Zadaci iz Nacrtne geometrije (drugi semestar)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Zadaci iz Nacrtne geometrije (drugi semestar)"

Transcript

1 Zadaci iz Nacrtne geometrije (drugi semestar) Srdjan Vukmirović August 19, 2003 Aksiome projektivne geometrije P1 Za ma koje 2 tačke A i B postoji tačno jedna prava a = AB kojoj pripadaju tačke A i B. P2 Svaka prava sadrži bar 3 tačke. P3 Za ma koje 3 nekolinearne tačke A, B, C postoji tačno jedna ravan α koja ih sadrži. P4 Ako dve tačke A i B prave a pripadaju ravni α tada i svaka tačka prave AB pripada ravni α. P5 Ako dve ravni imaju jednu zajedničku tačku A tada one imaju bar još jednu zajedničku tačku. P6 Ma koje dve prave a i b jedne ravni imaju bar jednu zajedničku tačku. R1 Za ma koje tri različite tačke A, B i C neke prave postoji tačka D te prave takva da je A, B C, D. R2 Ako je A, B C, D tada je C, D A, B. R3 Za ma koje četiri različite tačke A, B, C, D neke prave važi tačno jedan od iskaza A, B C, D, A, C B, D, A, D B, C. R4 Ma koje dve različite tačke A, B neke prave dele skup svih ostalih tačaka te prave na dve disjunktne klase, tako da su dve razne tačke u istoj klasi ako i samo ako ne razdvajaju par A, B. R5 Neka su a, b, c, d četiri prave nekog pramena i neka su p i p dve prave koje ne pripadaju tom pramenu. Ako su A, B, C, D redom presečne tačke prave p sa pravama a, b, c, d i A, B, C, D redom presečne tačke prave p sa pravama a, b, c, d tada A, B C, D povlači A, B C, D. D Neke je skup svih tačaka prave p podeljen na dva disjunktna podskupa M i N, od kojih svaki sadrži bar dve tačke tako da ma koji par tačaka podskupa M ne razdvaja ni jedan par tačaka podskupa N. Tada na pravoj p postoje tačno dve tačke A i B takve da za svaki par tačaka P, Q različitih od A, B važi da ako P M, Q N tada A, B P, Q. Zadatak 0.1 Skup od n(n 2) raznih tačaka jedne prave razlaže tu pravu na n projektivnih duži. Zadatak 0.2 Jedna prava projektivne ravni ne razlaže tu ravan, dve prave razlažu ravan na dve oblasti, tri prave koje se ne seku u jednoj tački razlažu tu ravan na četiri oblasti. Dokazati.

2 1 Dezargova teorema i harmonijska konjugovanost Teorema 1.1 (Dezargova direktna i obratna) Neka su ABC i A B C dva trotemenika. Prave AA, BB i CC sadrže jednu tačku (centar perspektive) ako i samo ako presčne tačke odgovarajućih stranica AB A 1 B 1, BC B 1 C 1 i CA C 1 A 1 pripadaju jednoj pravoj (osa perspektive). Definicija 1.1 (Harmonijska konjugovanost) Par tačaka P, Q je harmonijski konjugovan paru tačaka R, S (pišemo H(P, Q; R, S)) ako postoji četvorotemnik A, B, C, D takav da je AB CD = Q, AD BC = P, DB P Q = R, AC P Q = S. Zadatak 1.1 Dat je četvorotemenik ABCD. Prave AB i CD se seku u tački U prave AC i BD u tački V, prava UV seče prave AD i BC redom u tačkama F i G, a prava BF seče pravu AC u tački L. Dokazati da se prave LG, CF AU seku u jednoj tački. Zadatak 1.2 Parovi pravih BC, AD; CA, BD; AB, CD odredjeni temenima četvorotemenika ABCD seku se redom u tačkama X, Y, Z. Prava XZ seče pravu AC u tački R i pravu BD u tački S. Dokazati da prave DR, AS i Y Z prolaze kroz jednu tačku. Zadatak 1.3 Svaka dva od tri trotemenika su u perspektivnom položaju u odnosu na isti centar. Dokazati da se njihove ose perspektive seku u jednoj tački. Zadatak 1.4 Tačka O priada ravni trotemenika ABC, a ne pripada ni jednoj njegovoj stranici. Prave AO, BO, CO seku prave BC, CA, AB redom u tačkama P, Q, R. Prave QR, RP, P Q seku prave BC, CA, AB redom u tačkama L, M, N. Dokazati da su tačke L, M, N kolinearne. Zadatak 1.5 Ako se pet parova odgovarajućih stranica dva četvorotemenika seku u tačkama jedne prave onda se i sešti par stranica seče u tački iste prave. Zadatak 1.6 U proizvoljan četvorougao Euklidske ravni upisan je trapez čije su osnovice paralelen jednoj dijagonali četvorougla. Dokazati da se bočne strane trapeza seku na drugoj dijagonali četvorougla. Zadatak 1.7 Primenom Dezargove teoreme rešiti seldeće konstruktivne zadatke Euklidske ravni: (i) Date su prave a i a koje se seku u tački S van crteža i tačka P van pravih a i a. Konstruisati pravu P S. (ii) Date su paralelne prave a i b i tačka P koja im ne pripada. Koristeći samo lenjir, kroz tačaku P konstruisati pravu s paralelnu pravama a i b. (iii) Data je prava c i tačke A i B koje joj ne pripadaju. Konstruisati presečnu tačku pravih c i AB bez konstrukcije prave AB. Zadatak 1.8 Neka prave a, b, c, d jednog pramena seku pravu p u tačkama A, B, C, D, a pravu p u tačkama A, B, C, D, redom. Dokazati da H(A, B; C, D) povlači H(A, B ; C, D ). Uputstvo: Dokazati prvo slučaj A = A. Zadatak 1.9 Definisati harmonijsku konjugovanost pravih H(a, b; c, d) dualno definiciji 1.1. Zadatak 1.10 Dokazati da važi H(a, b; c, d) u smislu Zadatka 1.9 ako i samo ako neka (a zato i svaka) prava x seče prave a, b, c, d u tačkama redom A, B, C, D takvim da važi H(A, B; C, D) Zadatak 1.11 Neka je O proizvoljna tačka u ravni trotemenika ABC koja ne pripada nijednoj njegovoj stranici. Konstruisati pravu koja prolazi kroz tačku O i seče prave BC, CA i AB redom u tačkama X, Y, Z tako da važi H(O, X; Y, Z). Zadatak 1.12 U ravni su date tavķe M i N i tačka O van njih. Proizvoljna prava a O seče prave M i N redom u tačkama A i B, a proizvoljna prava b O u tačkama C i D, redom. Odrediti geometrijsko mesto preseka AD BC.

