Bočno-torziono izvijanje. Metalne konstrukcije 1 P7-1
|
|
- Ἀντίπας Μπουκουβαλαίοι
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Bočno-torziono izvijanje etalne konstrukcije 1 P7-1
2 etalne konstrukcije 1 P7-
3 etalne konstrukcije 1 P7-3
4 Teorijske osnove Problem je prvi analizirao Timošenko. Linearno elastična teorija bočno-torzionog izvijanja. Osnovne pretpostavke su: materijal idealno elastičan; nosač idealno prav (nema geometrijskih imperfekcija); sprečena je torziona rotacija na osloncima (viljuškasti oslonci); poprečni presek nosača je obostrano simetričan i konstantan duž raspona nosača (I presek); poprečni presek zadržava svoj oblik nakon deformacije; moment inercije I z je mnogo manji od I y ; deformacije su male (sinj =j; cosj=1); etalne konstrukcije 1 P7-4
5 Deformisan oblik nosača y cosj y y sinj y j T y dv dx etalne konstrukcije 1 P7-5
6 Osnovne diferencijalne jednačine problema y EI y d w( x) dx Savijanje oko jače y-y ose y j EI z d v( x) dx Savijanje oko slabije z-z ose T y dv dx GI t dj EI dx w d 3 dx j 3 Torzija EI y EI z I t I w krutost na savijanje oko jače ose, krutost na savijanje oko slabije ose, torzioni moment inercije, sektorski moment inercije, etalne konstrukcije 1 P8-6 v, w i j nepoznata generalisana pomeranja. P7-6
7 Diferencijalna jednačina bočno-torzionog izvijanja EI w 4 d j GI 4 dx t d j dx EI y z j 0 Granični uslovi j( 0) 0 d j( 0) j( 0) 0 dx j(l) 0 d j( L) j( L) 0 dx Pretpostavljen oblik rešenja j( x) A sin( m x) B cos( m x) C sh( n x) D ch( n x) etalne konstrukcije 1 P7-7
8 Kritičan moment bočno-torzionog izvijanja - cr EIz Iw L cr L I z GI EI t z ili cr EI z EI GI t L L w Dati izrazi važe za viljuškasto oslanjanje na krajevima i konstantan dijagram momenata. Označava se i sa cr,e! EI z GI t I w L krutost na savijanje oko slabije ose, torziona krutost sektorski moment inercije, raspon nosača (razmak tačaka bočnog pridržavanja). etalne konstrukcije 1 P7-8
9 Faktori od uticaja na vrednost cr Krutost nosača (I t, I z i I w ); Uslovi bočnog oslanjanja; Način naprezanja (oblik dijagrama momenata savijanja); Položaj poprečnog opterećenja u odnosu na centar smicanja poprečnog preseka; Oblik poprečnog preseka (simetričan ili monosimetričan); etalne konstrukcije 1 P7-9
10 Različiti uslovi oslanjanja i opterećenja etalne konstrukcije 1 P7-10
11 Uticaj dijagrama momenata savijanja cr EI z EI m cr, E m GI t L L w m m 175, 105, 0, 3 m, 56 P7-11
12 Parametar m
13 odifikovan izraz za kritičan moment cr EI z k Iw kl GIt cr C1 g 3 j g 3 kl kw Iz EI z C 1 C C 3 k i k w z g z j C z C z C z C z koeficijent koji uvodi u proračun različite oblike dijagrama momenata (C 1 = m ); koeficijent kojim se uzima u obzir položaj poprečnog opterećenja u odnosu na centar smicanja; koeficijent kojim se uzima u obzir nepoklapanje težišta i centra smicanja; koeficijenti kojima se obuhvataju različiti uslovi oslanjanja; rastojanje između centra smicanja i tačke u kojoj deluje opterećenje; parametar koji uzima u obzir stepen asimetrije poprečnog preseka kod monosimetričnih preseka; Za kompleksnije slučajeve cr može da se odredi primenom FE ili prikladnog softvera (npr. LTBeam) P7-13 j
14 Koeficijenti C 1, C i C 3 etalne konstrukcije 1 P7-14
15 onosimetrični poprečni preseci i uticaj položaja opterećenja z g z Q z s Rastojanja (z Q i z s ) su pozitivna kada se nalaze u prtisnutom delu preska, a negativne kada se nalaze u zategnutoj zoni! z j z s etalne konstrukcije 1 P I y A ( y z ) z da
16 etalne konstrukcije 1 P7-16
17 Uticaj položaja poprečnog opterećenja na vrednost cr etalne konstrukcije 1 P7-17
18 Granična nosivost nosača na bočnotorziono izvijanje Uticaj imperfekcija (zaostali naponi, početne geometrijske imperfekcije,...); Granična vrednost momenta nosivost ( u ) je manja od kritičnog momenta bočno-torzionog izvijanja ( cr ) ; Stvarno ponašanje nosača odstupa od bifurkacionog modela stabilnosti etalne konstrukcije 1 P7-18
