PRIJENOS i DISTRIBUCIJA ELEKTRIČNE ENERGIJE

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "PRIJENOS i DISTRIBUCIJA ELEKTRIČNE ENERGIJE"

Transcript

1 TEHIČKI FAKULTET SVEUČILIŠTA U RIJEI Sveučlš dplomsk studj elektrotehke PRIJEOS DISTRIBUIJA ELEKTRIČE EERGIJE. KOSTRUKIJSKI RAD - MEHAIČKI PRORAČU ADZEMIH VODOVA Izrčujte zrdte motže tblce provjes prezj vodč z ztezo polje prkzog slkom jedog dzemog vod zvog po kv. Vodč: HR..5 Al/Fe 6/57 Mksmlo rdo prezje (/mm ): Fktor ormlog dodtog teret:, h 8,6 m h 66, m h 8,4 h4 68,5 4 h 5 7, m 5 5 m 85 m m 4 5 m Slk. Ztezo polje Tblc. Podc vodč HR..5 Al/Fe Podc vodč Al/Fe - 6/57 zv presjek (mm ) 6/57 Rčusk presjek A (mm ) 47,54 Promjer vodč d (mm) 6,6 Uzduž ms m (kg/m),47 Modul elstčost E (/mm ) 77 Koefcjet lerog toplskog stezj β (/ ) 8,9-6 ormlo dozvoljeo prezje d (/mm ) Izmo dozvoljeo prezje (/mm )

2 ALGORITAM ZA IZRADU MOTAŽIH TABLIA PROVJESA I APREZAJA ZA ZATEZO POLJE OD RASPOA. Prkupt podtke o vodču smještju ztezog polj: vodč Al/Fe, A, d, m, E, β, d, k rspo:,,..., develcj ovjesšt: h, h,..., h ` ` ` spojce ovjesšt:,,...,. Odredt dodt teret reducre teže vodč: G, g, G l, g z.. Odbrt mksmlo rdo prezje mx. 4. Izrčut krtč rspo k. 5. Izrčut del rspo delo. 6. Odbrt osovo stje jeddžbe stj: delo < k - bez dodtog opterećej delo > k - 5 s dodtm opterećejem 7. Rčut horzotlo prezje z ztezo polje, z odbre temperture:, 8. Rčut provjese z pojede rspoe odbre temperture: f f`. 9. Ispst motže tblce provjes prezj: VODIČ: HR..5 Al/Fe - Ztezo polje: stup br. - stup br. Mksmlo rdo prezje: (/mm ) Fktor ormlog dodtog teret k: Idel rspo Motž pr tempertur ( ) delo (m) led Provjes vodč (m) Horzotlo prezje (/mm ) Horzotl sl () stup br. rspo (m) vssk rzlk h (m) Provjes f(m) z stvre rspoe. PRIKUPLJAJE PODATAKA O VODIČU I SMJEŠTAJU ZATEZOG POLJA

3 Vodč AlFe 6/57 A 47,54 mm d 6,6 mm m,47 kg/m E 77 /mm β 8,9-6 K - d /mm /mm k, (fktor ormlog dodtog teret) Profl trse Iz profl trse određuju se rspo, develcje spojce ovjesšt. Velče koje se određuju defre se sljedećom slkom. h ' Zčeje ozk slc su sljedeće: rspo ' spojc ovjesšt h - develcj RASPOI: 5 m 85 m m 4 5 m DEIVELAIJE OVJESIŠTA: h h h 66, 8,6-5, m h h h 8,4 66, 4, m h 4 h 4 h 68,5 8,4 -,9 m h 45 h 5 h 4 7, 68,5,8 m SPOJIE OVJESIŠTA: Slk. Rspo, develcj, spojc ovjesšt

4 ( 5,) 5 5, m ' h 46 ' h 4, 85 85, 54 m (,9 ), m ' h 59 4 ' h,8 5 5, m ODREĐIVAJE DODATOG TERETA I REDUIRAE TEŽIE VODIČA Reducr tež odoso specfč tež ezleđeog vodč zos: g G A m g A,47 9,8 47,54 4,56 m mm Reducr tež led, uz uvžvje fktor ormlog dodtog teret, koj se stvr vodču zos: g l,8 d k A g,8 6,6 9,8,,8 47,54 m mm Kočo, reducr tež zleđeog vodč jedk je zbroju reducre teže ezleđeog vodč reducre teže led, odoso: g z g gl 4,56,8 56,7 m mm. ODABIR MAKSIMALOG RADOG APREZAJA mx Mksmlo prezje vodč zdo je tekstom zdtk zos: mx mm 4. IZRAČUAVAJE KRITIČOG RASPOA Krtč rspo određuje počete uvjete z jeddžbu stj. me, vrjedost delog rspo koj će bt određe u sljedećoj točk usporedt će se s krtčm rspoom te će se moć utvrdt d l je početo stje - bez dodtog opterećej ledom l -5 uz dodto opterećeje ledom. 6 6β 6 8,9 k mx 85, m g g z ( 56,7 ) ( 4,56 ) 5. IZRAČUAVAJE IDEALOG RASPOA

