Strojno učenje. Tehnike strojnog učenja bez nadzora dio 1/2. Tomislav Šmuc
|
|
- ΣoφпїЅα Κορωναίος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Strono učene Tehnke stronog učena bez nadzora do /2 Tomslav Šmuc
2 Prmer - HRD 2
3 Učene bez nadzora - Pregled Clusterng Gruprane prmera (podataka) u grupe međusobno slčnh prmera Ko prmer su slčn? (kupc, pacent, zvezde, slke, web-strance...) Algortm: - parttvn algortm: k-means - herarhsk algortm - SOM - Self-Organzaton Maps (topologa prmera) Proekca podataka, redukca dmenza - pronalažene latentnh struktura; redukca dmenzonalnost Algortm: - Prncpal Component Analyss (PCA) - Independent Component Analyss (ICA), - Non-negatve matrx factorzaton (NMF) 3
4 Clusterng Clusterng - gruprane l segmentaca prmera (podataka) u všedmenznalnom prostoru - postoe delov ko su gušće pokrven prmerma - Centraln poam slčnost/udalenost zmeđu prmera - Ima slčnost sa učenem pod nadzorom, no kod klasfkace trošak pogreške na nek e načn odvoen od samh podataka (klase l oznake) Osnovn problem: - kolko cluster-a ma? 4
5 Clusterng Osnovn problem: - kolko cluster-a ma? K=4? K=5? 5
6 Clusterng Osnovn cl: - odredt ntrnsčno gruprane (neoznačenh) prmera? Kako ćemo odredt što e dobar rezultat clusterng-a? Nema apsolutnog krtera! Nema krtera ko e odvoen od konačnog cla clusterng-a Korsnk btan kod određvana krtera poznavane područa cleva prmene! Moguće prmene clusterng-a Redukca potrebnh podataka slčn podac l replke nsu potrebne Pronalažene prrodnh grupa/cluster-a nhovo opsvane (nova saznana) Korsno gruprane Za detekcu outler-a, grešaka, šuma (ndrektno) 6
7 Clusterng Clusterng osnovn prstup Parttvn algortm Prmer se gruprau u dstnktne grupe (edan prmer edna grupa/cluster) algortam K-means (K srednh vrednost) Herarhsk algortm Pronalaze se defnrau grupe podgrupe prmera (herarha cluster-a) Aglomeratvn dvzvn algortm Ne-ekskluzvn algortm Tzv. fuzzy sets prstup: edan prmer može stodobno prpadat dvama l vše cluster-a (stupan prpadnost) Algortam: Fuzzy C-Means Probablstčk algortm Pretpostavla određue (parametarsk defnranu) dstrbucu z koe su generran prmerc EM algortm (Expectaton maxmzaton) - Gaussan mxture model: u osnov varanta K-means algortma 7
8 Clusterng Parttvn clusterng - defnce Odredt encodng funkcu koa određue prpadnost prmera x određenom clusteru k: C() =k Da b odredl C(), moramo defnrat funkcu kou ćemo optmrat koa nabole odražava ono što želmo postć: - odredt homogene/blske grupe prmera. Defnramo udalenost razlčtost prmera d p 2 ( x, x' ) w ( x, x', ) 2 Ako želmo da sve varable podednako uteču na udalenost zmeđu prmera w / d gde e d N N N d ( x,, x', ) 2 ' 8
9 Clusterng Parttvn clusterng - defnce Defnramo sledeće funkce - W(C): udalenost (razlčtost dssmlarty) zmeđu prmera ste grupe (clustera) - B(C): udalenost (razlčtost dssmlarty) zmeđu prmera razlčth grupa (clustera) W 2 K ( C) d ( x, x ) B( C) ' k C( ) k C( ' ) k 3. M želmo da W(C) bude mnmalno: 2 K k C( ) k C( ' ) k d ( x, x ' ) W( C) T B( C) T W( C) B( C) Ukupna međusobna udalenost zmeđu prmera određenog skupa T e konstantna! 9