3 2 Projektivna preslikavanja jednodimenzionih mnogostrukosti Jednodimenzione projektivne mnogostrukosti su: pramen tačaka (tačke jedne prave) pramen pravih (prave kroz jednu tačku ravni) pramen ravni (ravni kroz jednu pravu) Prva dva tipa su dualna u ravni, a prvi i treći su dualni u prostoru tako da je dovoljno razmatrati svojstva pramena tačaka p. Definicija 2.1 Bijekcija f : ω ω jednodimenzionih mnogostrukosti je projektivno reslikavanje ako čuva harmonijsku konjugovanost. Teorema 2.1 (Štautova teorema) Projektivno preslikavanje jednodimenzione mnogostrukosti na sebe jedinstveno je odredjeno slikama tri elementa. Zadatak 2.1 Projektivno preslikavanje f : ω ω jednodimenzionih mnogostrukosti je perspektivno ako i samo ako je zajednički element tih mnogostrukosti fiksan. Zadatak 2.2 Neka su A, B, C tri razne tačke prave p i A, B, C tri razne tačke prave p p Projektivno preslikavanje f : p p slika tačke A, B, C redom u tačke A, B, C. Konstruisati sliku D proizvoljne tačke D pri preslikavanju f. Zadatak 2.3 Uraditi prethodni zadatak kada je p = p. Zadatak 2.4 (Paposova teorema) Ako su tačke A, B, C kolinearne i tačke A, B, C X = BC B C, Y = AC A C, Z = AB A B kolinearne. kolinearne tada su i tačke 3 Projektivna preslikavanja dvodimenzionih mnogostrukosti Dvodimenzione projektivne mnogostrukosti su: polje tačaka (tačke jedne ravni) polje pravih pravih (prave jedne ravni) snop ravni (ravni kroz jednu tačku) snop pravih (prave kroz jednu tačku prostora) Prva dva tipa mnogostrukosti su medjusobno dualne u ravni, a druge dve u prostoru. Mi ćemo posebnu pažnju posvetiti prvim dvema. Definicija 3.1 Bijekcija f : π π dvodimenzionih mnogostrukosti je projektivno reslikavanje ako čuva harmonijsku konjugovanost. Ako su i π i π polja tačaka preslikavanje f se naziva kolineacija. Zadatak 3.1 Neka su ABCD i A B C D četvorotemnici i f kolineacija projektivne ravni koja preslikava tačke A, B, C, D redom u tačke A, B, C, D. Konstruisati sliku M date tačke M. Zadatak 3.2 Formulisati i uraditi zadatak dualan Zadatku 3.1. Zadatak 3.3 Neka su ABC i A B C dva trougla proširene afine ravni. Konstruisati sliku M proizvoljne tačke M u afinom preslikavanju koje tačke A, B, C preslikava redom u tačke A, B, C.