5 D b mogl odredt počete uvjete z jeddžbu stj, krtč rspo potrebo je usporedt s tzv. delm rspoom kojm se domještju pojed rspo uutr ztezog polj. Develcje ovjesšt uzmju se u obzr korekcjskm fktorom. de l o ,46 85, ,59 5, 5 5,46 5 5, , ,54 85,59,59 5, 5 5, ,5 666, ,5 95,855 m 6. ODABIR OSOVOG STAJA JEDADŽBE STAJA delo < k > početo stje je - bez dodtog opterećej delo > k > početo stje je -5 uz dodto opterećeje ledom delo 95,855 m > k 85, m Početo stje defrju, dkle, sljedeće velče: θ -5 g g z 56,7 - /(m mm ) mx /mm 7. IZRAČU HORIZOTALOG APREZAJA ZA ZATEZO POLJE ZA ODABRAE TEMPERATURE, Obzrom d postoje develcje ovjesšt u ztezom polju, rčumo domjeso mksmlo prezje: > Z horzotlu trsu bez develcj vrjed: Jeddžb stj z kos rspo gls: mx

6 E β de l o ( ϑ ) ϑ 4 g g Početo stje je: θ -5 g g z 56,7 - /(m mm ) mx /mm >, 4 mm Sljed zrču domjesh prezj rješvjem kube jeddžbe potom stvrog prezj z temperture od - do 4. Uvrštvjem vrjdost početog stj u jeddžbu stj dobvmo: 95,855 ( ) ( 56,7 ) ( 4,56 ) 5 ϑ,4 6 8,9 77 4,4 U prethodoj jeddžb mjejmo temperture određujemo prezj. APOMEA: Z sve temperture osm -5 rčumo s reducrom težom ezleđeog vodč. U stvku će se pokzt sljed prorču prezj vodč z temperturu -. ) θ - 95,855 ( ( )) ( 56,7 ) ( 4,56 ) 5,4 6 8,9 77 4, ,4,895 8,846 8, ,4 -> KUBA JEDADŽBA

7 DIGRESIJA RJEŠAVAJE KUBE JEDADŽBE METODOM TAGETE (EWTOOVA METODA). Odberemo početu točku (x, y ) u joj povučemo tgetu zdu krvulju.. Jeddžb tgete u točk (x, y ) gls: y-y f'(x ) (x-x ) y' (x-x ). Sjecšte tog prvc s os pscs, dje m ovu točku T(x,) p mmo: y T -y y' (x T -x ) -y y' (x -x ) > x x -y /y' 4. Iz točke T (x,) dgemo okomcu. T okomc sječe krvulju u točk T (x, y ). U toj točk vučemo ovu tgetu zdu krvulju, koj sječe os pscsu u ovoj točk T (x, ) p mmo: x x y /y' prkz postupk stvljmo dlje, odoso: x x y /y' ASTAVAK RJEŠAVAJA ZADATKA Dkle, ko prmjemo metodu tgete problem rješvj kube jeddžbe dobt ćemo sljedeće zrze: ( ) 8, ,4 y f ( x) x 8, ,4 y f x Početu vrjedost z ops tertv postupk određujemo ko prvo poztvo rješeje f(x ), odoso uvrštvmo u kubu jeddžbu prozvolje vrjedost dok e dobjemo poztv rezultt. ko što dobjemo poztvu vrjedost f(x ), krećemo u rješvju kube jeddžbe prem metod tgete uz uprvo tu vrjedost x.

8 Tblc. Određvje počete vrjedost x z tertv postupk x 5 7 f(x) ,4-954,4-744,4 98,996. ITERAIJA x y 98,996 y' x -66,86 x y' x -66,86 x y' -66,86 6,4 x x -y /y' -98,996/6,498,5 Δx x x 98,5 -,4887 Itertv postupk stvljmo dok rzlk zmeđu dvje uzstope tercje e bude mj od ε,.. ITERAIJA x 98,5 y 476,567 y' x -66,86 x y' 98,5-66,86 98,5678, x x -y /y' 98,5-476,567/678,98,477 Δx x x 98,477 98,5 -,76 > ε. ITERAIJA x 98,477 y,6665 y' x -66,86 x y' 98,477-66,86 98,47766,5 x x -y /y' 98,477-,6665/66,598,4768 Δx x x 98, ,477 -, < ε Buduć je rzlk zmeđu.. tercje mj od ε, tercjsk postupk se zustvlj. Dobve vrjedost odgovr domjesom prezju z temperturu -. 98,477 /mm

9 Stvro prezje, rčumo z domjesog: 665,5 98,477 98, 4 666,846 mm Ist postupk povljmo z sve ostle temperture. Provjes delog rspo pr rzlčtm temperturm rčumo z zrz: de l o gϑ f 8 ϑ U prethodom zrzu gϑ ozčv reducru težu vodč pr tempertur ϑ. Ko što je već prje blo stkuto, z sve temperture osm -5, reducr tež jedk je reducroj tež ezleđeog vodč. Smo z temperturu -5 potrebo je rčut s reducrom težom zleđeog vodč. ozčv prezje vodč pr tempertur ϑ. ϑ Horzotlu slu z del rspo rčumo prem zrzu: F ϑ ϑ U stvku je prkz tblc s rezulttm prorču z del rspo to z sve temperture. Tblc. Rezultt prorču z del rspo A ϑ LED mm 98,474 87,8 78,9 69,76 6,57 56,457 5,87,4 mm 98,5 87,59 78, 69,59 6,85 56, 5,6 f (m),6754,879,,65,68,9,6,6845 F H () 47, 657, 568,96 956,9 648,4 55,99 44,5 4754