19 Bočno-torziono izvijanje nosača sa početnim geometrijskim imperfekcijama v x ( x) 0 sin L 0 x j0( x) 0 sin L 0 0 N cr cr, z početna imperfekcija bočnog pomeranja (savijanje oko z-z ose) početna imperfekcija obrtanja preseka (uniformna i ograničena torzija) odifikovane diferencijalne jednačine: y v( x) ( j j ) EI 0 z d v( x) dx y / cr x 0 sin 1 / L y cr vrednost amplituda početnih imperfekcija su međusobno zavisne! GI Rešenja diferencijalne jednačine: t dj EI dx j( x) w 0 3 d j 3 dx y 1 y / y cr / d( v v0 ) dx cr x sin L etalne konstrukcije 1 P7-19
20 Uticaj geometrijskih imperfekcija etalne konstrukcije 1 P7-0
21 Graničan moment nosivosti na bočno-torziono izvijanje u aksimalan napon u najopterećenijem preseku (x=l/): max, Ed W y, Ed el, y EI W z el, z d v x j dx x Graničan moment u se dobija iz uslova h s / x L / max, Ed f y u y, Rk Φ LT 1 Φ LT LT ΦLT 1 1 LT uticaj početnih imperfekcija etalne konstrukcije 1 P7-1
22 Relativna (bezdimenzionalna) vitkost za bočno-torziono izvijanje LT y, Rk cr cr kritični moment bočno-torzionog izvijanja; y,rk karakterističan moment nosivosti poprečnog preseka; y,rk = y,pl za preseke klase 1 i ; y,rk = y,el za preseke klase 3; y,rk = y,eff za preseke klase 4. etalne konstrukcije 1 P7-
23 Veza granični moment - bezdimenzionalna vitkost etalne konstrukcije 1 P7-3
24 Proračun nosivosti elementa na bočnotorziono izvijanje prema EC3 Ed b, Rd 1,0 b, Rd LTWyfy / 1 W y W W W pl, y el,min, y eff,min, y zaklase 1i zaklasu 3 zaklasu 4 Ed proračunska vrednost momenta savijanja; b,rd proračunska nosivost na bočno-torziono izvijanje; LT bezdimenzionalni koeficijent bočno-torzionog izvijanja; W y odgovarajući otporni moment; granica razvlačenja. f y etalne konstrukcije 1 P7-4
25 Bezdimenzionalni koeficijent bočnotorzionog izvijanja LT Evrokod 3 daje dve alternative za proračun: Opšta metoda (za sve oblike preseka, daje konzervativnije vrednosti); etoda za standardne vrućevaljane profile i ekvivalentne (obostrano simetrične) zavarene profile. Pored toga, postoji uprošćena metoda za mestimično bočno-pridržane nosače u zgradarstvu. etalne konstrukcije 1 P7-5
26 Opšta metoda LT LT 1 LT LT 1 LT 0, 51 LT ( LT 0, LT ) LT koeficijent imperfekcije za bočno-torziono izvijanje Oblik poprečnog preseka Vrućevaljani I preseci Zavareni I preseci h/b h/b h/b h/b Kriva izvijanja a b c d LT 0,1 0,34 0,49 0,76 Ostali poprečni preseci - d 0,76 etalne konstrukcije 1 P7-6
27 etoda za vrućevaljane profile LT 0, 51 LT ( LT LT, 0 LT ) 0,75 LT, 0 0, 4 Poprečni preseci Vrućevaljani I preseci Zavareni I preseci h/b h/b h/b h/b Kriva izvijanja b c c d LT 0,34 0,49 0,49 0,76 etalne konstrukcije 1 P7-7
28 Poređenje opšte metode i metode za valjane profile 1,1 1,0 0,9 0,8 0,7 Opšta metoda etoda za valjane profile 0,6 0,5 0,4 0,3 0, 0,1 0,0 0,0 0,5 1,0 1,5,0,5 3,0 etalne konstrukcije 1 P7-8
29 odifikovana vrednost koeficijenta LT,mod LT, mod f LT 1 f 1 0, 5 ( 1 ) 1 ( 0, 8) k c LT k c 1 / C1 1/ m Uticaj oblika dijagrama momenat se uzima preko modifikovanog koeficijenta. odifikovani koeficijent LT,mod se koristi umesto koeficijenta LT. Ne primenjuje se za opštu metodu! etalne konstrukcije 1 P7-9
30 Kada ne treba kontrolisati bočno-torziono izvijanje? Kod nosača koji su kontinualno, ili dovoljno često bočno pridržani u nivou pritisnute nožice; Kod nosača zatvorenih poprečnih preseka kružnog i kvadratnog poprečnog preseka; Kod poravougaonih šupljih profili kod kojih je odnos visina/širina preseka manji od 10 (h/b < 10), ili (prema Kaimu): h / b 10 / gde je z z relativna vitkost na izvijanje oko slabije z-z ose; Bočno-torziono izvijanje nije merodavno kada je relativna vitkost manja od 0,4, kao i kada je: y, Ed cr LT /,0 0, 16 etalne konstrukcije 1 P7-30