4 Zadatak 3.15 Data su prava s, tačka X 1 i trougao ABC. Odrediti prespektivno afino prelsikavanje čija je osa prava 3.1 Homologije (perspektivna preslikavanja)) Zadaci se odnose na proširenu Euklidsku ravan. Centar S - tačka kroz koju je svaka prava fiksna. Osa s - prava čija je svaka tačka fiksna. Protivosa u - prava koja se slika u beskonačno daleku pravu Protivosa inverznog preslikavanja v - prava koja je slika beskonačno daleke prave Zadatak 3.4 Dokazati: s u v. Zadatak 3.5 Dokazati da je homologija odredjena: 1. Centrom S, osom S i slikom A tačke A (A A ). 2. Centrom S, osom s i protivosom u. 3. Centrom S, osom s i protivosom v inverzne homologije. Zadatak 3.6 Konstruisati sliku trougla ABC pri prespektivnom preslikavanju kome su dati osa s, centar S i slika M tačke M. Zadatak 3.7 Dati su centar S, osa s i protivosa u perspektivnog preslikavanja f. Konstruisati sliku duži CD, C u. duži EF, EF u = P. pravih m i n takvih da m n u. kvadrata ABCD ako D u. kvadrata ABCD ako u seče kvadrat u tačno dvema tav ckama. Zadatak 3.8 Konstruisati perspektivnu sliku pravilnog šestougla ABCDEF ako je centar perspektive presek dijagonala AB i BE, osa prava AB, a protivosa prava DE. Zadatak 3.9 Data je tačka S, prava s i četvorougao ABCD.Odrediti perspektivno preslikavanje čiji je centar tačka S, osa prava s i koji preslikava četvorougao ABCD u četvorougao čije su dijagonale normalne. 3.2 Perspektivno afina preslikavanja Perspektivno preslikavanje sa centrom S i osom s je afino u sledećim slučajevima: 1. S konačna, s =. Preslikavanje je homotetija. 2. s =, S s. Preslikavanje je translacija. 3. S, s je konačna. Zadatak 3.10 Data je osa afinosti s i par odgovarajućih taǎka A i A. Konstruisati lik prespektivno afin datom trouglu ABC. Zadatak 3.11 Konstruisati sliku datog kvadrata ABCD pri homotetiji kojoj je dat centar S i slika M tačke M. Zadatak 3.12 Data su prava s, prava p i trougao ABC. Odrediti prespektivno afino preslikavanje čija je osa afinosti s, zraci afinosti paralelni pravoj p, a slika trougla ABC jednakokraki trougao A B C. Zadatak 3.13 Data je osa afinosti s, par odgovarajućih pravih M i m i prava paralelna zracima afinosti. Kostruisati prespektivno afinu sliku kvadrata ABCD takvog da A s, BD m i duže BD je podudarna datoj duži d. Zadatak 3.14 Data je osa afinosti s i paralelogram ABCD Odrediti perspektivno afino preslikavanje u kom datom paralelogramu odgobara kvadrat.

5 4 Krive drugog reda i krive druge klase Zadatak 4.1 Kroz tačku D stranice BC trotemenika ABC prolazi prava p koja seče stranice AB i CA redom u tačkama B i C. Prave BC i CB se seku u tački M. Šta je geometrijsko mesto tačaka M kada prava p opisuje pramen sa središtem D? Zadatak 4.2 Na pravoj d koja sadrži teme A trotemenika ABC nalazi se tačka P koja sa temenima C i B odredjuje redom prave c i b. Presečne tačke b AC i c AB odredjuju pravu m. Šta je geometrijsko mesto pravih m kada P d. Zadatak 4.3 U ravni su date četiri prave a, b, c, d koje se seku u tački S i tačke P, Q i R van tih pravih. Tačke A, B, C i D su tačke redom pravih a, b, c i d takve da su trojke A, P, B; B, Q, C; C, R, D kolinearne. Dokazati da postoji tačka T takva da AD T za proizvoljan izbor tačaka A, B, C, D. Zadatak 4.4 Date su prave b i c i tačke X, Y i Z. Šta je geometrijsko mesto tačaka A takvih da stranice BC, CA i AB trotemenika ABC sadrže redom tačke X, Y i Z i da važi B b, C c. Zadatak 4.5 Date su tri nekolinearne tačke A, S, T i prava p koja ih ne sadrži. Odrediti šta je geometrijsko mesto pravih MN, M = AS BT, N = AT SB, za proizvoljnu tačku B p. Rešiti sledeće konstruktivne zadatke na dva načina: primenom projektivnih preslikavanja i Paskalove ili Brianšonove teoreme. Formulisati dualne zadatke i rešiti ih. Zadatak 4.6 Dato je pet tačaka A, B, C, D, E nedegenerisane krive drugog reda i prava p kroz tačku E. a) Konstruisati drugu presečnu tačku prave p i krive. b) Konstruisati tangentu e u tački E. Zadatak 4.7 Dato je pet tangenata a, b, c, d, e nedegenerisane krive drugog reda i tačka P na tangenti e. a) Konstruisati drugu tangentu krive kroz tačku P. b) Naći dodirnu tačku tangente e. Zadatak 4.8 Date su četiri tačke A, B, C, D nedenerisane krive drugog reda, tangenta a u tački A i prava p koja sadrži tačku B. a) Konstruisati drugu presečnu tačku prave p i krive. b) Konstruisati tangentu krive u tački C. Zadatak 4.9 Date su četiri tačke A, B, C, D i tangenta a u tački A nedegenerisane krive drugog reda i tačka P na tangenti a. Odrediti drugu tangentu krive kroz tačku P. Zadatak 4.10 Date su tri tačke A, B, C i tangente a, b u tačkama redom A, B nedegenerisane krive drugog reda i prava p kroz tačku A. a) Konstruisati drugu presečnu tačku prave p i krive. b) Konstruisati tangentu c u tački C. Zadatak 4.11 Date su tangente a, b i c i dodirne tačke A i B tangenata a i b krive drugog reda i prava p kroz tačku A. Odrediti drugu presečnu tačku prave p i krive drugog reda. Rešiti konstruktivne zadatke euklidske ravni. Zadatak 4.12 Date su dve tačke M i N, tangenta m u tački M parabole i pravac o ose parabole. Odrediti tangentu parabole u tački N. Zadatak 4.13 Date su četiri tangente p, q, r, s parabole i tačka T na tangenti s. Odrediti drugu tangentu parabole kroz tačku T. Zadatak 4.14 Date su četiri tačke A, B, C, D i PRAVAC q jedne asimptote hiperbole. Odrediti a) Tangentu u tački A. b) Asimptotu čiji je pravac dat. Zadatak 4.15 Date su asimptota q hiperbole, pravac asimptote p, tangenta t, njena dodirna tačka T i tačka X na asimptoti q. Odrediti drugu tangentu hiperbole kroz tačku X.