10 8. IZRAČUAVAJE PROVJESA ZA POJEDIE RASPOE I ODABRAE TEMPERATURE (f, f') Z horzotl rspo bez develcje provjes se rču prem zrzu: gϑ f 8 ϑ Ko kod delog rspo z stvre rspoe reducru težu prezje mormo uvrstt u ovsost o tempertur pr kojoj rčumo provjes. Buduć d trs vod je horzotl, već postoje rzlke u vsm ovjesšt stupov, stvr rspo f' rčumo prem: gϑ ϑ f ' f 8 ϑ 8 ϑ U stvku će bt pokz prorču provjes z prv rspo z sve temperture. Dkle, rspo br. : t - f ' 8 5 5,46 4, ,5,7979 m t - f ' 8 5 5,46 4, ,59,79 m t f ' 8 5 5,46 4, ,,56 m t f ' 8 5 5,46 4, ,598,9495 m t f ' 8 5 5,46 4,56 8 6,854 4,457 m t f ' 8 5 5,46 4, , 4,88 m t 4 f ' ,46 4,56 8 5,6 5,65 m t -5 LED f ' 8 z 5 LED 5 5,46 56,7 8 4,48 m Motž tblc s rezulttm prorču z sve rspoe dt je krju ovog dokumet.

11 9. ODREĐIVAJE KRITIČE TEMPERATURE Stje u kojem će stupt jveć provjes određujemo z krtče temperture. Krtč tempertur određuje se prem sljedećem zrzu: z g ϑ k β E g z 5 U gorjem zrzu z ozčv prezje zleđeog vodč. Ukolko uspoređvjem krtčog rspo delog rspo zđe d se jveće prezje pojvljuje pr tempertur -5 uz dodto opterećeje ledom td m je pozt zos z jer je uprvo jedk mskmlom prezju. Međutm, ko se pokže d mksmlo prezje stje pr tempertur -, td je potrebo zrčut prezje zleđeog vodč ( z ) odoso prezje pr -5 uz dodto opterećeje ledom, rješvjem kube jeddžbe. Dkle: 4,56 ϑ k 5, , ,7 Poovo postoje dvje mogućost kod kojh stje jveć provjes: ) Ako je ϑ k < 4 -> ) Ako je ϑ k > 4 -> AJVEĆI PROVJES ASTAJE PRI 4 AJVEĆI PROVJES ASTAJE PRI -5 UZ LED Prethodm prorčuom pokzl smo d jveć provjes stje pr 4 što je u skldu s prje određeom krtčom temperturom. Izos smog provjes određujemo prem prethodo vedeom zrzu:

12 Idel rspo Motž pr tempertur ( ) delo 95,85 (m) led Provjes vodč (m),6754,879,,65,68,9,6,6845 Horzotlo prezje (/mm) 98,5 87,59 78, 69,598 6,854 56, 5,6 Horzotl sl () 47,95 657,7 568, , ,49 55, , , stup br. rspo (m) vssk rzlk h (m) Provjes z stvre rspoe 5, 5,,7979,79,56,9495 4,457 4,88 5,65 4,48 85, -4,,595,699,9,8,769,69,896,487,,9,664,77,84,898,,,95,97 4 5, -,8,4849,549,67,6845,766,8458,99,777 5

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom:

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom: Otporost mterijl. Zdtk ZDTK: U točki čeliče kostrukije postvlje su tri osjetil z mjereje deformij prem slii. ri opterećeju kostrukije izmjeree su reltive ormle (dužiske deformije: b ( - b 3 - -6 - ( b

Διαβάστε περισσότερα

Vježba 1. Analiza i sinteza sistema regulacije brzine vrtnje istosmjernog motora

Vježba 1. Analiza i sinteza sistema regulacije brzine vrtnje istosmjernog motora ortorjske vježe z predet ootk uprvljje prozvod sste Vjež Vjež Alz stez sste regulcje rze vrtje stosjerog otor Clj vježe: Stez regultor rze vrtje stosjerog otor pooću etod tehčkog setrčog optu Alzrt dčko

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza Mte Vijug: Rijesei zdci iz mtemtike z sredju skolu. ARITMETICKI I GEOMETRIJKI NIZ, RED, BINOMNI POUCAK. Aritmeticki iz Opci oblik ritmetickog iz: + - d Gdje je: prvi cl ritmetickog iz ti cl ritmetickog

Διαβάστε περισσότερα

ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА

ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА empertur sežeg beton menj se tokom remen i zisi od ećeg broj utijnih prmetr: Početne temperture mešine (n izsku iz mešie), emperture sredine, opote hidrtije ement, Rzmene topote

Διαβάστε περισσότερα

Metoda najmanjih kvadrata

Metoda najmanjih kvadrata Metoda ajmajh kvadrata Moday, May 30, 011 Metoda ajmajh kvadrata (MNK) MNK smo već uvel u proučavaju leare korelacje; gdje smo tražl da suma kvadrata odstupaja ekspermetalh točaka od pravca koj h a ajbolj

Διαβάστε περισσότερα

Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam

Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam Polarzacja Proces asajaja polarzrae svjelos: a refleksja b raspršeje c dvolom d dkrozam Freselove jedadžbe Svjelos prelaz z opčkog sredsva deksa loma 1 u sredsvo deksa loma, dolaz do: refleksje (prema

Διαβάστε περισσότερα

Analitička geometrija i linearna algebra. Kartezijev trodimenzionalni pravokutni koordinatni sustav čine 3 međusobno okomite osi: Ox os apscisa,

