HIDRAULIČKI PRORAČUN CJEVOVODA. Hidraulički proračun cjevovoda se temelji na jednadžbi kontinuiteta
|
|
- Αμφιτρίτη Κοσμόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 . predavanje iz Mehanike fluida 95 HIDRAULIČKI PRORAČUN CJEVOVODA Hidraulički proračun cjevovoda se temelji na jednadžbi kontinuiteta Q= va= konst. i modificiranoj Bernoullijevoj jednadžbi, koja za strujanje od presjeka prema presjeku cijevi glasi p v p v ρg g ρg g + α + z+ hp ht = + α + z+ hf gdje je h P visina dobave pumpe, h T pad visine energije u turbini, a h F ukupna visina gubitaka između promatranih presjeka. Visina h F gubitaka mehaničke energije (pretvorbe mehaničke energije u unutarnju) se dijeli na linijske gubitke h f i lokalne gubitke h fm, tj. vrijedi hf = hf + hfm. Modeliranje linijskih gubitaka Linijski gubici h f se modeliraju s pomoću izraza Darcy-Weissbacha koji glasi h Δ p Lv 8LQ ρg D g π D g f f = = λ = λ 5 gdje je λ faktor trenja koji je određen eksperimentalno, a u općem je slučaju funkcija Reynoldsova broja ρvd 4ρQ Re = = ili μ πdμ vd 4Q Re = = υ πdυ i relativne visine k/d hrapavosti stijenke cijevi. U gornjim su izrazima: L je duljina cjevovoda; D je promjer cjevovoda; v je srednja brzina strujanja fluida; Q je protok; μ je viskoznost fluida, a υ = μ/ ρ kinematička viskoznost. Za strujanje u okruglim cijevima se uzima da je ono laminarno do Re=3, a pri višim Reynoldsovim brojevima se uzima da je turbulentno, iako je u području Reynoldsova broja od 3 do približno 4 faktor trenja vrlo nepredvidiv, te je pouzdanost proračuna slaba.
2 . predavanje iz Mehanike fluida 96 - Za laminarno strujanje postoji analitičko rješenje za faktor trenja 64 λ =, za Re<3 Re iz kojeg je jasno da faktor trenja u laminarnom strujanju ne zavisi od hrapavosti stijenke cijevi. - U području turbulentnog strujanja najtočnijom se smatra formula Colebrooka koja glasi 59, 86859ln, 698 k, = + λ D Re λ Iz ove formule bi se faktor trenja odredio iterativnim postupkom, što je nepraktično, te se preporuča koristiti eksplicitnu formulu Swamee, Jain, koja je dovoljno točna, a primjenjiva praktički za čitavo područje Moodyjeva dijagrama, a koja glasi, 35 λ = k 574, ln ,, D Re za Re >5 Ovaj izraz vrijedi i za hidraulički glatke cijevi (k/d=) i za područje potpuno izražene turbulencije ( Re ). Faktor trenja je definiran i grafički Moodyevim dijagramom, prema slici na sljedećoj stranici. Uz dijagram su dane neke tipične visine hrapavosti stijenke. Donja slika prikazuje područja Moodyjeva dijagrama. prijelazno područje potpuna turbulencija k D λ 64 λ= Re hidraulički glatke cijevi laminarno strujanje turbulentno log Re strujanje
3 . predavanje iz Mehanike fluida 97 Moodyjev dijagram
4 . predavanje iz Mehanike fluida 98 Treba imati na umu da prikazani model linijskih gubitaka vrijedi za strujanje ustaljenim (izobraženim) profilom brzine, gdje je pad tlaka uslijed trenja linearno razmjeran duljini cjevovoda. U određenim dionicama cjevovoda, npr. ulazni dio cjevovoda priključen na veliki spremnik, strujanje iza koljena, ventila, naglog proširenja i slično, strujanje neće biti ustaljenim profilom. U realnim cjevovodima je duljina dionica u kojima je strujanje ustaljenim profilom brzine obično puno veća od duljine dionica s neustaljenim profilom te se prikazani model s dovoljnom točnošću može primijeniti na čitavu duljinu