10 Clusterng K means K-means: algortam Uz zadan K (bro clustera) : Incalzaca: Izaber k srednh vrednost (slučan odabr) Izračuna udalenost: Za =,,k =,,n zračuna x μ Prdel x nablžo sredno vrednost μ : Da b reprezentral prpadnost μ, uvodmo ndkatorsku varablu γ ako argmn x μ ' ' 0 nace γ = =2 =3 x 0 0 x2 0 0 x3 0 0 x4 0 0 x5 0 0 x6 0 0 γ - članov matrce γ (n*k) edna po retku (prmer x ) 0
11 Clusterng K means K=3 K-means: lustraca
12 Clusterng K means K-means - detal Incaln centrod - uglavnom slučano određen Centrod se tpčno određue kao sredna vrednost točaka u cluster-u Udalenost prmera tpčno Eukldska, al druge mere: korelaca, kosnusna slčnost Konvergenca uvek konvergra, za načešće korštene mere udalenost naveće promene su u prvm teracama. stoppng krter: občno kada e bro promena < od nekog zadanog broa Složenost: O( n * K * I * d ) n = bro točaka, K = bro cluster-a, I = bro teraca, d = bro atrbuta/varabl 2
13 Clusterng K means (0 l ) prpadnost (Hard clusterng) soft clusterng (0 ) prpadnost 3
14 Clusterng Soft K-means Mešavna klastera kombnacom k Gaussove dstrbuce p( x ) K p( ) Ν( x 2, ) = veroatnost da e x posledca (težnska kombnaca) K Gaussovh dstrbuca. Nepoznance parametr modela koe treba odredt: K p veroatnost klastera () (vred) p = θ = (μ, σ ) =, EM algortam - Expectaton Maxmzaton Kad b znal γ c (x) veroatnost prpadana x klasteru c, blo b ednostavno odredt μ c, σ c klastera. No, da b odredl γ c x trebau nam μ c, σ c! 4
15 EM algortam. Incra početne parametre 2. E korak (Expectaton) u terac t, zračuna očekvana vrednost ndkatora γ c t x (da prmer x prpada klas c) normalzra: 3. M korak (Maxmzaton) Osvež parametre - γ c t+, μ c t+, Σ c t ,, c c c K t t t t c t c t c t c N p N p ), ( ), ( ) ( ~ x x x n t c t c t c T t c n t c t c K t t c t c n p ) ( ) ( ) )( ( ) ( ) ( x μ x μ x x x x x μ K t t c t c ) ( ~ ) ( ~ ) ( x x x Ponavla dok promena γ c t+ x γ c t x < ε x Clusterng Soft K-means
16 Clusterng K means Problem ogrančena K-means algortma Odabr ncalnh centroda (slučaan)!? Uteca outler-a!? Karakterstke stvarnh cluster-a Oblk, velčna, gustoća Kolk e (optmaln) K!? 6
17 Clusterng K means Evaluaca clusterng rezultata Načešća mera suma kvadratne pogreške (SSE): Za svak prmer, greška e kvadrat udalenost do centrode c cluster-a koem prmer x prpada SSE K xc Uz dana 2 cluster-a odabrat ćemo ona s manom greškom! Jedan od načna kako smant SSE - povećat K bro cluster-a d 2 ( c, x bole mere mogu razlkovat dobar rezultat sa manm K, od relatvno lošeg rezultata sa većm K ) 7
18 Clusterng K means Mere dobrote clusterng-a (en. cluster valdty measures): Davs Bouldn Index, Dunn s Valdty ndex, C-ndex... Davs Bouldn Index (DBI) Funkca (sume) raspršena prmera unutar (ntra) cluster-a separace zmeđu clustera Ako su C={C,.., C k } cluster na skupu N prmera defnramo: R var( C ) var( C c c ) R max R,.. k, c centrod C DBI. k k R Mnmaln DBI => optmalan K; DBI usporedba clusterng metoda 8