Analitička geometrija i linearna algebra. Kartezijev trodimenzionalni pravokutni koordinatni sustav čine 3 međusobno okomite osi: Ox os apscisa, Alitičk geoetrij i lier lger Vektori KOORDINATNI SUSTAV Krteijev prvokuti koorditi sustv Krteijev trodieioli prvokuti koorditi sustv čie eđusoo okoite osi: O os pscis O os ordit O os plikt točk O ishodište

Διαβάστε περισσότερα

Moguća i virtuelna pomjeranja

Moguća i virtuelna pomjeranja Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +

Διαβάστε περισσότερα

Dimenzioniranje SN/NN kabela i transformatora

Dimenzioniranje SN/NN kabela i transformatora Dmezoraje SN/NN kabela trasformatora Za NN mrežu prkazau slkom potrebo je odredt presjek glavh adzemh trofazh zvoda te moofazh podzvoda obzrom a dozvolje pad apoa kod krajjeg potrošača od 6% dozvoljeu

Διαβάστε περισσότερα

METODE OPTIMIZACIJE NELINEARNO PROGRAMIRANJE

METODE OPTIMIZACIJE NELINEARNO PROGRAMIRANJE MEODE OPIMIZACIJE NELINEARNO PROGRAMIRANJE Dr Dšć Dr Mloš Stć Grđevsk kultet Uverztet u Beogrdu 4. UVOD FORMULACIJA PROBLEMA Zdtk optmzcje je prolžeje promeljvh pr kojm clj krterjumsk ukcj uzm ekstremu

Διαβάστε περισσότερα

FURIJEOVI REDOVI ZADACI ( II

FURIJEOVI REDOVI ZADACI ( II FURIJEOVI REDOVI ZADACI ( II deo Primer. Fukciju f ( = rzviti u Furijeov red segmetu [,] ztim izrčuti sumu red. ( Rešeje: Kko je f ( = = = f ( zkjučujemo d je fukcij pr. Koristimo formue: = f ( = + ( cos

Διαβάστε περισσότερα

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i Sdržj 4 INTEGRALI 64 4. Neodredeni integrl........................ 64 4. Integrirnje supstitucijom.................... 68 4. Prcijln integrcij....................... 7 4.4 Odredeni integrl i rčunnje površine

Διαβάστε περισσότερα

odvodi u okoliš? Rješenje 1. zadatka Zadano: q m =0,5 kg/s p 1 =1 bar =10 5 Pa zrak w 1 = 15 m/s z = z 2 -z 1 =100 m p 2 =7 bar = Pa

odvodi u okoliš? Rješenje 1. zadatka Zadano: q m =0,5 kg/s p 1 =1 bar =10 5 Pa zrak w 1 = 15 m/s z = z 2 -z 1 =100 m p 2 =7 bar = Pa .vježba iz Terodiaike rješeja zadataka 1. Zadatak Kopresor usisava 0,5 kg/s zraka tlaka 1 bar i 0 o C, tlači ga i istiskuje u eizolirai tlači cjevovod. Na ulazo presjeku usise cijevi brzia je 15 /s. Izlazi

Διαβάστε περισσότερα

n n su realni brojevi, a n, koji mora biti cjelobrojna

n n su realni brojevi, a n, koji mora biti cjelobrojna Aproksmrnje podtk Aproksmrnje podtk krvuljom Aproksmrnje podtk krvuljom (engl. curve ttng), nzv se još regresjsk nlz (engl. regresson nlss), je postupk uklpnj unkcje u skup točk koje predstvljju određene

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

4. Trigonometrija pravokutnog trokuta

4. Trigonometrija pravokutnog trokuta 4. Trigonometrij prvokutnog trokut po školskoj ziri od Dkić-Elezović 4. Trigonometrij prvokutnog trokut Formule koje koristimo u rješvnju zdtk: sin os tg tg ktet nsuprot kut hipotenuz ktet uz kut hipotenuz

Διαβάστε περισσότερα

2.6 Nepravi integrali

2.6 Nepravi integrali 66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,

Διαβάστε περισσότερα

Rijeseni neki zadaci iz poglavlja 4.5

Rijeseni neki zadaci iz poglavlja 4.5 Rijeseni neki zdci iz poglvlj 4.5 Prije rijesvnj zdtk prisjetimo se itnih stvri koje ce ns prtiti tijekom njihovog promtrnj. Definicij: (Trigonometrij prvokutnog trokut) ktet nsuprot kut ϕ sin ϕ hipotenuz

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

α =. n n n Vježba 001 Koliko stranica ima pravilni mnogokut ako jedan njegov unutarnji kut iznosi 144? Rezultat: n = 10.

α =. n n n Vježba 001 Koliko stranica ima pravilni mnogokut ako jedan njegov unutarnji kut iznosi 144? Rezultat: n = 10. Zdtk (Mrij, gimzij) Koliko stric im prvili mogokut ko jed jegov uutrji kut izosi 8? Rješeje Formul z veličiu jedog uutrjeg kut prvilog mogokut je: ( ) 8 α = ( ) 8 8 = / 8 = ( ) 8 8 = 8 6 8 8 = 6 7 = 6

Διαβάστε περισσότερα

F (t) F (t) F (t) OGLEDNI PRIMJER SVEUČILIŠTE J.J.STROSSMAYERA U OSIJEKU ZADATAK

F (t) F (t) F (t) OGLEDNI PRIMJER SVEUČILIŠTE J.J.STROSSMAYERA U OSIJEKU ZADATAK OGLEDNI PRIMJER ZADAAK Odredte dnamčke karakterstke odzv armranobetonskog okvra C-C prkazanog na slc s prpadajućom tlorsnom površnom, na zadanu uzbudu tjekom prve tr sekunde, ako je konstrukcja prje djelovanja