6 5 Razni zadaci Zadatak 5.1 Dokazati Paskalovu i Brianšonovu teoremu primenom Štajnerovih definicija za krive drugog reda i druge klase. Zadatak 5.2 U afinoj ravni date su prave s i p i trapez ABCD. Konstruisati perspektivno afino preslikavanje kome je prava s osa, zraci afinosti paralelni pravoj p, a trapezu ABCD odgovara jednakokraki trapez. Zadatak 5.3 Na ovalnoj krivoj drugog reda Γ date su tačke A, B, C i D. Ako proizvoljna prava l koja sadrži tačku A, seče prave CD, BD, CB u tačkama B, C, D, a krivu Γ u tački A, dokazati da dvorazmera (A, B, C, D ) ne zavisi od prave l A. Zadatak 5.4 Date su tri tangente l, m, i n i prava o paralelna osi parabole. Odrediti drugu presečnu tav cku prave o i parabole. Zadatak 5.5 (AK-objasniti i nacrtati) Dat je kvadrat ABCD i tačka S takva da je SA = 1 2AC i B(S, A, C). Kolinearno perspektivno preslikavanje f ima centar S, protivosu BD i tačku A preslikava u C. Odrediti sliku kvadrata ABCD pri ovom preslikavanju, osu s i sliku v beskonačno daleke prave. Zadatak 5.6 U projektivnoj ravni date su dve prave a i b i tačke P, Q i R van tih pravih. Ako je q proizvoljna prava koja sadrži tačku R i ako ona seče prave a i b redom u tačkama M i N, šta je skup presečnih tačaka pravih P M i QN? Zadatak 5.7 Date su asimptote a 1 i a 2 i tačka M hiperbole. Konstruisati tangentu na hiperbolu u tački M. Zadatak 5.8 Data je elipsa parom konjugovanih dijametara AB i CD. Odrediti bar jedno perspektivno afino preslikavanje koje elipsu preslikava u krug. Zadatak 5.9 Trotemenici ABC i A B C su u perspektivnom položaju, a P, Q i R su redom prešečne tačke parova pravih BC i B C, CA i C A, AB i A B. Ako tačke P, Q i R nisu kolinearne dokazati da je trotemenik LMN u perspektivnom položaju sa svakim od trotemenika ABC i A B C. Šta ako su P, Q i R kolinearne? Zadatak 5.10 Dokazati da je svaka involucija f projektivne ravni homologija. Dokazati da postoji kriva drugog reda invarijantna pri involuciji f. Zadatak 5.11 Data je kriva drugog reda Γ, prava x i tačka A. Šta je geometrijsko mesto preseka pravih P A i polara p tačke P u odnosu na krivu Γ, ako je P proizvoljna tačka prave x. Zadatak 5.12 Data je fiksna prava x i tri para odgovarajućih tačaka A, B, C i A, B, C, projektivnog preslikavanja. Konstruisati sliku date prave m pri tom preslikavanju. Zadatak 5.13 Projektivno preslikavanje je zadato fiksnom pravom x i slikama A, B, C datih tačaka A, B, C, redom. Konstrusati fisnu tačku tog preslikavanja. Zadatak 5.14 Ako je šestotemenik ABCDEF upisan u nedegenerisanu krivu drugog reda Γ dokazati da postoji nedegenerisana kriva drugog reda Γ oko koje je on opisan. Zadatak 5.15 Data je osa afinosti i odgovarajući par tačaka S i S. Tim preslikavanjem se krug k sa centrom u S preslikava u elipsu. Odrediti prečnike kruga k koji se preslikavaju u glavne ose elipse. Zadatak 5.16 Konstruisati malu osu elipse ako je data velika poluosa OA i jedna tačka M elipse. Zadatak 5.17 Data je elipsa parom konjugovanih dijametara. Konstruisati: a) Tangente na elipsu iz date tačke M. b) Presečne tačke elipse i date prave p. c) Veliku i malu osu elipse.

PROJEKTIVNA GEOMETRIJA ANALITIČKI PRISTUP

PROJEKTIVNA GEOMETRIJA ANALITIČKI PRISTUP PROJEKTIVNA GEOMETRIJA oktobar 2010. godine ANALITIČKI PRISTUP Homogene koordinate i dvorazmera 1. Tačke 0, i 1 afinog sistema koordinata uzete su redom za bazne tačke A 1 (1 : 0), A 2 (0 : 1) i jedinicu

Διαβάστε περισσότερα

Zadaci iz Geometrije 4

Zadaci iz Geometrije 4 Zadaci iz Geometrije 4 - za rad na vežbama - 3. maj 2017. 1 Stereometrija 1. Data je kocka ABCDA 1 B 1 C 1 D 1 ivice a. Dokazati da je tetraedar ACB 1 D 1 pravilan i odrediti mu dužinu ivice. 2. Dat je