19 Clusterng K means Problem ogrančena K-means algortma: razlčte velčne Orgnalno gruprane razlčte velčne razlčte gustoće nekonveksan oblk K-means (K=3) 9
20 Clusterng K means Tpčno rešene: već K - Delov (pravh) cluster-a: treba h oš povezat!? Orgnalno gruprane K-means (K=0) 20
21 Herarhsk clusterng Herarhsk clusterng Herarha grupa/cluster-a, organzranh poput obrnutog stabla ~ dendrograma Dendrogram dagram kom se prkazue redosled spaana prmera/clustera
22 Herarhsk clusterng HC - Zbog čega može bt nteresantan? Moguće e da udalenost zmeđu prmera, a tme HC dae nekakvu smslenu herarhu taksonomu koncepata Npr. u bolog sekvence prema slčnost flogenetska stabla organzama) Bro clustera (udružvana) može bt prozvolan 22
23 Herarhsk clusterng Herarhsk clusterng Dva osnovna tpa Aglomeratvnog tpa (spaane : bottom up ) Početak točke su osnovn cluster U svakom koraku spaamo naslčn par cluster-a Kra - kada dostgnemo zadan bro K (l mnmalno edan velk cluster) Razdvaauć (en. dvsve) (delene: top-down ) Početak edan velk cluster = sv prmer U svakom koraku, delmo cluster sve dok ne dodemo do nvoa zadanog broa K clustera (l e svak cluster edan prmer) Pr spaanu l delenu korstmo matrce slčnost l udalenost zmeđu prmera 23
24 Herarhsk clusterng Aglomeratvn HC algortam Izračuna matrcu udalenost/slčnost Svak prmer e cluster ponavla Spo dva nablža cluster-a Ponovno zračuna udalenost/slčnost u matrc dok ne preostane samo K cluster-a (edan cluster) Osnovna operaca računane udalenost/slčnost zmeđu dva cluster-a: Razlčt prstup 24
25 Herarhsk clusterng Aglomeratvn HC algortam Početak p p2 p pn p P P Matrca udalenost 25
26 Herarhsk clusterng Aglomeratvn HC algortam. korak c c c C c Matrca udalenost 26
27 Herarhsk clusterng Aglomeratvn HC algortam Zadn korak (K=4)... p p2 p3 p4 p5 p7 p6 p2 p4 27
28 Herarhsk clusterng AHC - Osnovno ptane Kako računamo matrcu udalenost/slčnost zmeđu cluster-a? d(c,c ) MIN d(x,x ) MAX d(x,x ) Udalenost zmeđu centroda c c Sredna udalenost prmera c naspram prmera c Druge složene metode 28
29 Herarhsk clusterng AHC - Osnovno ptane Zavsno o odabrano metod dobt ćemo razlčt rezultat! MIN d(x,x ) dobro: dobro aproksmra elptčne oblke cluster-a loše: osetlva na šum outler točke MAX d(x,x ) dobro: mane osetlva na šum outler-e loše: - sklona mrvlenu većh cluster-a - sklona stvaranu globularnh cluster-a Sredna udalenost prmera c naspram prmera c Komproms zmeđu MIN MAX Dobro: mane osetlva na šum outler-e Loše: - sklona stvaranu globularnh cluster-a 29
30 Herarhsk clusterng AHC: razlčte metode računana udalenost/slčnost => razlčt konačn rezultat MIN MAX Sredna vrednost
31 Herarhsk clusterng AHC: složenost O(N 2 ) prostorna (N= br prmera N 2 matrca udalenost/slčnost) O(N 3 ) vremenska N koraka, N 2 proračuna matrce, te pronalažene naslčnh cluster-a Nek algortm postžu O(N 2 log(n) ) 3