31 ere za povećanje nosivosti na bočnotorziono izvijanje Problem bočno-torzionog izvijanja može se reši sledećim konstruktivnim merama: obezbeđenjem bočnog pridržavanja pritisnute nožice, progušćavanjem tačaka njenog bočnog pridržavanja, promenom oblika poprečnog preseka nosača, odnosno usvajanjem poprečnih preseka koji su manje osetljivi (HEA, HEB), ili neosetljivi na bočno-torziono izvijanje kao što su zatvoreni (sandučasti) poprečni preseci. etalne konstrukcije 1 P7-31
32 Kontrola razmaka tačaka bočnog pridržavanja Kod bočno pridržanih nosača u zgradarstvu bočno-torziono izvijanje ne treba proveravati kada je: f k i c f, z Lc 1 c0 c, Rd y, Ed L c razmak između susednih tačaka bočnog pridržavanja; k c koeficijent korekcije kojim se uzima u obzir oblik dijagrama momenata; i f,z poluprečnik inercije ekvivalentne pritisnute nožice; 1 vitkost na granici razvlačenja; y,ed maksimalna proračunska vrednost momenta savijanja između tačaka pridržavanja; c,rd proračunska nosivost poprečnog preseka na savijanje oko y-y ose; granična relativna vitkost LT, 0 1 0, 4 0, c 0 0, c 0, etalne konstrukcije 1 P7-3
33 Ekvivalentna pritisnuta nožica etalne konstrukcije 1 P7-33
34 Uprošćena metoda za mestimično bočno pridržane nosače u zgradarstvu Kod bočno pridržanih nosača kod kojih razmak tačaka bočnog pridržavanja nije dovoljno mali, odnosno kada je relativna vitkost ekvivalentne pritisnute nožice veća od granične, moment nosivosti na bočno-torziono izvijanje može da se odredi kao: b, Rd kfl c, Rd k fl koeficijent modifikacije (Evrokod 3 preporučuje: k fl = 1,10); bezdimenzionalni koeficijent izvijanja ekvivalentne pritisnute nožice. Koeficijent k fl se određuje na osnovu relativne vitkosti ekvivalentne pritisnute nožice i odgovarajuće krive izvijanja: - kriva d za zavarene preseke kod kojih je h/t f 44 ; - kriva c za sve ostale preseke; gde je h ukupna visina poprečnog preseka, a t f debljina pritisnute nožice. etalne konstrukcije 1 P7-34
35 Bočno pridržavanje nosača m 0, 51 1 m h e0 ml / 500 Spreg mora da bude sposoban da prihvati uticaje u svojoj ravni: q d e0 q e0 Ed q 8 NEd 8 L h L Ed maksimalna proračunska vrednost momenta savijanja duž nosača; e 0 imperfekcija; q deformacija sprega u svojoj ravni usled opterećenja q (Iterativan postupak kako bi se uzeli uticaji II reda); Kada se za proračun primenjuje teorija II reda: q =0; m broj nosača koji su pridržani spregom; h visina nosača etalne konstrukcije 1 P7-35
Proračun nosivosti elemenata
Proračun nosivosti elemenata EC9 obrađuje sve fenomene vezane za stabilnost elemenata aluminijumskih konstrukcija: Izvijanje pritisnutih štapova; Bočno-torziono izvijanje nosača Izvijanje ekscentrično
Διαβάστε περισσότεραZadatak 4b- Dimenzionisanje rožnjače
Zadatak 4b- Dimenzionisanje rožnjače Rožnjača je statičkog sistema kontinualnog nosača raspona L= 5x6,0m. Usvaja se hladnooblikovani šuplji profil pravougaonog poprečnog preseka. Raster rožnjača: λ r 2.5m
Διαβάστε περισσότεραAksijalno pritisnuti štapovi konstantnog višedelnog preseka
Aksijalno pritisnuti štapovi konstantnog višedelnog preseka Metalne konstrukcije 1 P6-1 Osobenosti višedelnih štapova Poprečni presek se sastoji od više samostalnih elemenata koji su mestimično povezani;
Διαβάστε περισσότεραBetonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
Διαβάστε περισσότεραMETALNE KONSTRUKCIJE ZGRADA
METALNE KONSTRUKCIJE ZGRADA 1 Skr. predmeta i red. br. teme Dodatne napomene objašnjenja uputstva RASPORED SADRŽAJA NA SLAJDOVIMA NASLOV TEME PODNASLOVI Osnovni sadržaj. Važniji pojmovi i sadržaji su štampani
Διαβάστε περισσότερα30 kn/m. - zamenimo oslonce sa reakcijama oslonaca. - postavimo uslove ravnoteže. - iz uslova ravnoteže odredimo nepoznate reakcije oslonaca