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Analitička geometrija 1. Tačka 1. MF000 Neka su A(1, 1) i B(,11) tačke u koordinatnoj ravni Oxy. Ako tačka S deli duž AB

Διαβάστε περισσότερα

EUKLIDSKA GEOMETRIJA

EUKLIDSKA GEOMETRIJA EUKLIDSKA GEOMETRIJA zadaci za vežbe AKSIOMATSKO ZASNIVANJE EUKLIDSKE GEOMETRIJE 1. Ako dve razne ravni imaju zajedničku tačku tada je njihov presek prava. Dokazati. 2. Za svake dve prave koje se seku

Διαβάστε περισσότερα

Aksiomatsko zasnivanje euklidske geometrije

Aksiomatsko zasnivanje euklidske geometrije Aksiomatsko zasnivanje euklidske geometrije 1. Postoji jedna i samo jedna prava koja sadrži dve razne tačke A i B. 2. Postoji jedna i samo jedna ravan koja sadrži tri nekolinearne tačke A, B, C. 3. Ako

Διαβάστε περισσότερα

Ako prava q prolazi kroz koordinatni početak i gradi ugao φ [0, π) sa x osom tada je refleksija S φ u odnosu na tu pravu:

Ako prava q prolazi kroz koordinatni početak i gradi ugao φ [0, π) sa x osom tada je refleksija S φ u odnosu na tu pravu: Refleksija S φ u odnosu na pravu kroz koordinatni početak Ako prava q prolazi kroz koordinatni početak i gradi ugao φ [0, π) sa x osom tada je refleksija S φ u odnosu na tu pravu: ( ) ( ) ( ) x cos 2φ

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana.

Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana. Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana. Zadatak 2 Dokazati da se visine trougla seku u jednoj tački ortocentar. 1 Dvostruki vektorski proizvod Važi

Διαβάστε περισσότερα

Elementarni zadaci iz Euklidske geometrije II

Elementarni zadaci iz Euklidske geometrije II Elementarni zadaci iz Euklidske geometrije II Sličnost trouglova 1. Neka su dati krugovi k 1 (O 1, r 1 ), k 2 (O 2, r 2 ) i k 3 (O 3, r 3 ) takvi da k 1 dodiruje krug k 2 u tački P, k 2 dodiruje krug k

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Planimetrija. Sličnost trouglova. GF 000 Dužine stranica trougla su 5cm, cm i 8cm. Dužina najduže stranice njemu sličnog

Διαβάστε περισσότερα

Konstruktivni zadaci. Uvod

Konstruktivni zadaci. Uvod Svaki konstruktivni zadatak ima četri dijela: 1. Analiza 2. Konstrukcija 3. Dokaz 4. Diskusija Konstruktivni zadaci Uvod U analizi pretpostavimo da je zadatak riješen, i na osnovu slike (skice) rješenja,

Διαβάστε περισσότερα

O trouglu. mr Radmila Krstić, asistent Prirodno-matematički fakultet, Niš

O trouglu. mr Radmila Krstić, asistent Prirodno-matematički fakultet, Niš O trouglu mr Radmila Krstić, asistent Prirodno-matematički fakultet, Niš O trouglu 2 O TROUGLU Trougao je nezaobilazna tema kako osnovne tako i srednje škole. O trouglu se skoro sve zna. Navodimo te činjenice.

Διαβάστε περισσότερα

Pismeni ispit iz predmeta Euklidska geometrija 1

Pismeni ispit iz predmeta Euklidska geometrija 1 Univerzitet u Zenici Pedagoški fakultet Odsjek: Matematika i informatika Zenica, 27.01.2010. Pismeni ispit iz predmeta Euklidska geometrija 1 Zadatak br. 1 a) U oštrouglom trouglu ABC (AC < BC) visina

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Glava 1. Vektori. Definicija 1.1. Dva vektora su jednaka ako su im jednaki pravac, smer i intenzitet.

Glava 1. Vektori. Definicija 1.1. Dva vektora su jednaka ako su im jednaki pravac, smer i intenzitet. Glava 1 Vektori U mnogim naukama proučavaju se vektorske i skalarne veličine. Skalarna veličina je odred ena svojom brojnom vrednošću u izabranom sistemu jedinica. Takve veličine su temperatura, težina

Διαβάστε περισσότερα

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija

Διαβάστε περισσότερα

Ako dva trougla imaju dvije stranice proporcionalne i podudaran ugao izme du njih tada su ta dva trougla slična.

Ako dva trougla imaju dvije stranice proporcionalne i podudaran ugao izme du njih tada su ta dva trougla slična. Sličnost trouglova i Talesova teorema Definicija sličnosti trouglova Dva trougla ABC i A B C su slična ako su im sva tri ugla redom podudarna i ako su im a odgovarajuće stranice proporcionalne tj. = b

Διαβάστε περισσότερα

Geometrija 4. Srdjan Vukmirovi. februar Matemati ki fakultet, Beograd

Geometrija 4. Srdjan Vukmirovi. februar Matemati ki fakultet, Beograd Geometrija 4 Srdjan Vukmirovi Matemati ki fakultet, Beograd februar 2015. Sadrºaj 1 Ana geometrija (ponavljanje) 2 Projektivna ravan Realna projektivna ravan RP 2 Realna projektivna prava RP 1 Trotemenik