cjevovoda. Modeliranje lokalnih gubitaka Lokalni gubici strujanja nastaju pri strujanju kroz koljena, ventile, zasune, filtre, nagla proširenja i slično. Gledajući lokalno u svim nabrojanim situacijama, strujanje je trodimenzijsko, ali se pretpostavlja da su dimenzije prostora u kojem se to strujanje događa zanemarivo male u odnosu na ukupnu duljinu cjevovoda pa se takav prostor može smatrati točkom cjevovodnog sustava, a nastali gubitak lokalnim ili mjesnim. Jasno je da je gubitak mehaničke energije vezan uz strujanje pa će i visina lokalnih gubitaka biti razmjerna visini kinetičke energije u obliku v 8Q hfm = K = K 4 g π D g gdje je K koeficijent lokalnog gubitka. Usporedbom Darcy-Weissbachove formule s gornjim izrazom može se reći da se i linijski gubici mogu izraziti koeficijentom gubitka K = λ L D. U općem je slučaju koeficijent K funkcija Reynoldsova broja i relativne visine hrapavosti stijenke. Kao što i faktor trenja λ pri visokim vrijednostima Reynoldsova broja postaje konstantnim tako se i koeficijent lokalnog gubitka može smatrati konstantnim pri visokom vrijednostima Reynoldsova broja. Za slučaj da ulazna i izlazna brzina nisu jednake uz koeficijent lokalnog gubitka mora točno stajati na koju visinu kinetičke energije se on odnosi, iako se najčešće koristi najveća visina kinetičke energije. Tako je na sljedećoj slici definiran koeficijent lokalnog gubitka naglog proširenja (koji se može dobiti teorijskim razmatranjima), a s obzirom da ulazna i izlazna brzina nisu jednake definiran je i izraz za visinu lokalnih gubitaka da se zna uz koju visinu kinetičke energije se gubici računaju. D D v v D K = D v hfm = K g Posebni slučaj naglog proširenja je utjecanje u veliki spremnik gdje se može uzeti da je D >> D te vrijedi da je K=, kao što je i prije prikazano. Sljedeća tablica daje pregled nekih tipičnih lokalnih gubitaka.
5 . predavanje iz Mehanike fluida 99 Lokalni gubitak Koeficijent lokalnog gubitka K Ulaz iz spremnika u cijev: oštri rubovi lijepo zaobljeni rubovi.5.4 Koljeno 9 - veliki radijus luka - mali radijus luka..7 Kuglasti ventil: potpuno otvoren /3 zatvoren Ventil s pladnjem potpuno otvoren. Veza između faktora brzine i koeficijenta lokalnog gubitka Pri analizi istjecanja kroz otvore uveden je pojam faktora brzine C v kojim se uzima u obzir gubitak mehaničke energije uslijed trenja. Isti se ti gubici mogu obuhvatiti koeficijentom lokalnog gubitka K. h Gledajući sliku može se pisati izraz za brzinu istjecanja v= Cv gh, a modificirana Bernoullijeva jednadžba od točke to točke uz postojanje lokalnih gubitaka glasi v v h= + K g g Usporedbom tih izraza slijedi veza između koeficijenta brzine C v i koeficijenta lokalnog gubitka K, oblika = K Cv Očito je da za C v = (strujanje bez gubitaka), slijedi K=. Ekvivalentna duljina cjevovoda Kod strujanja kroz cijev konstantnog promjera lokalni gubici se mogu zamijeniti ekvivalentnom duljinom cjevovoda. Jasno je da vrijedi v Le v K = λ Le g D g K = D λ Postupci proračuna jednostavnih cjevovoda Kategoriji hidraulički jednostavnih cjevovoda pripadaju svi cjevovodi jednostavne topološke strukture kod kojih se problem proračuna svodi na postavljanje jedne modificirane Bernoullijeve jednadžbe, a koja se može svesti na oblik Darcy-Weissbachova izraza 8LQ hf = λ π 5 gd Hidraulički proračun cjevovoda uključuje tri različite zadaće.