. Za zadati nosač odrediti: a) Statičke uticaje (, i T) a=.50 m b) Dimenzionisati nosač u kritičnom preseku i proveriti normalne, smičuće i uporedne napone F=00 k F=50 k q=30 k/m a a a a Kvalitet čelika:
Διαβάστε περισσότεραIspitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Διαβάστε περισσότερα( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min
Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu
Διαβάστε περισσότεραTeorija betonskih konstrukcija 1. Vežbe br. 4. GF Beograd
Teorija betonskih konstrukcija 1 Vežbe br. 4 GF Beograd Teorija betonskih konstrukcija 1 1 "T" preseci - VEZANO dimenzionisanje Poznato: statički uticaji (M G,Q ) sračunato kvalitet materijala (f cd, f
Διαβάστε περισσότερα3525$&8158&1(',=$/,&(6$1$92-1,095(7(120
Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno
Διαβάστε περισσότεραTipski fasadni stubovi u podužnim zidovima hale
Tipski fasadni stubovi u podužnim zidovima hale Univerzitet u Beogradu Tipski fasadni stub u podužnom zidu Fasadni stub u poduz nom zidu je staticǩog sistema kontinualnog nosacǎ na dva polja cǐji su rasponi:
Διαβάστε περισσότεραDIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE
TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne
Διαβάστε περισσότεραOM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
Διαβάστε περισσότεραProračunski model - pravougaoni presek
Proračunski model - pravougaoni presek 1 ε b 3.5 σ b f B "" ηx M u y b x D bu G b h N u z d y b1 a1 "1" b ε a1 10 Z au a 1 Složeno savijanje - VEZNO dimenzionisanje Poznato: statički uticaji za (M i, N
Διαβάστε περισσότεραPREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar
PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar Prof dr email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj
Διαβάστε περισσότεραKrute veze sa čeonom pločom
Krute veze sa čeonom pločom Metalne konstrukcije 2 P6-1 Polje primene krutih veza sa čeonom pločom Najčešće se koriste za : Veze greda sa stubovima kod okvirnih nosača; Montažne nastavke nosača; Kontinuiranje
Διαβάστε περισσότερα1. Dimenzionisanje poprečnog preseka nosača. Pretpostavlja se poprečni presek HEB 600. Osnovni materijal S235 f y 235MPa f u 360MPa
a. zadatak Sračuna i konstruisa montažni nastavak nosača izrađenog od vruce valjanog profila prema zadam presečnim silama:ved = 300 kn MEd = 1000 knm. Za nosač usvoji odgovarajući HEB valjani profil. Nastavak
Διαβάστε περισσότεραCENTRIČNO PRITISNUTI ELEMENTI
3/7/013 CETRIČO PRITISUTI ELEMETI 1 Primeri primene 1 3/7/013 Oblici poprečnih presea 3 Specifičnosti pritisnutih elemenata ivijanje Konrola napona u poprečnom preseu nije dovoljan uslov a dimenionisanje;
Διαβάστε περισσότεραKonstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE
Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i
Διαβάστε περισσότεραPRESECI SA PRSLINOM - VELIKI EKSCENTRICITET
TEORIJA BETONSKIH KONSTRUKCIJA 1 PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET ODREĐIVANJE MOMENTA LOMA - "T" PRESEK Na skici dole su prikazane sve potrene geometrijske veličine, dijagrami dilatacija i napona,
Διαβάστε περισσότεραBETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar
BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj
Διαβάστε περισσότερα4. PREDAVANJE ČISTO PRAVO SAVIJANJE OTPORNOST MATERIJALA I
4. PREDAVANJE ČISTO PRAVO SAVIJANJE OTPORNOST MATERIJALA I Čisto pravo savijanje Pod čistim savijanjem grede podrazumeva se naprezanje pri kome su sve komponente unutrašnjih sila jednake nuli, osim momenta
Διαβάστε περισσότεραBETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar
BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj
Διαβάστε περισσότεραf 24 N/mm E N/mm 1,3 1,35 1,5
PRIER 6 Za drvenu rožnjaču pravougaonog poprečnog preseka b/h = 14/4 cm sprovesti dokaz nosivosti i upotrebljivosti. Rožnjača je statičkog sistema proste grede, rapona 4, m i opterećena u svema prama skici.