Διαβάστε περισσότερα

Geometrija (I smer) deo 2: Afine transformacije

Geometrija (I smer) deo 2: Afine transformacije Geometrija (I smer) deo 2: Afine transformacije Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Transformacije koordinata tačaka Transformacije koordinata tačaka Pretpostavimo da za bazne

Διαβάστε περισσότερα

1. APSOLUTNA GEOMETRIJA

1. APSOLUTNA GEOMETRIJA 1. APSOLUTNA GEOMETRIJA Euklidska geometrija izvedena sintetičkim metodom zasniva se na aksiomama koje su podeljene u pet grupa i to: aksiome rasporeda, aksiome incidencije, aksiome podudarnosti, aksiome

Διαβάστε περισσότερα

Sli cnost trouglova i Talesova teorema

Sli cnost trouglova i Talesova teorema Sli cnost trouglova i Talesova teorema Denicija. Dva trougla ABC i A B C su sli cna ako su im sva tri ugla redom podudarna a i ako su im odgovaraju ce stranice proporcionalne tj. a = b b = c c. Stav 1.

Διαβάστε περισσότερα

Projektivna geometrija

Projektivna geometrija Projektivna geometrija Autor: Vladica Andreji Zbirka zadataka baziranih na veжbama drжanih sezone 2004/05 Analitiqki pristup. Osnovna teorema, dvorazmera 27. mart 2005. Zadatak. Taqke 0, i afinog sistema

Διαβάστε περισσότερα

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1 Ispit održan dana 9 0 009 Naći sve vrijednosti korjena 4 z ako je ( ) 8 y+ z Data je prava a : = = kroz tačku A i okomita je na pravu a z = + i i tačka A (,, 4 ) Naći jednačinu prave b koja prolazi ( +

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Elementarni zadaci iz predmeta Euklidska geometrija 1

Elementarni zadaci iz predmeta Euklidska geometrija 1 Elementarni zadaci iz predmeta Euklidska geometrija 1 Trougao Računanje uglova u trouglu 1. Težišnica i visina iz vrha A u ABC djele ugao α na tri jednaka dijela. Koliki su uglovi trougla ABC. 2. U trouglu

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Geometrija (I smer) deo 1: Vektori

Geometrija (I smer) deo 1: Vektori Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo

Διαβάστε περισσότερα

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka 1 Afina geometrija 11 Afini prostor Definicija 11 Pod afinim prostorom nad poljem K podrazumevamo svaku uređenu trojku (A, V, +): A - skup taqaka V - vektorski prostor nad poljem K + : A V A - preslikavanje

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Aksiome podudarnosti

Aksiome podudarnosti Aksiome podudarnosti Postoji pet aksioma podudarnosti (tri aksiome podudarnosti za duži + dvije aksiome podudarnosti za uglove) III 1 Za svaku polupravu a sa početnom tačkom A i za svaku duž AB, postoji

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

Analitička geometrija - vežbe

Analitička geometrija - vežbe Analitička geometrija - vežbe Milica Žigić May 25, 2017 1 Pravougli koordinatni sistem i rastojanje izmed u tačaka 1. Na brojnoj osi ucrtati tačke A( 3), B( 8 3 ) i C(0). 2. (a) Na brojnoj osi ucrtati

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Analitička geometrija

Analitička geometrija 1 Analitička geometrija Neka su dati vektori a = a 1 i + a j + a 3 k = (a 1, a, a 3 ), b = b 1 i + b j + b 3 k = (b 1, b, b 3 ) i c = c 1 i + c j + c 3 k = (c 1, c, c 3 ). Skalarni proizvod vektora a i

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika

Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Rešenja. Matematičkom indukcijom dokazati da za svaki prirodan broj n važi jednakost: + 5 + + (n )(n + ) = n n +.

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

Zbirka zadataka iz geometrije. Elektronsko izdanje

Zbirka zadataka iz geometrije. Elektronsko izdanje Zbirka zadataka iz geometrije . Predrag Janičić ZBIRKA ZADATAKA IZ GEOMETRIJE Sedmo izdanje (treći put ponovljeno četvrto izdanje) Matematički fakultet Beograd, 2007 Autor: dr Predrag Janičić, docent

Διαβάστε περισσότερα

Univerzitet u Beogradu, Matematički fakultet. Predmet:Metodika nastave i računarstva Tema:Sličnost

Univerzitet u Beogradu, Matematički fakultet. Predmet:Metodika nastave i računarstva Tema:Sličnost Univerzitet u Beogradu, Matematički fakultet Predmet:Metodika nastave i računarstva Tema:Sličnost Profesor Student Nebojša Ikodinović Marina Stanković 270/2011 Anđela Milijašević 132/2011 Datum:15.12.2014

Διαβάστε περισσότερα

Matematka 1 Zadaci za drugi kolokvijum

Matematka 1 Zadaci za drugi kolokvijum Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()

Διαβάστε περισσότερα

5 Ispitivanje funkcija

5 Ispitivanje funkcija 5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE

PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE Fakultet Tehničkih Nauka, Novi Sad PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE 1 Za koje vrednosti parametra p R polinom f x) = x + p + 1)x p ima tačno jedan, i to pozitivan realan koren? U skupu realnih