32 Herarhsk clusterng DHC : MST (Mnmum Spannng Tree)algortam. Inkrementalno grad MST Početak: Stablo e edan (prv - slučan) prmer x p Ponavla - doda nov prmer x u stablo tako da nađeš mnmaln d(x p, x ) zmeđu svh parova x p unutar stabla x - van stabla - Doda x u stablo stav vezu zmeđu x p x dok nsu sve točke u stablu
33 Herarhsk clusterng Razdvaauć herarhsk clusterng DHC : MST (Mnmum Spannng Tree)algortam 2. Korst MST da b napravo cluster-e: MST e cluster Ponavla - naprav nov cluster tako nađeš naveću udalenost (namana slčnost) koa oš ne preknuta u nekom od postoećh delova MST (cluster-a) dok nsu sve sv delov stabla (cluster) sveden na prmere 33
34 SOM (Self-organzng-maps) SOM (Teuvo Kohonen, 98) - Cl: topologa prmera => maprane prmera u nže-dmenzonaln prostor, uz uvet da udalenost zmeđu prmera budu što e vše moguće sačuvane - Kohonenove mape proekca všedmenzonalnog prostora - na D l 2D grd/mapu čvorova (neuron!) -Veza prema stvarno bolog: - slčna percepca vod na eksctrane u stm područma mozga 34
35 SOM (Self-organzng-maps) SOM samo-organzrauća mapa (Teuvo Kohonen) SOM algortam uč maprane s ulaznh prmera na 2D/D mrežu neurona y modeln vektor y - modeln vektor se nalaze na map (D l 2D) Sačuvane orgnalne topologe prmera (~ sačuvane udalenost zmeđu prmera) clusterng alat kod koeg e vzualzaca btan aspekt SOM ma generalzacska svostva: Nov prmer asmlra se u određenom čvoru mreže! 35
36 SOM (Self-organzng-maps) SOM Algortam Odabrat topologu mreže (mxm, oblk čvorova...) ncalzra početnu velčnu susedstva D(0) zada 0 ( t) ( t ) faktor učena (uglavnom promenv smanue se s t) Arhtektura x --- x --- x n Incalzra modelne vektore y dok ne zadovolen krter zaustavlana a. Odaber ulazn prmer x b. Odred eukldske udalenost zmeđu x čvora y na mrež k n ( x, k y, k 2 ) y y y m c. Odred čvor * prema koem udalenost ma mnmalnu vrednost u odnosu na x d. Promen sve modelne vektore na mrež ko su unutar susedstva D(t) od y * korsteć: poveća t y ( t ) y ( t) ( t)( x y ( t)) 36
37 SOM (Self-organzng-maps) SOM znača prmene - NN model rada mozga - Vzualzaca velkh skupova podataka - Vd reprezentace znana SOM: World poverty map 37
38 SOM (Self-organzng-maps) SOM: comp.a.neural-nets newsgroup 38
transformacija j y i x x promatramo dva koordinatna sustava S i S sa zajedničkim ishodištem z z Homogene funkcije Ortogonalne transformacije
promatramo dva oordnatna sustava S S sa zaednčm shodštem z z y y x x blo o vetor možemo raspsat u baz, A = A x + Ay + Az = ( A ) + ( A ) + ( A ) (1) sto vred za ednčne vetore sustava S = ( ) + ( ) + (
Ekonometrija 4. Ekonometrija, Osnovne studije. Predavač: Aleksandra Nojković
Ekonometrja 4 Ekonometrja, Osnovne studje Predavač: Aleksandra Nojkovć Struktura predavanja Nelnearne zavsnost Prmene u ekonomskoj analz Prmer nelnearne zavsnost Isptujemo zavsnost zmeđu potrošnje dohotka.