Διαβάστε περισσότεραBETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar
BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj
Διαβάστε περισσότεραGRAĐEVINSKI FAKULTET U BEOGRADU Modul za konstrukcije PROJEKTOVANJE I GRAĐENJE BETONSKIH KONSTRUKCIJA 1 NOVI NASTAVNI PLAN
GRAĐEVINSKI FAKULTET U BEOGRADU pismeni ispit Modul za konstrukcije 16.06.009. NOVI NASTAVNI PLAN p 1 8 /m p 1 8 /m 1-1 POS 3 POS S1 40/d? POS 1 d p 16 cm 0/60 d? p 8 /m POS 5 POS d p 16 cm 0/60 3.0 m
Διαβάστε περισσότεραPREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar
PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar Prof dr email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj
Διαβάστε περισσότεραPRORAČUN GLAVNOG KROVNOG NOSAČA
PRORAČUN GLAVNOG KROVNOG NOSAČA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL Statički sustav glavnog krovnog nosača je slobodno oslonjena greda raspona l11,0 m. 45 0 65 ZAŠTITNI SLOJ BETONA
Διαβάστε περισσότεραInženjerska grafika geometrijskih oblika (5. predavanje, tema1)
Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija
Διαβάστε περισσότεραBETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar
BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj
Διαβάστε περισσότερα, 81, 5?J,. 1o~",mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pt"en:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M.
J r_jl v. el7l1 povr.sl?lj pt"en:nt7 cf \ L.sj,,;, ocredz' 3 Q),sof'stvene f1?(j'me")7e?j1erc!je b) po{o!.aj 'i1m/' ce/y11ra.[,p! (j'j,a 1lerc!/e
Διαβάστε περισσότεραDimenzionisanje štapova izloženih uvijanju na osnovu dozvoljenog tangencijalnog napona.
Dimenzionisanje štapova izloženih uvijanju na osnovu dozvoljenog tangencijalnog napona Prema osnovnoj formuli za dimenzionisanje maksimalni tangencijalni napon τ max koji se javlja u štapu mora biti manji
Διαβάστε περισσότεραl r redukovana dužina (zavisno od dužine i načina vezivanja)
Vežbe 6 IZVIJANJE 1 IZVIJANJE Izvijanje se javlja kod aksijalno napregnutih štapova na pritisak, kada imaju relativno veliku dužinu u odnosu na površinu poprečnog preseka. Zbog postojanja geometrijskih
Διαβάστε περισσότεραOznač Ozna avanje legura Serije Al-legura Serija 1XXX Serija 2XXX Serija 3XXX Serija 4XXX Serija 5XXX Serija 6XXX Serija 7XXX Serija 8XXX
Označavanje Al-legura legura Aluminijumske legure su, u zavisnosti od legirajućih elemenata i stanja proizvoda, podeljene u serije. Usvojen je numerički sistem označavanja pomoću četvorocifrenih arapskih
Διαβάστε περισσότεραBETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar
BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj
Διαβάστε περισσότεραPRESECI SA PRSLINOM - VELIKI EKSCENTRICITET
TEORIJA BETONSKIH KONSTRUKCIJA PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET ODREĐIVANJE MOMENTA LOMA - PRAVOUGAONI PRESEK Moment loma za pravougaoni presek prikazan na skici odrediti za slučajeve:. kada
Διαβάστε περισσότεραBETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar
BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj
Διαβάστε περισσότεραSISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
Διαβάστε περισσότεραPrvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum
27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.