Διαβάστε περισσότερα

1.1 Tangentna ravan i normala površi

1.1 Tangentna ravan i normala površi Površi. Tangentna ravan i normala površi Zadatak Data je površ r(u, v) = (u cos v, u sin v, a 2 u 2 ), a = const. Ispitati o kojoj se površi radi i odrediti u i v linije. Zadatak 2 Data je površ r(u, v)

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

Geometrija (I smer) deo 3: Analitička geometrija u ravni

Geometrija (I smer) deo 3: Analitička geometrija u ravni Geometrija (I smer) deo 3: Analitička geometrija u ravni Srdjan Vukmirović Matematički fakultet, Beograd 19. novembar 2014. Prava u ravni Prava p je zadata tačkom P(x 0, y 0 ) p i normalnim vektorom n

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

VEKTORI. Nenad O. Vesi 1. = α, ako je

VEKTORI. Nenad O. Vesi 1. = α, ako je VEKTORI Nenad O. Vesi 1 1 Uvod Odnos vektora AB, jednak je α CD ( AB CD ) = α, ako je AB = αcd. Teorema 1 (TEOREME BLIZANCI) Dat je trougao ABC i ta ke P i Q na pravama BC, CA redom i ta ke R i S na pravoj

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Geometrijska mesta tačaka i primena na konstrukcije

Geometrijska mesta tačaka i primena na konstrukcije Univerzitet u Nišu Prirodno - matematički fakultet Departman za matematiku Geometrijska mesta tačaka i primena na konstrukcije Master rad Mentor: Prof. dr Mića Stanković Student: Ivana Gavrilović Niš,

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

Paskalova teorema, pol i polara verzija 2.0:

Paskalova teorema, pol i polara verzija 2.0: askalova teorema, pol i polara verzija 2.0: 10.2.2015. uxan uki Teoreme kojima se ovde bavimo su u stvari tvrđenja iz projektivne geometrije, tako da imaju i dokaze unutar projektivne geometrije. Ipak,

Διαβάστε περισσότερα

LEKCIJE IZ ELEMENTARNE GEOMETRIJE

LEKCIJE IZ ELEMENTARNE GEOMETRIJE LEKCIJE IZ ELEMENTARNE GEOMETRIJE BANJA LUKA, 2010. i ii Sadržaj: 1 Prva lekcija 1 1.1 O Euklidovim Elementima................... 1 1.2 Osnovni pojmovi u geometriji................... 3 1.3 Aksiome incidencije

Διαβάστε περισσότερα

Racionalni algebarski izrazi

Racionalni algebarski izrazi . Skratimo razlomak Racionalni algebarski izrazi [MM.4-()6] 5 + 6 +. Ako je a + b + c = dokazati da je a + b + c = abc [MM.4-()] 5 6 5. Reši jednačinu: y y y + + = 7 4 y = [MM.4-(4)] 4. Reši jednačinu:

Διαβάστε περισσότερα

Sadržaj sveske sa vježbi iz predmeta Euklidska geometrija 1 (akademska 2011/2012.)

Sadržaj sveske sa vježbi iz predmeta Euklidska geometrija 1 (akademska 2011/2012.) Univerzitet u Zenici Pedagoški fakultet Matematika i informatika Sadržaj sveske sa vježbi iz predmeta Euklidska geometrija 1 (akademska 2011/2012.) Sedmica broj 1 i 2 (Osnovi pojmovi iz geometrije) Uvod

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

Euklidska geometrija II (1. dio)

Euklidska geometrija II (1. dio) Univerzitet u Zenici Pedagoški fakultet Odsjek: Matematika i informatika Akademska 2012/2013. (sveska je skinuta sa stranice pf.unze.ba\nabokov U svesci je mogu a pojava grešaka. Za uo ene greške pisati

Διαβάστε περισσότερα

Kružni snopovi i transformacije u euklidskom modelu inverzivnog prostora

Kružni snopovi i transformacije u euklidskom modelu inverzivnog prostora Matematički fakultet Univerzitet u Beogradu MASTER RAD Kružni snopovi i transformacije u euklidskom modelu inverzivnog prostora Tomović Siniša Beograd, Januar 2013. Mentor: Dr Zoran Lučić Članovi komisije:

Διαβάστε περισσότερα

Neophodnost uslova komutativnosti i asocijativnosti kod Dezargovih i Paposovih ravni

Neophodnost uslova komutativnosti i asocijativnosti kod Dezargovih i Paposovih ravni UNIVERZITET U BEOGRADU MATEMATIČKI FAKULTET Neophodnost uslova komutativnosti i asocijativnosti kod Dezargovih i Paposovih ravni MASTER RAD Autor Snežana Milosavljević Mentor dr Miroslava Antić Beograd

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Slika 9: Izometrijske transformacije koordinata. Ovo razmatranje možemo sumirati sledećom teoremom

Slika 9: Izometrijske transformacije koordinata. Ovo razmatranje možemo sumirati sledećom teoremom e 2 f 2 e 2 φ + π 2 Q f 1= f 1 φ e 1 O e 1 f 2 Slika 9: Izometrijske transformacije koordinata Ovo razmatranje možemo sumirati sledećom teoremom Teorema 3.1 Formule transformacija koordinata ravni iz ortonormiranog

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b) TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