6 . predavanje iz Mehanike fluida U prvoj se na temelju zadane geometrije cjevovoda i željenog protoka fluida treba odrediti visinu gubitaka, odnosno potrebnu snagu pumpe kojom će se ostvariti željeno strujanje. U drugoj se zadaći za zadanu geometriju cjevovoda i raspoloživu snagu za svladavanje gubitaka trenja traži protok Q koji će se ustaliti u sustavu. U trećoj se zadaći na temelju zadanog protoka i raspoložive snage za svladavanje gubitaka trenja, treba odrediti promjer D cjevovoda. -Ukoliko su zadani protok Q i promjer D cjevovoda proračun se svodi na određivanje faktora trenja λ nakon čega se direktno izračuna tražena visina gubitaka mehaničke energije, te snaga pumpe. U otvorenim cjevovodnim sustavima visinom dobave pumpe se svladava razliku energija Δh na kraju u odnosu na početak cjevovoda (razlika geodetskih visina, razlika visina tlakova i razlika visina brzina), te gubici trenja, dok u zatvorenim (cirkulacijskim) sustavima pumpa svladava samo gubitke trenja. Uz pretpostavku da su gubici razmjerni kvadratu protoka, potreba za visinom dobave pumpe može se općenito prikazati funkcijom h= Δh + rq što označuje parabolu koja se naziva karakteristikom cjevovoda. Sljedeća slika lijevo prikazuje primjer dijagrama koji označuje karakteristiku pumpe (plava krivulja) s ucrtanom karakteristike cjevovoda (crna krivulja). Crtkana plava krivulja označuje faktor korisnosti pumpe. Visina dobave pumpe je maksimalna kod nultog protoka, a maksimalni je protok pri nultoj visini dobave pumpe. Radna točka pumpe definirana je presjekom karakteristike pumpe i karakteristike cjevovoda. Pumpu treba izabrati tako da radna točka padne u područje maksimalnog faktora iskoristivosti pumpe h/m η h/m Q/m 3 /s.5.5 Q/m 3 /s Često se u praksi radi s paralelno ili serijski spojenim pumpama. U paralelnom radu jednakih pumpi visina dobave je zajednička za sve pumpe, a protok se povećava razmjeno broju pumpi. U serijskom radu jednakih pumpi protok je kroz svaku pumpu jednak, a nakon svake pumpe tlak raste za visinu dobave pumpe, tako da je ukupna visina dobave razmjerna broju pumpi. Slika gore desno prikazuje karakteristiku jedne pumpe (plava krivulja), te karakteristike serijskog (zelena krivulja) i paralelnog rada (crvena krivluja) takvih dviju pumpi. U drugoj zadaći je poznata geometrija cjevovoda i raspoloživa visina gubitaka mehaničke energije, te se za potrebe određivanja protoka Darcy-Weisbachov izraz piše u obliku 5 hf gd K Q = π 8Lλ = λ (a)
7 . predavanje iz Mehanike fluida gdje konstanta K obuhvaća sve zadane veličine. Jednako tako se i Reynoldsov broj može izraziti kao 4Q Re= = KQ (b) Dπν gdje se konstanta K = 4 Dπυ može izračunati iz zadanih podataka. Iterativni postupak započinje pretpostavkom o faktora trenja. Obično se pretpostavlja turbulentno strujanje u režimu potpuno izražene hrapavosti (vrijednost koeficijenta se očita iz Moodyjeva dijagrama ili iz izračuna formule Swamee-Jaina uz Re= ). S tom vrijednošću λ se ulazi u izraz (a) te se izračunava protok. S tako izračunatim protokom se računa Reynoldsov broj iz izraza (b), te se ponovo računa nova vrijednost faktora trenja λ. Nakon toga se postupak ponavlja. Iterativni postupak se smatra završenim kada se protok Q prestane mijenjati u prve tri signifikantne znamenke, a najčešće su potrebne svega dvije ili tri iteracije. Iterativni postupak se najlakše realizira kroz sljedeću tablicu, koja se popunjava redak po redak Broj iteracije λ Q Re U trećoj zadaći, gdje je potrebno odrediti promjer D cjevovoda iz Darcy-Weissbachova izraza slijedi, LQ, K gh λ λ f 8 D= = π a Reynoldsov broj je (c) 4Q K Re = = (d) Dπν D Ponovo se koeficijenti K i K mogu odrediti numerički. Iterativni postupak određivanja promjera se odvija prema sljedećoj tablici Broj iteracije D, iz (c) Re, iz (d) k D λ Iterativni postupak započinje pretpostavljanjem promjera D. Promjer se u principu može pretpostaviti sasvim proizvoljno, jer će iterativni postupak uvijek konvergirati ka rješenju, a što je pretpostavka bliže rješenju iterativni postupak će završiti u manjem broju iteracija. Tako se promjer D može pretpostaviti na načina da uz zadani protok brzina strujanja bude u preporučenim granicama. Za vodovodne sustave je to u granicama od,5 do m/s. Iterativni postupak se prekida kada se promjer prestane mijenjati u prve tri signifikantne znamenke. Naravno da iterativni postupak može započeti i pretpostavljanjem koeficijenta otpora trenja λ, kao što prikazuje sljedeća tablica
8 . predavanje iz Mehanike fluida Broj iteracije λ D Re k D Gledajući Moodyjev dijagram, faktor trenja λ u turbulentnom se strujanju za uobičajene vrijednosti Reynoldsova broja i relativne visine hrapavosti kreće u granicama od,8 do,4, pa se proračun može započeti s nekom srednjom vrijednošću, npr. λ=,. Hidraulički proračun cjevovoda nekružnog poprečnog presjeka Opisani postupak za hidraulički proračun cjevovoda kružnog poprečnog presjeka se može primijeniti i za približni proračun cjevovoda nekružnog poprečnog presjeka. Proračun se temelji na ekvivalentnom promjeru D e, a vrijedi uz uvjet da je strujanje turbulentno. Ekvivalentni promjer je definiran kao T De = 4RH = 4 S O gdje je S T ploština poprečnog presjeka toka, a O oplakani opseg (duljina linije dodira fluida i stijenke cijevi). Odnos ST O= RH se naziva hidrauličkim radiusom. Na sljedećoj slici su definirani ekvivalentni promjeri za neke tipične situacije strujanja Poprečni presjek Strujanje punim pravokutnim presjekom b a Otvoreno strujanje u pravokutnom kanalu c Ekvivalentni promjer ab De = a+ b 4ac D e = a + c a Strujanje između dvaju koaksijalnih cijevi D De = D D D Faktor trenja λ za ustaljeno strujanje kroz cijevi nekružnog presjeka se također očitava iz Moodyjeva dijagrama ili računa iz formule Swamee-Jaina s tim što su Reynoldsov broj i relativna visina hrapavosti definirani na temelju ekvivalentnog promjera, tj. v D Re = e ν
9 . predavanje iz Mehanike fluida 3 Srednja brzina v u svim izrazima se definira omjerom protoka i stvarne ploštine poprečnog presjeka toka. Izraz za visinu linijskih gubitaka glasi L v hf = λ D g e u kojem v ponovo označuje stvarnu srednju brzinu strujanja fluida.
9. HIDARAULIČKI PRORAČUN CJEVOVODA
MEHANIKA FLUIDA HIDARAULIČKI PRORAČUN CJEVOVODA 7 9. HIDARAULIČKI PRORAČUN CJEVOVODA 9. Osnone jednadžbe Hidraulički proračun cjeooda se temelji na jednadžbi kontinuiteta = A= konst. i modificiranoj Bernoullijeoj
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
BIPOLARNI TRANZISTOR Auditorne vježbe
BPOLARN TRANZSTOR Auditorne vježbe Struje normalno polariziranog bipolarnog pnp tranzistora: p n p p - p n B0 struja emitera + n B + - + - U B B U B struja kolektora p + B0 struja baze B n + R - B0 gdje
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
=1), što znači da će duljina cijevi L odgovarati kritičnoj duljini Lkr. koji vlada u ulaznom presjeku, tako da vrijedi
Primjer. Zrak (R=87 J/(kg K), κ=,4) se iz atmosfere ( =, bar, T =88 K) usisava oz cijev romjera D = mm, duljine L = m, rema slici. Treba odrediti maksimalno mogući maseni rotok m max oz cijev uz retostavku
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
MEHANIKA FLUIDA. Prosti cevovodi
MEHANIKA FLUIDA Prosti ceooi zaatak Naći brzin oe kroz naglaak izlaznog prečnika =5 mm, postaljenog na kraj gmenog crea prečnika D=0 mm i žine L=5 m na čijem je prenjem el građen entil koeficijenta otpora
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
p a D, k Q A D, k Q max D, k Q P z=0 ρ,ν Rješenje: Linijski gubici u dijelu cjevovoda od točke 1 do točke 2
0. VJEŽBA - RIJEŠENI ZAACI IZ MEANIKE FLUIA. ri maksimalnoj potrošnji max = 00 l/s u odoodnom sustau prema slici pumpa dobalja 7% protoka, a akumulacijsko jezero %. Stupanj djeloanja pumpe je η =0,8, a
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
d D p 1 , v 1 L h ρ z ρ a Rješenje:
9. VJEŽBA - RIJEŠENI ZAACI IZ MEANIKE FLUIA 1. Oreite brinu v 1 i tlak p 1 raka (ρ =1,3 kg/m 3 ) u simetrali cijevi promjera =50 mm, pomoću mjernog sustava s Prantl-Pitotovom cijevi prema slici. Pretpostavite
MEHANIKA FLUIDA. Složeni cevovodi
MEHANIKA FLUIDA Složeni cevovoi.zaata. Iz va velia otvorena rezervoara sa istim nivoima H=0 m ističe voa roz cevi I i II istih prečnia i užina: =00mm, l=5m i magisalni cevovo užine L=00m, prečnia D=50mm.
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
A 2 A 1 Q=? p a. Rješenje:
8. VJEŽBA - RIJEŠENI ZADACI IZ MEANIKE FLUIDA. Oreite minimalni protok Q u nestlačiom strujanju fluia ko koje će ejektor početi usisaati flui kroz ertikalnu cječicu. Zaano je A = cm, A =,5 cm, h=,9 m.
PRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA
POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Unipolarni tranzistori - MOSFET
nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami
BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami Izv. prof. dr.. Tomilav Kišiček dipl. ing. građ. 0.10.014. Betonke kontrukije III 1 NBK1.147 Slika 5.4 Proračunki dijagrami betona razreda od C1/15 do C90/105, lijevo:
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
9. Vježbe. između fluida i remena za slučaj Q = 0.
9 VJEŽBE MEANIKA FIDA II / 9 9 Vježbe 4 Široki remen, prema slici, postavljen je vertikalno između dva spremnika ispunjena istim fluidom i giba se prema gore konstantnom brzinom v, povlačeći fluid iz donjeg
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
MEHANIKA FLUIDA dio 5
MEHANIKA FLUIDA dio 5 prof. Željko Andreić Rudarsko-geološko-naftni fakultet Sveučilište u Zagrebu zandreic@rgn.hr http://rgn.hr/~zandreic/ Željko Andreić Mehanika fluida P5 1 sadržaj 1-2-3! Tečenje kroz
VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.
JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Dijagonalizacija operatora
Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.
Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.
Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.
Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj
Zadaak (Ines, hoelijerska škola) Ako je g, izračunaj + 5 + Rješenje Korisimo osnovnu rigonomerijsku relaciju: + Znači svaki broj n možemo zapisai n n n ( + ) + + + + 5 + 5 5 + + + + + 7 + Zadano je g Tangens
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE
**** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA
konst. Električni otpor
Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
FAKULTET PROMETNIH ZNANOSTI
SVUČILIŠT U ZAGU FAKULTT POMTNIH ZNANOSTI predmet: Nastavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Autorizirana predavanja 2016. 1 Pojačala - Pojačavaju ulazni signal - Zahtjev linearnost
Stacionarno tečenje u sustavu pod tlakom
Praktikum iz hidraulike Str. 6-1 VI ježba Stacionarno tečenje u sustau pod tlakom Primjena Bernoullijee jednadžbe za strujanje realne tekućine u sustau pod tlakom je prikazana na modelu koji se sastoji
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
PREDNAPETI BETON Primjer nadvožnjaka preko autoceste
PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos
. KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..
6 Primjena trigonometrije u planimetriji
6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)
(Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom
MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2
(kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
Sortiranje prebrajanjem (Counting sort) i Radix Sort
Sortiranje prebrajanjem (Counting sort) i Radix Sort 15. siječnja 2016. Ante Mijoč Uvod Teorem Ako je f(n) broj usporedbi u algoritmu za sortiranje temeljenom na usporedbama (eng. comparison-based sorting
Snage u kolima naizmjenične struje
Snage u kolima naizmjenične struje U naizmjeničnim kolima struje i naponi su vremenski promjenljive veličine pa će i snaga koja se isporučuje potrošaču biti vremenski promjenljiva Ta snaga naziva se trenutna
PRORAČUN PADA TLAKA KOD Shell&Tube IZMJENJIVAČA. Marina MALINOVEC PUČEK
PRORAČUN PADA TLAKA KOD Shell&Tube IZMJENJIVAČA Marina MALINOVEC PUČEK Literatura: 1. Boris Sličević: : IZMJENJIVAČI TOPLINE, 1989.. VDI WärmeatlasW 8. Auflage 1997. L - Druckverlust PRIJELAZ TOPLINE PAD
nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.
IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)
Mašinsko učenje. Regresija.
Mašinsko učenje. Regresija. Danijela Petrović May 17, 2016 Uvod Problem predviđanja vrednosti neprekidnog atributa neke instance na osnovu vrednosti njenih drugih atributa. Uvod Problem predviđanja vrednosti
ISPITNI ZADACI FORMULE. A, B i C koeficijenti (barem jedan A ili B različiti od nule)
FORMULE Implicitni oblik jednadžbe pravca A, B i C koeficijenti (barem jedan A ili B različiti od nule) Eksplicitni oblik jednadžbe pravca ili Pravci paralelni s koordinatnim osima - Kada je u općoj jednadžbi
Prikaz sustava u prostoru stanja
Prikaz sustava u prostoru stanja Prikaz sustava u prostoru stanja je jedan od načina prikaza matematičkog modela sustava (uz diferencijalnu jednadžbu, prijenosnu funkciju itd). Promatramo linearne sustave
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)
PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
UZDUŽNA DINAMIKA VOZILA
UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.
Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.
BETONSKE KONSTRUKCIJE 2
BETONSE ONSTRUCIJE 2 vježbe, 31.10.2017. 31.10.2017. DATUM SATI TEMATSA CJELINA 10.- 11.10.2017. 2 17.-18.10.2017. 2 24.-25.10.2017. 2 31.10.- 1.11.2017. uvod ponljanje poznatih postupaka dimenzioniranja
Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja:
Anene Transformacija EM alasa u elekrični signal i obrnuo Osnovne karakerisike anena su: dijagram zračenja, dobiak (Gain), radna učesanos, ulazna impedansa,, polarizacija, efikasnos, masa i veličina, opornos
π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
HIDRODINAMIKA JEDNADŽBA KONTINUITETA I BERNOULLIJEVA JEDNADŽBA JEDNADŽBA KONTINUITETA. s1 =
HIDRODINAMIKA JEDNADŽBA KONTINUITETA I BERNOULLIJEVA JEDNADŽBA Hidrodinamika proučava fluide (tekućine i plinove) u gibanju. Gibanje fluida naziva se strujanjem. Ovdje ćemo razmatrati strujanje tekućina.
Teorija betonskih konstrukcija 1. Vežbe br. 4. GF Beograd
Teorija betonskih konstrukcija 1 Vežbe br. 4 GF Beograd Teorija betonskih konstrukcija 1 1 "T" preseci - VEZANO dimenzionisanje Poznato: statički uticaji (M G,Q ) sračunato kvalitet materijala (f cd, f
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,