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo GRANIČNE VREDNOSTI FUNKCIJA zdci II deo U sledećim zdcim ćemo korisii poznu grničnu vrednos: li i mnje vrijcije n i 0 n ( Zdci: ) Odredii sledeće grnične vrednosi: Rešenj: 4 ; 0 g ; 0 cos v) ; g) ; 4 ;

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

VALJAK. Valjak je geometrijsko telo ograničeno sa dva kruga u paralelnim ravnima i delom cilindrične površi čije su

VALJAK. Valjak je geometrijsko telo ograničeno sa dva kruga u paralelnim ravnima i delom cilindrične površi čije su ALJAK ljk je geometijsko telo ogničeno s dv kug u plelnim vnim i delom ilindične povši čije su izvodnie nomlne n vn ti kugov. Os vljk je pv koj polzi koz ente z. Nvno ko i do sd oznke su: - je povšin vljk

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

7 neg. ( - ) neg. ( - ) poz. (+ ) poz. (+ )

7 neg. ( - ) neg. ( - ) poz. (+ ) poz. (+ ) X. gimzij Iv Supek Zgre, Klićev 7. lipj 000. godie Mturl zdć iz mtemtike Rješej zdtk. ) Riješi jeddžu 7 Rješeje: Njprije se tre riješiti psolutih vrijedosti tko d z svki izrz uutr psolute vrijedosti odredimo

Διαβάστε περισσότερα

II. ANALITIČKA GEOMETRIJA PROSTORA

II. ANALITIČKA GEOMETRIJA PROSTORA II. NLITIČK GEMETRIJ RSTR I. I (Točka. Ravia.) d. sc. Mia Rodić Lipaović 9./. Točka u postou ( ; i, j, k ) Kateijev pavokuti koodiati sustav k i j T T (,, ) oložaj točke u postou je jedoačo odeñe jeim

Διαβάστε περισσότερα

I N Ž E N J E R S K A M A T E M A T I K A 2

I N Ž E N J E R S K A M A T E M A T I K A 2 I N Ž E N J E R S K A M A E M A I K A P r e d v j G L A V A 8 OURIEROVI REDOVI, OURIEROVI INEGRALI I OURIEROVA RANSORMACIJA 8.. U v o d m cresc eudo. [Gs rse šrejem.] Lsk posovc ourerov red je jed od jvžjh

Διαβάστε περισσότερα

Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi:

Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi: tnic:iii- lektosttik lektično polje n gnici v ielektik. Pločsti konenzto. Cilinični konenzto. Kuglsti konenzto. tnic:iii-. ztk vije mete ploče s zkom ko izoltoom ile su spojene n izvo npon, ztim ospojene

Διαβάστε περισσότερα

MODELI TEMELJENI NA DIFERENCIJALNIM JEDNADŽBAMA VIŠEG REDA I NA SUSTAVIMA DIFERENCIJALNIH JEDNADŽBI

MODELI TEMELJENI NA DIFERENCIJALNIM JEDNADŽBAMA VIŠEG REDA I NA SUSTAVIMA DIFERENCIJALNIH JEDNADŽBI MODELI TEMELJENI NA DIFERENCIJALNIM JEDNADŽBAMA VIŠEG REDA I NA SUSTAVIMA DIFERENCIJALNIH JEDNADŽBI MATEMATIČKO NJIHALO Jedadžba koja osuje gbaje matematčkog jala rozlaz z drugog Newtoovog zakoa r ma F

Διαβάστε περισσότερα

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx. Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo Elektrotehnčk fakultet unverzteta u Beogradu 6.maj 8. Odsek za Softversko nžnjerstvo Performanse računarskh sstema Drug kolokvjum Predmetn nastavnk: dr Jelca Protć (35) a) () Posmatra se segment od N uzastonh

Διαβάστε περισσότερα

Numerička integracija

Numerička integracija umerčk tegrcj Zdtk umerčke tegrcje umerčk tegrcj je postupk zrčuvj prlže vredost određeog tegrl: < d. z vredost podtegrle ukcje dt uređeom telom čemu pretpostvljmo d je: pr... Bzr se ko umerčko derecrje

Διαβάστε περισσότερα

Aritmetički i geometrijski niz

Aritmetički i geometrijski niz Zadac sa prethodh prjemh spta z matematke a Beogradskom uverztetu Artmetčk geometrjsk z. Artmetčk z. 00. FF Zbr prvh dvadeset člaova artmetčkog za čj je prv čla, a razlka A) 0 B) C) D) 880 E) 878. 000.

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

KUPA I ZARUBLJENA KUPA

KUPA I ZARUBLJENA KUPA KUPA I ZAUBLJENA KUPA KUPA Povšin bze B Povšin omotč M P BM to jet P B to jet S O o kupe Oni peek Obim onog peek O op Povšin onog peek P op Pimen pitgoine teoeme vnotn jednkotn kup je on kod koje je, p

Διαβάστε περισσότερα

= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi

= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi Zdtk 0 (Anstzij, gimnzij) Provjeri je li funkcij f log( 5) + + injekcij Rješenje 0 Kžemo d funkcij f im svojstvo injektivnosti ili d je on injekcij ko vrijedi f ( ) f ( ) Dkle, funkcij je injekcij ko rzličitim

Διαβάστε περισσότερα

c = α a + β b, [sustav rješavamo metodom suprotnih koeficijenata]

c = α a + β b, [sustav rješavamo metodom suprotnih koeficijenata] Zdtk (Tihomir, tehničk škol) c = 8 i. Rješenje Prikži vektor c ko linernu kombinciju vektor i b ko je = i + 3 j, b = 4 i 3 j, Nek su i b vektori i α, β relni brojevi. Vektor c = α + β b nzivmo linernom

Διαβάστε περισσότερα

Rješenje: F u =221,9 N; A x = F u =221,9 N; A y =226,2 N.