Διαβάστε περισσότεραPROSTA GREDA (PROSTO OSLONJENA GREDA)
ROS GRED (ROSO OSONJEN GRED) oprečna sila i moment savijanja u gredi y a b c d e a) Zadana greda s opterećenjem l b) Sile opterećenja na gredu c) Određivanje sila presjeka grede u presjeku a) Unutrašnje
Διαβάστε περισσότεραDimenzioniranje nosaa. 1. Uvjeti vrstoe
Dimenzioniranje nosaa 1. Uvjeti vrstoe 1 Otpornost materijala prouava probleme 1. vrstoe,. krutosti i 3. elastine stabilnosti konstrukcija i dijelova konstrukcija od vrstog deformabilnog materijala. Moraju
Διαβάστε περισσότεραnumeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Διαβάστε περισσότερα( ) BROJNI PRIMER 4. Temeljni nosač na sloju peska. Slika 6.3. Rešenje: Ekvivalentni modul reakcije podloge/peska k i parametar krutosti λ :
BROJNI PRIMER 4 Armrano etonsk temeljn nosač (slka 63), fundran je na dun od D f =15m, u sloju poto-pljenog peska relatvne zjenost D r 75% Odredt sleganje w, nag θ, transverzalnu slu T, moment savjanja
Διαβάστε περισσότεραFTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
Διαβάστε περισσότεραUZDUŽNA DINAMIKA VOZILA
UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,
Διαβάστε περισσότερα10. STABILNOST KOSINA
MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg
Διαβάστε περισσότεραIspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Διαβάστε περισσότεραGRAĐEVINSKI FAKULTET U BEOGRADU Odsek za konstrukcije TEORIJA BETONSKIH KONSTRUKCIJA (NOVI NASTAVNI PLAN)
Odsek za konstrukcije 27.01.2009. TEORIJA BETONSKIH KONSTRUKCIJA (NOVI NASTAVNI PLAN) 1. Za AB element konstantnog poprečnog preseka, armiran prema skici desno, opterećen aksijalnom silom G=10 kn usled
Διαβάστε περισσότεραOdređivanje statičke šeme glavnog nosača
1 PRORAČUN GLAVNIH NOSAČA Određivanje statičke šeme glavnog nosača Konstrukcijska i statička šema za jednobrodnu halu Konstrukcijska i statička šema za dvobrodnu halu 3 Metode globalne analize materijalna
Διαβάστε περισσότεραZgradarstvo : Mostogradnja: Specijalne (inženjerske) konstrukcije: Prednosti čeličnih konstrukcija Nedostaci čeličnih konstrukcija
1. Primena celicnih konstrukcija u gradjevinarstvu Zgradarstvo : sportske dvorane izložbene hale, višespratne zgrade, industrijske hale, krovovi stadiona, hangari... Mostogradnja: drumski mostovi, železnički
Διαβάστε περισσότεραRačunarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Διαβάστε περισσότεραElementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Διαβάστε περισσότεραNovi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
Διαβάστε περισσότεραPRETHODNI PRORACUN VRATILA (dimenzionisanje vratila)
Predet: Mašinski eleenti Proračun vratila strana Dienzionisati vratilo elektrootora sledecih karakteristika: oinalna snaga P = 3kW roj obrtaja n = 400 in Shea opterecenja: Faktor neravnoernosti K =. F
Διαβάστε περισσότερα3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Διαβάστε περισσότεραMatematka 1 Zadaci za drugi kolokvijum
Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()
Διαβάστε περισσότεραBETONSKE KONSTRUKCIJE 2
BETONSE ONSTRUCIJE 2 vježbe, 31.10.2017. 31.10.2017. DATUM SATI TEMATSA CJELINA 10.- 11.10.2017. 2 17.-18.10.2017. 2 24.-25.10.2017. 2 31.10.- 1.11.2017. uvod ponljanje poznatih postupaka dimenzioniranja
Διαβάστε περισσότεραII. ODREĐIVANJE POLOŽAJA TEŽIŠTA
II. ODREĐIVANJE POLOŽAJA TEŽIŠTA Poožaj težišta vozia predstavja jednu od bitnih konstruktivnih karakteristika vozia s obzirom da ova konstruktivna karakteristika ima veiki uticaj na vučne karakteristike
Διαβάστε περισσότεραPRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)
PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni
Διαβάστε περισσότεραLOGO ISPITIVANJE MATERIJALA ZATEZANJEM
LOGO ISPITIVANJE MATERIJALA ZATEZANJEM Vrste opterećenja Ispitivanje zatezanjem Svojstva otpornosti materijala Zatezna čvrstoća Granica tečenja Granica proporcionalnosti Granica elastičnosti Modul
Διαβάστε περισσότεραSavijanje statički neodređeni nosači
Savijanje statički neodređeni nosači Statička neodređenost nosača Uslovi neprekidnosti elastične linije Prva jednačina savijanja Normalni napon u nekoj tački poprečnog preseka s M moment sprega s z M I
Διαβάστε περισσότεραMEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti
MEHANIKA FLUIDA Isticanje kroz otvore sa promenljivim nivoom tečnosti zadatak Prizmatična sud podeljen je vertikalnom pregradom, u kojoj je otvor prečnika d, na dve komore Leva komora je napunjena vodom
Διαβάστε περισσότεραPRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Διαβάστε περισσότεραBetonske konstrukcije 1 - vežbe 1 -
Betonske konstrukcije 1 - vežbe 1 - Savijanje pravougaoni presek Sadržaj vežbi: Osnove proračuna Primer 1 vezano dimenzionisanje Primer 2 slobodno dimenzionisanje 1 SLOŽENO savijanje ε cu2 =3.5ä β2x G
Διαβάστε περισσότεραPonašanje pneumatika pod dejstvom bočne sile
Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA
Διαβάστε περισσότεραOtpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
Διαβάστε περισσότεραGRAĐEVINSKI FAKULTET U BEOGRADU Odsek za konstrukcije TEORIJA BETONSKIH KONSTRUKCIJA grupa A
Odsek za konstrukcije 25.01.2012. grupa A 1. 1.1 Za nosač prikazan na skici 1 odrediti dijagrame presečnih sila. Sopstvena težina je uključena u stalno opterećenje (g), a povremeno opterećenje (P1 i P2)
Διαβάστε περισσότερα4. STATIČKI PRORAČUN STUBIŠTA
JBG 4. STTIČKI PRORČUN STUBIŠT PROGR IZ KOLEGIJ BETONSKE I ZIDNE KONSTRUKCIJE 9 6 5 5 SVEUČILIŠTE U ZGREBU JBG 4. Statiči proračun stubišta 4.. Stubišni ra 4... naliza opterećenja 5 5 4 6 8 0 Slia 4..
Διαβάστε περισσότεραMETALNE I DRVENE KONSTRUKCIJE VEŽBE BR.1-1. Označavanje čelika je visoko standardizovano. Usvojen je Evropski sistem označavanja.
3/7/013 Označavanjeavanje čelika i osnove proračuna METLNE I DRVENE KONSTRUKCIJE VEŽBE BR.1-1 1 Označavanje čelika Označavanje čelika je visoko standardizovano. Usvojen je Evropski sistem označavanja.
Διαβάστε περισσότεραIzvođenje diferencijalne jednačine elastične linije elastična linija kod proste grede elastična linija kod konzole
Izvođenje diferencijalne jednačine elastične linije Elastična linija, čija je jednačina y(z), je krivolinijski oblik ose nosača izazvan opterećenjem. Koordinatni sistem ćemo uvek uzimati tako da je koordinatni
Διαβάστε περισσότεραApsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
Διαβάστε περισσότεραKolegij: Konstrukcije Rješenje zadatka 2. Okno Građevinski fakultet u Zagrebu. Efektivna. Jedinična težina. 1. Glina 18,5 21,
Kolegij: Konstrukcije 017. Rješenje zadatka. Okno Građevinski fakultet u Zagrebu 1. ULAZNI PARAETRI. RAČUNSKE VRIJEDNOSTI PARAETARA ATERIJALA.1. Karakteristične vrijednosti parametara tla Efektivna Sloj
Διαβάστε περισσότεραPonašanje pneumatika pod dejstvom bočne sile
Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA
Διαβάστε περισσότεραTEORIJA BETONSKIH KONSTRUKCIJA 79
TEORIJA BETOSKIH KOSTRUKCIJA 79 Primer 1. Odrediti potrebn površin armatre za stb poznatih dimenzija, pravogaonog poprečnog preseka, opterećen momentima savijanja sled stalnog ( g ) i povremenog ( w )
Διαβάστε περισσότεραOsnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
Διαβάστε περισσότεραKontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
Διαβάστε περισσότεραZadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Διαβάστε περισσότερα1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja
Διαβάστε περισσότεραII. ODREĐIVANJE POLOŽAJA TEŽIŠTA
II. ODREĐIVANJE POLOŽAJA TEŽIŠTA Poožaj težišta vozia predstavja jednu od bitnih konstruktivnih karakteristika vozia s obzirom da ova konstruktivna karakteristika ima veiki uticaj na vučne karakteristike
Διαβάστε περισσότεραOsnovne vrste naprezanja: Aksijalno naprezanje Smicanje Uvijanje. Savijanje. Izvijanje
Osnovne vrste napreanja: ksijalno napreanje Smicanje Uvijanje Savijanje Ivijanje 1 SVIJNJE GREDE SI Greda je opterećena na desnom kraju silom paralelno jednoj od glavnih centralnih osa inercije (y osi).
Διαβάστε περισσότεραBETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar
BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj
Διαβάστε περισσότεραRačunarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Διαβάστε περισσότεραAkvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.
Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34
Διαβάστε περισσότεραPRESECI SA PRSLINOM - VELIKI EKSCENTRICITET
TEORIJ ETONSKIH KONSTRUKCIJ 1 PRESECI S PRSLINO - VELIKI EKSCENTRICITET ČISTO SVIJNJE - VEZNO DIENZIONISNJE Poznato: - statički ticaji za pojedina opterećenja ( i ) - kalitet materijala (f, σ ) - dimenzije
Διαβάστε περισσότεραUNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Διαβάστε περισσότεραZavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
Διαβάστε περισσότεραFTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
Διαβάστε περισσότεραGRAĐEVINSKI FAKULTET U BEOGRADU pismeni ispit ODSEK ZA KONSTRUKCIJE TEORIJA BETONSKIH KONSTRUKCIJA. grupa A. p=60 kn/m. 7.
ODSEK ZA KONSTRUKCIJE 28.01.2015. grupa A g=50 kn/m p=60 kn/m 60 45 15 75 MB 35, RA 400/500 7.5 m 5 m 25 1.1 Odrediti potrebnu površinu armature u karakterističnim presecima (preseci na mestima maksimalnih
Διαβάστε περισσότερα35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD
Predmet: Mašinski elementi Proraþun vratila strana 1 Dimenzionisati vratilo elektromotora sledecih karakteristika: ominalna snaga P 3kW Broj obrtaja n 14 min 1 Shema opterecenja: Faktor neravnomernosti
Διαβάστε περισσότεραTEHNIČKA MEHANIKA I 9. PREDAVANJE SILE U PRESEKU GREDNOG NOSAČA. Str knjiga Poglavlje 12 Unutrašnje sile
5.5.2016 1 TEHNIČKA MEHANIKA I 9. PREDAVANJE SILE U PRESEKU GREDNOG NOSAČA Str 267-290 knjiga Poglavlje 12 Unutrašnje sile 5.5.2016 2 ŠTA ĆEMO NAUČITI U OVOM POGLAVLJU? Određivanje unutrašnjih sila u presecima
Διαβάστε περισσότεραOpšte KROVNI POKRIVAČI I
1 KROVNI POKRIVAČI I FASADNE OBLOGE 2 Opšte Podela prema zaštitnim svojstvima: Hladne obloge - zaštita hale od atmosferskih padavina, Tople obloge - zaštita hale od atmosferskih padavina i prodora hladnoće
Διαβάστε περισσότεραTEHNOLOGIJA MATERIJALA U RUDARSTVU
V E Ž B E TEHNOLOGIJA MATERIJALA U RUDARSTVU Rade Tokalić Suzana Lutovac ISPITIVANJE METALA I LEGURA I ispitivanja sa razaranjem uzoraka II ispitivanja bez razaranja uzoraka III - ispitivanja strukture
Διαβάστε περισσότερα5 Ispitivanje funkcija
5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:
Διαβάστε περισσότεραPismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Διαβάστε περισσότεραGrađevinski fakultet Modul konstrukcije pismeni ispit 22. jun 2015.
Univerzitet u Beogradu Prethodno napregnuti beton Građevinski fakultet grupa A Modul konstrukcije pismeni ispit 22. jun 2015. 0. Pročitati uputstvo na kraju teksta 1. Projektovati prema dopuštenim naponima
Διαβάστε περισσότεραOBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK
OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika
Διαβάστε περισσότεραProgram testirati pomoću podataka iz sledeće tabele:
Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n
Διαβάστε περισσότερα20 mm. 70 mm i 1 C=C 1. i mm
MMENT NERJE ZDTK. Za površinu prema datoj slici odrediti: a centralne težišne momente inercije, b položaj glavnih, centralnih osa inercije, c glavne, centralne momente inercije, d glavne, centralne poluprečnike
Διαβάστε περισσότερα( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
Διαβάστε περισσότεραMetalne konstrukcije I Proračun otpornosti elementa s nesimetričnim poprečnim presjekom klase 4 izloženog savijanju i tlačnoj sili
Sadržaj 1. Uvod... 1 2. Potrebni dokazi nosivosti za elemente izložene tlaku i savijanju prema EN 1993 za poprečne presjeke klase 4... 2 2.1. Klasifikacija poprečnog presjeka... 2 2.2 Djelotvorna širina
Διαβάστε περισσότερα