10 Afina preslikavanja ravni

10 Afina preslikavanja ravni 0 Afina preslikavanja ravni 0 Definicija i osobinea afinih preslikavanja Reč afini označava da se pojam odnosi na prostor tačaka koji je vezan za odgovarajući vektorski prostor Intuitivno, afino preslikavanja

Διαβάστε περισσότερα

MATERIJAL ZA VEŽBE. Nastavnik: prof. dr Nataša Sladoje-Matić. Asistent: dr Tibor Lukić. Godina: 2012

MATERIJAL ZA VEŽBE. Nastavnik: prof. dr Nataša Sladoje-Matić. Asistent: dr Tibor Lukić. Godina: 2012 MATERIJAL ZA VEŽBE Predmet: MATEMATIČKA ANALIZA Nastavnik: prof. dr Nataša Sladoje-Matić Asistent: dr Tibor Lukić Godina: 202 . Odrediti domen funkcije f ako je a) f(x) = x2 + x x(x 2) b) f(x) = sin(ln(x

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Geometrija II. Elvis Baraković siječnja Tuzla;http://pmf.untz.ba/staff/elvis.barakovic/

Geometrija II. Elvis Baraković siječnja Tuzla;http://pmf.untz.ba/staff/elvis.barakovic/ Geometrija II Elvis Baraković 1 10. siječnja 2018. 1 Prirodno-matematički fakultet Univerziteta u Tuzli, Odsjek matematika, Univerzitetska 4 75000 Tuzla;http://pmf.untz.ba/staff/elvis.barakovic/ Sažetak

Διαβάστε περισσότερα

Matematiqka gimnazija u Beogradu Vektori. Milivoje Luki

Matematiqka gimnazija u Beogradu Vektori. Milivoje Luki Matematiqka gimnazija u Beogradu 30.01.2007. Vektori Milivoje Luki 1. Linearne kombinacije vektora Vektor v je linearna kombinacija vektora v 1, v 2,..., v n ako postoje skalari (odn. realni brojevi) λ

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x. 4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos

Διαβάστε περισσότερα

56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA. Sarajevo, godine

56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA. Sarajevo, godine 56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA Sarajevo, 3.04.016. godine 56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

OTPORNOST MATERIJALA

OTPORNOST MATERIJALA 3/8/03 OTPORNOST ATERIJALA Naponi ANALIZA NAPONA Jedinica u Si-sistemu je Paskal (Pa) Pa=N/m Pa=0 6 Pa GPa=0 9 Pa F (N) kn/cm =0 Pa N/mm =Pa Jedinična površina (m ) U tečnostima pritisak jedinica bar=0

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

Dirihleov princip. Goran Popivoda. Prirodno matematički fakultet.

Dirihleov princip. Goran Popivoda. Prirodno matematički fakultet. Dirihleov princip Goran Popivoda goc@t-com.me Prirodno matematički fakultet Pretpostavimo da je jato golubova doletjelo u golubarnik. U svojoj originalnoj verziji, Dirihleov princip kaže da ako ima više

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

Zbirka rešenih zadataka iz Matematike I

Zbirka rešenih zadataka iz Matematike I UNIVERZITET U NOVOM SADU FAKULTET TEHNIČKIH NAUKA Tatjana Grbić Silvia Likavec Tibor Lukić Jovanka Pantović Nataša Sladoje Ljiljana Teofanov Zbirka rešenih zadataka iz Matematike I Novi Sad, 009. god.

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

1 Svojstvo kompaktnosti

1 Svojstvo kompaktnosti 1 Svojstvo kompaktnosti 1 Svojstvo kompaktnosti U ovoj lekciji će se koristiti neka svojstva realnih brojeva sa kojima se čitalac već upoznao tokom kursa iz uvoda u analizu. Na primer, važi Kantorov princip:

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Aksioma zamene. Aksioma dobre zasnovanosti. Aksioma dobre zasnovanosti Svaki neprazan skup A sadrži skup a takav da je A a = 0.

Aksioma zamene. Aksioma dobre zasnovanosti. Aksioma dobre zasnovanosti Svaki neprazan skup A sadrži skup a takav da je A a = 0. Aksioma zamene Aksioma zamene opisuje sledeće: ako je P (x, y) neko svojstvo parova skupova (x, y) takvo da za svaki skup x postoji tačno jedan skup y takav da par (x, y) ima svojstvo P, tada za svaki

Διαβάστε περισσότερα

Potencija taqke. Duxan uki

Potencija taqke. Duxan uki Potencija taqke Duxan uki Neka su dati krug k i taqka u ravni. Posmatrajmo proizvoljnu pravu l kroz i njene preseqne taqke B i sa krugom k. Proizvod B ne zavisi od izbora prave l. Zaista, ako sa D oznaqimo

Διαβάστε περισσότερα

Sadrºaj. 1 Vektorska algebra 1. 2 Analiti ka geometrija 2. 3 Analiti ka geometrija u ravni 3

Sadrºaj. 1 Vektorska algebra 1. 2 Analiti ka geometrija 2. 3 Analiti ka geometrija u ravni 3 Sadrºaj Sadrºaj i 1 Vektorska algebra 1 2 Analiti ka geometrija 2 3 Analiti ka geometrija u ravni 3 4 Analiti ka geometrija u prostoru 4 4.1 Ravan u prostoru......................... 5 4.2 Udaljenost ta

Διαβάστε περισσότερα