Rješenje: F u =221,9 N; A x = F u =221,9 N; A y =226,2 N. Osnove strojrstv Prvilo izolcije i uvjeti rvnoteže Prijeri z sostlno rješvnje 1. Gred se, duljine uležišten je u točki i obješen je n svoje krju o horizontlno uže. Izrčunjte horizontlnu i vertiklnu koponentu

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

( ) p a. poklopac. Rješenje:

( ) p a. poklopac. Rješenje: 5 VJEŽB - RIJEŠENI ZDI IZ MENIKE LUID 1 1 Treb odrediti silu koj drži u rvnoteži poklopc B jedinične širine, zlobno vezn u točki, u položju prem slici Zdno je : =0,84 m; =0,65 m; =5,5 cm; =999 k/m B p

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

Pismeni ispit održan

Pismeni ispit održan Pisei ispit održ 69 4 Kostrkcij prikz skici je, pored sopstvee težie, optereće i jedko rspodeljei povreei opterećeje p /, koje ože delovti proizvoljo položj ploči Dejstvo vetr je predstvljeo kpi horizotli

Διαβάστε περισσότερα

Kinematika materijalne toke. 2. Prirodni koordinatni sustav. 1. Vektorski nain definiranja gibanja. Krivocrtno gibanje materijalne toke

Kinematika materijalne toke. 2. Prirodni koordinatni sustav. 1. Vektorski nain definiranja gibanja. Krivocrtno gibanje materijalne toke Kioco gibje meijle oke Kiemik meijle oke. dio ) Zje kiocog gibj b) Bi i ubje Položj meijle oke u skom euku eme možemo defiii slijedee ie:. Vekoski i defiij gibj (). Piodi i defiij gibj s s (). Vekoski

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

pismeni br : Odrediti interval konvergencije reda = 11.2: Metodom varijacije konstante odrediti opće rješenje jednadžbe ( x

pismeni br : Odrediti interval konvergencije reda = 11.2: Metodom varijacije konstante odrediti opće rješenje jednadžbe ( x Piedio D.Joičić pismei b..: Odediti itel koegecije ed..: Metodom ijcije kostte odediti opće ješeje jeddžbe e.: Ičuti d, gdje je K goj poloic elipse peđe od K b točke A, do B,..: Ičuti pom okttu. I d, gdje

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

METODA SEČICE I REGULA FALSI

METODA SEČICE I REGULA FALSI METODA SEČICE I REGULA FALSI Zadatak: Naći ulu fukcije f a itervalu (a,b), odoso aći za koje je f()=0. Rešeje: Prvo, tražimo iterval (a,b) a kome je fukcija eprekida, mootoa i važi: f(a)f(b)

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Rešenja A/2 kolokvijuma iz predmeta MERNI SISTEMI U TELEKOMUNIKACIJAMA 10. januar 2006.

Rešenja A/2 kolokvijuma iz predmeta MERNI SISTEMI U TELEKOMUNIKACIJAMA 10. januar 2006. šnj A/ kolokvijum iz prdmt MENI SISEMI U ELEKOMUNIKACIJAMA. jnur. Zdtk. D i prikznim urđjm mogl mriti mplitud čtvrtog hrmonik u mmorijki lok tr d ud upin ditrovn zin unkcij ( t) y co π Izlz iz urđj j td

Διαβάστε περισσότερα

1.1. Pregled najvažnijih izraza i pojmova

1.1. Pregled najvažnijih izraza i pojmova Teorja formacje, kapactet dskretog komukacjskog kaala, Markovljev lac Pregled ajvažjh zraza pojmova Dskreto bezmemorjsko zvoršte Izvoršte X X = {x,,x,,x } [p(x ) = [p(x) = [p(x ) p(x ) p(x ) X dskreta

Διαβάστε περισσότερα

Obrada empirijskih podataka

Obrada empirijskih podataka Obrada emprjskh podataka deskrptva statstka opsvaje podataka z uzorka l populacje u form osovh parametara osove vrste podataka po astaku varjable (upotreba razlčth mjerh ljestvca) se mogu klasfcrat a:.

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

PIRAMIDA I ZARUBLJENA PIRAMIDA. - omotač se sastoji od bočnih strana(najčešće jednakokraki trouglovi), naravno trostrana piramida u omotaču

PIRAMIDA I ZARUBLJENA PIRAMIDA. - omotač se sastoji od bočnih strana(najčešće jednakokraki trouglovi), naravno trostrana piramida u omotaču PIRAMIDA I ZARULJENA PIRAMIDA Slično ko i kod pizme i ovde ćemo njpe ojniti oznke... - oeležvmo dužinu onovne ivice - oeležvmo dužinu viine pimide - oeležvmo dužinu viine očne tne ( potem) - oeležvmo dužinu

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

SLIČNOST TROUGLOVA. kažemo da su slične ( sa koeficijentom sličnosti k ) ako postoji transformacija sličnosti koja figuru F prevodi u figuru F

SLIČNOST TROUGLOVA. kažemo da su slične ( sa koeficijentom sličnosti k ) ako postoji transformacija sličnosti koja figuru F prevodi u figuru F SLIČNOST TROUGLOV Z dve figure F i F kžemo d su slične ( s koefiijentom sličnosti k ) ko postoji trnsformij sličnosti koj figuru F prevodi u figuru F. Činjeniu d su dve figure slične obeležvmo s F F. Sličnost

Διαβάστε περισσότερα

RAČUNANJE SA PRIBLIŽNIM VREDNOSTIMA BROJEVA

RAČUNANJE SA PRIBLIŽNIM VREDNOSTIMA BROJEVA RAČUNANJE SA PRIBLIŽNIM VREDNOSTIMA BROJEVA PRIBLIŽNI BROJ I GREŠKA tača vredost ekog broja X prblža vredost ekog broja X apsoluta greška Δ = X X graca apsolute greške (gorja graca) relatva greška X X

Διαβάστε περισσότερα

I N Ž E N J E R S K A M A T E M A T I K A 1. P r e d a v a n j a z a p e t u s e d m i c u n a s t a v e (u akademskoj 2009/2010.

I N Ž E N J E R S K A M A T E M A T I K A 1. P r e d a v a n j a z a p e t u s e d m i c u n a s t a v e (u akademskoj 2009/2010. I N Ž E N J E R S K A M A T E M A T I K A P r e d v j z p e t u s e d m c u s t v e (u demsoj 009/00 god) 7 Redov s prozvoljm človm (Redov s človm prozvoljog z) Hurt qum crbro, qu dscěre vult selbro [Crpe

Διαβάστε περισσότερα

Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A

Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A Psmen spt z OTPORNOSTI MATERIJALA I - grupa A 1. Kruta poluga ABC se oslanja pomoću dvje špke BD CE kao na slc desno. Špka BD, dužne 0.5 m, zrađena je od čelka (E AB 10 GPa) ma poprečn presjek od 500 mm.

Διαβάστε περισσότερα

Istosmjerni krugovi. 1. zadatak. Na trošilu će se trošiti maksimalna snaga u slučaju kada je otpor čitavog trošila jednak unutrašnjem otporu izvora.

Istosmjerni krugovi. 1. zadatak. Na trošilu će se trošiti maksimalna snaga u slučaju kada je otpor čitavog trošila jednak unutrašnjem otporu izvora. Strnic: X stosmjerni krugovi Prilgođenje n mksimlnu sngu. Rješvnje linernih mrež: Strnic: X. zdtk Otpor u kominciji prem slici nlzi se u posudi u kojoj vld promjenjiv tempertur. Pri temperturi ϑ = 0 C,

Διαβάστε περισσότερα

( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( )

( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( ) Zadatak (Mariela, gimazija) Nađite derivaciju fukcije f() a + b c + d Rješeje Neka su f(), g(), h() fukcije ezavise varijable, a f (), g (), h () derivacije tih fukcija po Osova pravila deriviraja Derivacija

Διαβάστε περισσότερα

( ) Φ = Hɺ Hɺ. 1. zadatak

( ) Φ = Hɺ Hɺ. 1. zadatak 7.vježba iz ermodiamike rješeja zadataka. zadatak Komresor usisava 30 m 3 /mi zraka staja 35 o C i 4 bar te ga o ravotežoj romjei staja v kost. komrimira a tlak 8 bar. Komresor se hladi vodom koja tijekom

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Reverzibilni procesi

Reverzibilni procesi Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

Računanje sa približnim brojevima

Računanje sa približnim brojevima čuje s prblžm brojevm. IZVOI GEŠK Hemjsko-žejersk prorču u opštem slučju obuhvt dve e: Formulsje eophodh jedč mtemtčkog model ešvje mtemtčkog model Nek je lj prorču određvje eke velče, koj je ukj prmetr

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

1 Ekstremi funkcija više varijabli

1 Ekstremi funkcija više varijabli 1 Ekstremi funkcij više vrijbli Definicij ekstrem funkcije: Funkcij u = f(x 1, x 2,, x n ) im u točki T ( 1, 2,, n ) A) LOKALNI MINIMUM f( 1, 2,, n ) ko z svku točku T vrijedi nejednkost: T ( 1 + dx 1,

Διαβάστε περισσότερα

A MATEMATIKA Zadana je z = x 3 y + 1

A MATEMATIKA Zadana je z = x 3 y + 1 A MATEMATIKA (.5.., treći kolokvij). Zdn je z 3 + os. () Izrčunjte ngib plohe u pozitivnom smjeru -osi. (b) Izrčunjte ngib pod ) u točki T(, ). () Izrčunjte z u T(, ). (5 bodov). Zdn je z 3 ln. () Izrčunjte

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 00. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTENCIJE α M-- uiverzl zbirk potpuo riješeih zdtk Rješej svih zdtk s kopleti postupko i uput. Koristio

Διαβάστε περισσότερα

Dinamika krutog tijela. 14. dio

Dinamika krutog tijela. 14. dio Dnaka kutog tjela 14. do 1 Pojov: 1. Vekto sle F (tanslacja). Moent sle (otacja) 3. Moent toost asa 4. Rad kutog tjela A 5. Knetka enegja E k 6. Moent kolna gbanja 7. u oenta kolne gbanja oenta sle M (

Διαβάστε περισσότερα

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

1 PRORAČUN PLOČE POS 1

1 PRORAČUN PLOČE POS 1 KRSTST PLOČ JEDNO POLJE P9/ PRORČUN PLOČE POS Ploča dimezija 6.0 7.m u osovi oslojea je a dva para paralelih greda POS,, koje su oslojee a stubove POS S u uglovima ploče. Pored sopstvee težie, ploča je

Διαβάστε περισσότερα

Interferencija valova svjetlosti

Interferencija valova svjetlosti Interferencja valova svjetlost Uvod Da b poblže mogl sagledat razumjet fenomen nterferencje općento prmjenjeno, navest ćemo uvjete nterferencje posljedce th uvjeta. Pojave nterferencje dfrakcje u današnje

Διαβάστε περισσότερα

II. ANALITIČKA GEOMETRIJA PROSTORA

II. ANALITIČKA GEOMETRIJA PROSTORA II. ANALITIČA GEOMETRIJA PROSTORA II. DIO (Pv).. Min Roić Linović 9./. Pv u otou Jenž v Nek je: T (,, ) n točk oto {,, } ni vekto mje Znom točkom oto oli mo v leln nim vektoom. T (,,) - oivoljn točk v

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

IZVOD FUNKCIJE Predpostvimo d je unkcij deinisn u nekom intervlu, i d je tčk iz intervl, iksirn. Uočimo neku proizvoljnu tčku iz tog intervl,. Ov tčk može d se pomer levo desno, p ćemo je zvti promenljiv

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

DINAMIKA. Dinamički sistem - pogon sa motorom jednosmerne struje: N: u f Ulazi Izlazi (?) U opštem slučaju ovaj DS je NELINEARAN!!!!

DINAMIKA. Dinamički sistem - pogon sa motorom jednosmerne struje: N: u f Ulazi Izlazi (?) U opštem slučaju ovaj DS je NELINEARAN!!!! DINAMIKA Dnčk sste - ogon s otoro jednoserne struje: N: { DS } u u Ulz Izlz (?),,, [ ] θ U ošte slučju ovj DS je NELINEAAN!!!! BLOK DIJAGAM MAEMAIČKOG MODELA POGONA Iz jednčne ndukt u e e Iz Njutnove jednčne

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

KONSTRUKTIVNI ZADACI (TROUGAO) Rešavanje konstruktivnih zadataka je jedna od najtežih oblasti koja vas čeka ove godine.

KONSTRUKTIVNI ZADACI (TROUGAO) Rešavanje konstruktivnih zadataka je jedna od najtežih oblasti koja vas čeka ove godine. KONSRUKIVNI ZI (ROUGO) Rešvje kotruktivih zdtk je jed od jtežih olti koj v ček ove godie. Zhtev doro predzje, pozvje odgovrjuće teorije. Zto vm mi preporučujemo d e jpre podetite teorije veze z trougo

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

Παρασκευή 1 Νοεμβρίου 2013 Ασκηση 1. Λύση. Παρατήρηση. Ασκηση 2. Λύση.

Παρασκευή 1 Νοεμβρίου 2013 Ασκηση 1. Λύση. Παρατήρηση. Ασκηση 2. Λύση. (, ) =,, = : = = ( ) = = = ( ) = = = ( ) ( ) = = ( ) = = = = (, ) =, = = =,,...,, N, (... ) ( + ) =,, ( + ) (... ) =,. ( ) = ( ) = (, ) = = { } = { } = ( ) = \ = { = } = { = }. \ = \ \ \ \ \ = = = = R

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

Vektori u ravnini. - Nije bitan redoslijed AB ili BA

Vektori u ravnini. - Nije bitan redoslijed AB ili BA Vektor u rnn. Osnon pomo o ektorm Skup sh tok prc p zmeu ukluuu nh sme ne dužnu Ne tn redosled l e poetn tok e zršn tok odsek n prcu p Defnc: Usmeren odsek od toke ko poetne toke do toke ko zršne toke

Διαβάστε περισσότερα

Iterativne metode - vježbe

Iterativne metode - vježbe Iterativne metode - vježbe 5. Numeričke metode za ODJ Zvonimir Bujanović Prirodoslovno-matematički fakultet - Matematički odjel 21. studenog 2010. Sadržaj 1 Eulerove metode (forward i backward). Trapezna

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA. školska 2013./2014. godina TEST MATEMATIKA UPUTE ZA RAD

ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA. školska 2013./2014. godina TEST MATEMATIKA UPUTE ZA RAD ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA školsk 0./04. godin TEST MATEMATIKA UPUTE ZA RAD Test koji trebš riješiti im 0 zdtk. Z rd je predviđeno 0 minut. Zdtke ne morš rditi prem redoslijedu

Διαβάστε περισσότερα

1.PRIZMA ( P=2B+M V=BH )

1.PRIZMA ( P=2B+M V=BH ) .RIZMA ( =+M = ).Izrčunti površinu i zpreminu kvr čij je ijgonl ug 0m, užine osnovnih ivi su m i m. D 0m m b m,? D 00 b 00 8 8 b b 87 87 0 87 8 87 b 87 87 87 8 87. Ivie kvr onose se ko :: ijgonl je ug.oreiti

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET TEORJA ETONSKH KONSTRUKCJA 1 PRESEC SA PRSLNO - VELK EKSCENTRCTET ČSTO SAVJANJE - SLOODNO DENZONSANJE Poznato: Nepoznato: - statčk tcaj za pojedna opterećenja ( ) - sračnato - kvaltet materjala (, σ v

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα