora i sustavi linearni jednadžbi Neka je E 3 trodimenzionalni
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka
1 Afina geometrija 11 Afini prostor Definicija 11 Pod afinim prostorom nad poljem K podrazumevamo svaku uređenu trojku (A, V, +): A - skup taqaka V - vektorski prostor nad poljem K + : A V A - preslikavanje
IZRAČUNAVANJE KONAČNIH SUMA METODIMA DIFERENTNOG RAČUNA
IZRAČUNAVANJE KONAČNIH SUMA METODIMA DIFERENTNOG RAČUNA Izlaganje - Seminar za matematičare, Fojnica 2017.g. Prof. dr. MEHMED NURKANOVIĆ Prirodno-matematički fakultet Univerziteta u Tuzli 13.01.2015. godine
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
Analitička geometrija i linearna algebra
1. VEKTORI POJAM VEKTORA Svakodnevno se susrećemo s veličinama za čije je određivanje potrean samo jedan roj. Na primjer udaljenost, površina, volumen,. Njih zovemo skalarnim veličinama. Međutim, postoje
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Uvod u teoriju brojeva
Uvod u teoriju brojeva 2. Kongruencije Borka Jadrijević Borka Jadrijević () UTB 2 1 / 25 2. Kongruencije Kongruencija - izjava o djeljivosti; Teoriju kongruencija uveo je C. F. Gauss 1801. De nicija (2.1)
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Linearna algebra za fizičare, zimski semestar Mirko Primc
Linearna algebra za fizičare, zimski semestar 006. Mirko Primc Sadržaj Poglavlje 1. Vektorski prostor R n 5 1. Vektorski prostor R n 6. Geometrijska interpretacija vektorskih prostora R i R 3 11 3. Linearne
( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,
π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo:
2 Skupovi Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: A B def ( x)(x A x B) Kažemo da su skupovi A i
POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA
POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Pravčaste plohe u prostoru Minkowskog
Sveučilište u Zagrebu PMF - Matematički odjel Josip Kličinović Pravčaste plohe u prostoru Minkowskog Diplomski rad Zagreb, srpanj 2009. Sveučilište u Zagrebu PMF - Matematički odjel Josip Kličinović Pravčaste
RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.
Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
REKURZIVNE FUNKCIJE PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK. Diplomski rad. Voditelj rada: Doc.dr.sc.
SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Brigita Švec REKURZIVNE FUNKCIJE Diplomski rad Voditelj rada: Doc.dr.sc. Zvonko Iljazović Zagreb, Rujan, 2014. Ovaj diplomski
Dužina luka i oskulatorna ravan
Dužina luka i oskulatorna ravan Diferencijalna geometrija Vježbe Rješenja predati na predavanjima, u srijedu 9. ožujka 16. god. Zadatak 1. Pokazati da je dužina luka invarijantna pod reparametrizacijom
Zadaci iz Osnova matematike
Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F
Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO
Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se
Geometrija (I smer) deo 1: Vektori
Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana.
Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana. Zadatak 2 Dokazati da se visine trougla seku u jednoj tački ortocentar. 1 Dvostruki vektorski proizvod Važi
Diferencijalni i integralni račun I. Prirodoslovno matematički fakultet
Diferencijalni i integralni račun I Saša Krešić-Jurić Prirodoslovno matematički fakultet Sveučilište u Splitu Sadržaj Skupovi i funkcije. Skupovi N, Z i Q................................. 4.2 Skup realnih
2.6 Nepravi integrali
66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( )
Zadatak (Mariela, gimazija) Nađite derivaciju fukcije f() a + b c + d Rješeje Neka su f(), g(), h() fukcije ezavise varijable, a f (), g (), h () derivacije tih fukcija po Osova pravila deriviraja Derivacija
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE
Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )
4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i
Sdržj 4 INTEGRALI 64 4. Neodredeni integrl........................ 64 4. Integrirnje supstitucijom.................... 68 4. Prcijln integrcij....................... 7 4.4 Odredeni integrl i rčunnje površine
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Funkcija (, ) ima ekstrem u tocki, ako je razlika izmedju bilo koje aplikate u okolini tocke, i aplikate, tocke, : Uvede li se zamjena: i dobije se:
4. FUNKCIJE DVIJU ILI VISE PROMJENJIVIH 4. Ekstremi funkcija dviju promjenjivih z = f y ( y) ( y) z ( y) ( ) ( ) (, ) (, ) Funkcija (, ) ima ekstrem u tocki, ako je razlika izmedju bilo koje aplikate u