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Reverzibilni procesi
Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože
F (t) F (t) F (t) OGLEDNI PRIMJER SVEUČILIŠTE J.J.STROSSMAYERA U OSIJEKU ZADATAK
OGLEDNI PRIMJER ZADAAK Odredte dnamčke karakterstke odzv armranobetonskog okvra C-C prkazanog na slc s prpadajućom tlorsnom površnom, na zadanu uzbudu tjekom prve tr sekunde, ako je konstrukcja prje djelovanja
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Elektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo
Elektrotehnčk fakultet unverzteta u Beogradu 6.maj 8. Odsek za Softversko nžnjerstvo Performanse računarskh sstema Drug kolokvjum Predmetn nastavnk: dr Jelca Protć (35) a) () Posmatra se segment od N uzastonh
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Moguća i virtuelna pomjeranja
Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
TEHNIČKI FAKULTET SVEUČILIŠTA U RIJECI Zavod za elektroenergetiku. Prijelazne pojave. Osnove elektrotehnike II: Prijelazne pojave
THNIČKI FAKUTT SVUČIIŠTA U IJI Zavod za elekroenergek Sdj: Preddplomsk srčn sdj elekroehnke Kolegj: Osnove elekroehnke II Noselj kolegja: v. pred. mr.sc. Branka Dobraš, dpl. ng. el. Prjelazne pojave Osnove
Metoda najmanjih kvadrata
Metoda ajmajh kvadrata Moday, May 30, 011 Metoda ajmajh kvadrata (MNK) MNK smo već uvel u proučavaju leare korelacje; gdje smo tražl da suma kvadrata odstupaja ekspermetalh točaka od pravca koj h a ajbolj
pismeni br.4 4.2: Izračunati yds, gdje je K luk parabole y 2 = 2 px od ishodišta to točke
Prakkm Maemaka III Prredo DJočć smen br : Raz Forero red nkc eroda dan ormom za < za < : Izračna ds gde e k araboe od shodša o očke M : Izračna koordnae ežsa homogenog ka ckode a sn a ; : Izračna I e [
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu
7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc
PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET
TEORJA ETONSKH KONSTRUKCJA 1 PRESEC SA PRSLNO - VELK EKSCENTRCTET ČSTO SAVJANJE - SLOODNO DENZONSANJE Poznato: Nepoznato: - statčk tcaj za pojedna opterećenja ( ) - sračnato - kvaltet materjala (, σ v
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Obrada signala
Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam
Polarzacja Proces asajaja polarzrae svjelos: a refleksja b raspršeje c dvolom d dkrozam Freselove jedadžbe Svjelos prelaz z opčkog sredsva deksa loma 1 u sredsvo deksa loma, dolaz do: refleksje (prema
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
Strukture GMDH u modeliranju i predikciji vremenskih serija. Ivan Ivek
Srukure GMDH u modelrnju predkcj vremenskh serj Ivn Ivek Group Mehod of D Hndlng Ivkhnenko, 966. regresj, esmcj, predkcj, konrol... Dobr svojsv: nskoprmersk lgorm smopodešvnje srukure selekcj ulnh vrjbl
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
( ) BROJNI PRIMER 4. Temeljni nosač na sloju peska. Slika 6.3. Rešenje: Ekvivalentni modul reakcije podloge/peska k i parametar krutosti λ :
BROJNI PRIMER 4 Armrano etonsk temeljn nosač (slka 63), fundran je na dun od D f =15m, u sloju poto-pljenog peska relatvne zjenost D r 75% Odredt sleganje w, nag θ, transverzalnu slu T, moment savjanja
XI dvoqas veжbi dr Vladimir Balti. 4. Stabla
XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla
ANALIZA I INTERPRETACIJA
ANALIZA I INERPREACIJA Analza nterpretaca porazumevau otkrvane, entfkacu razumevane uzoraka o nteresa, Slka 90. Automatska analza slke mora bt u mogućnost a pokaže oređen stepen ntelgence:. mogućnost zvaana
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
APROKSIMACIJA FUNKCIJA
APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Aritmetički i geometrijski niz
Zadac sa prethodh prjemh spta z matematke a Beogradskom uverztetu Artmetčk geometrjsk z. Artmetčk z. 00. FF Zbr prvh dvadeset člaova artmetčkog za čj je prv čla, a razlka A) 0 B) C) D) 880 E) 878. 000.
Osnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
Numerično reševanje. diferencialnih enačb II
Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke
RAČUNANJE SA PRIBLIŽNIM VREDNOSTIMA BROJEVA
RAČUNANJE SA PRIBLIŽNIM VREDNOSTIMA BROJEVA PRIBLIŽNI BROJ I GREŠKA tača vredost ekog broja X prblža vredost ekog broja X apsoluta greška Δ = X X graca apsolute greške (gorja graca) relatva greška X X
1. VAJA IZ TRDNOSTI. (linearna algebra - ponovitev, Kroneckerjev δ i j, permutacijski simbol e i jk )
VAJA IZ TRDNOSTI (lnearna algebra - ponovtev, Kroneckerev δ, permutacsk smbol e k ) NALOGA : Zapš vektor a = [, 2,5,] kot lnearno kombnaco vektorev e = [,,,], e 2 = [,2,3,], e 3 = [2,,, ] n e 4 = [,,,]
Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.
Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika
NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
Uvod u neparametarske testove
Str. 148 Uvod u neparametarske testove Predavač: Dr Mirko Savić savicmirko@ef.uns.ac.rs www.ef.uns.ac.rs Hi-kvadrat testovi c Str. 149 Koristi se za upoređivanje dve serije frekvencija. Vrste c testa:
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.
Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),
Trigonometrijske nejednačine
Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa
OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić
OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti
Prema tome, kao sredstva koja uvrštavamo u portfolio pojavljuju se sredstvo 3, sa najvećim iznosom Sharpe-ovog indeksa, i sredstvo 2.
Prmer 7. 1) Da su podac za r sredsva u peroda osmarana, R 1,518 R 3, 031 R3 3, 9533 r 1 1, 0383 r 0, 837 r 3 1, 48 r 1 r 0,1919 r 1 r 3 0, 698 r r 3 0, 1801 na osnovu dah sumranh vrednos odred očekvanu
Matematka 1 Zadaci za drugi kolokvijum
Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()
Proračun potrebnog broja vozila II 1/13
Proračun potrebnog broa vozla II 1/13 Analtčke metode za odredvana potrebnog broa vozla Jedan od naznačanh aktora ko utču na unkconsane sstema rukovana materalom e bro sredstava ko se nalaze u sstemu.
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr
KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,
Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja:
Anene Transformacija EM alasa u elekrični signal i obrnuo Osnovne karakerisike anena su: dijagram zračenja, dobiak (Gain), radna učesanos, ulazna impedansa,, polarizacija, efikasnos, masa i veličina, opornos
π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
Dvanaesti praktikum iz Analize 1
Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.
Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.
Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.
ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2
Izbor prenosnih odnosa teretnog vozila - primer
FTN No Sad Katedra za motore ozla Teorja kretanja drumskh ozla Izbor prenosnh odnosa Izbor prenosnh odnosa teretnog ozla - prmer ata je karakterstka dzel motora MG OM 906 LA (Izor: http://www.dmg-dusburg.de/html/d_c_om906la.html)
I Pismeni ispit iz matematike 1 I
I Pismeni ispit iz matematike I 27 januar 2 I grupa (25 poena) str: Neka je A {(x, y, z): x, y, z R, x, x y, z > } i ako je operacija definisana sa (x, y, z) (u, v, w) (xu + vy, xv + uy, wz) Ispitati da
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
Trigonometrijski oblik kompleksnog broja
Trgnmetrjsk blk kmpleksng brja Da se pdsetm: Kmpleksn brj je blka je realn de, je magnarn de kmpleksng brja, - je magnarna jednca, ( Dva kmpleksna brja su jednaka ak je Za brj _ je knjugvan kmpleksan brj.
DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =
x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},
Program testirati pomoću podataka iz sledeće tabele:
Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
O={ k w kj } Dakako, u općenitom slučaju mreža ima više od jednog neurona u izlaznom sloju. Neka ti izlazi čine skup O. Onda redefiniramo pogrešku:
Izv BP algrma a. g. 0./03. Pgrešu za ean prcesn elemen efnral sm a: w H D e varan supane svarng zlaza želeng zlaza sumran p svm prmerma za učene D. Far psan e ra pračns paza će se asne, n sam salra vrens
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
SEKUNDARNE VEZE međumolekulske veze
PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura
Projektovanje integrisanih kola. I. I. Uvod Uvod - sistem projektovanja. Sadržaj:
Projektovanje ntegrsanh kola Potpuno projektovanje po narudžbn Sadržaj: Sadržaj: I. I. Uvod Uvod - sstem projektovanja II. II. MOS Analza Proceskola prmenom računara III. III. Potpuno Optmzacja projektovanje
POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE
**** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
LANCI & ELEMENTI ZA KAČENJE
LANCI & ELEMENTI ZA KAČENJE 0 4 0 1 Lanci za vešanje tereta prema standardu MSZ EN 818-2 Lanci su izuzetno pogodni za obavljanje zahtevnih operacija prenošenja tereta. Opseg radne temperature se kreće
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja