8. Procena vremenske konstante rotora u pogonu bez davača položaja
|
|
- Αγρίππας Βυζάντιος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 8. Pocena veenske konstante otoa u ogonu bez davača oložaja Pocena veenske konstante otoa u ogonu bez davača oložaja U ogonu bez davača na vatlu oložaj fluksa otoa ehančku bznu otoa je neohodno ocent na osnovu tenalnh velčna. Za azlku od ocene oložaja fluksa otoa, ocena bzne otoa jeste osetljva na gešku u aaetu veenske konstante otoa. Ova geška nje hvatljva u velko boju ena ogona sa veoa usk secfkacjaa o tanju azvjene bzne otoa. U t ogone je neohodno ugadt ehanza za koekcju aaeta veenske konstante otoa te uanjt staconanu vednost geške bzne otoa. U lteatu [A5] se okazuje da u staconano stanju ogona nje oguće sultano ocent učestanost klzanja otoa aaeta otoskog kola. Auto okazuju da je za aalelnu ocenu ove dve velčne neohodna oena stanja u ogonu edlažu koekcju aaeta otoa sao toko tanzjenta u fluksu otoa nastalog oeno zadate bzne. Utsnut test sgnal u d stuju statoa takođe dovod do vajacje otoskog fluksa ostvauje uslove za aalelnu koekcje bzne aaeta otoa. Razlčt oblc test sgnala, uglavno vajacje ostoeodčnog, su edložen u lteatu [A38], [A5]. U ovo oglavlju se analza ognalan načn ocene koj je oguće kostt u quas staconano stanju ogona. Petostavlja se da je aaeta unaed kogovan u skladu sa koando fluksa odel na slc 6.6 da se sta ne enja toko dalje ocene. U toku daljeg ada u okoln staconane adne tačke ogon se zageva dodatna oena je nenovna. Iako su zadate konstante vednost fluksa bzne otoa, ale oene geške MRAS obsevea bzne su oguće. Ove oene su osledca oena sgnala stvane ocenjene bzne ˆ, kao alh oena q stuje statoa qs. Rad eglednost, lneazovana funkcja enosa MRAS geške je esana u 8.. do k L do ˆ qs k 8.. Dnaku alh sgnala u MRAS obseveu bzne je oguće osat odelo na slc 8.. qs ˆ Funkcja enosa geške MRAS obsevea 8. PI egulato ˆ Sl. 8.. Dnaka alh sgnala u MRAS obseveu bzne. Zavsnost od alh oena qs je uslovna, javlja se sao u slučaju da je aaeta veenske konstante otoa košćen u stujno odelu otoskog fluksa netačan. Uavo ova
2 8. Pocena veenske konstante otoa u ogonu bez davača oložaja 89 uslovna zavsnost navod na ogućnost ocene geške aaeta jednostavno koelacjo alh sgnala stuje q ose sgnala geške. Da b koelacja ova dva sgnala bla jasnja neohodno je analzat sve sgnale koj ostoje u ssteu dato na slc 8.. Sgnal ocenjene bzne nastaje delovanje ovatne sege u estatou. Ovaj sgnal je u funkcj geške oguće je elnsat ga z jednačna. U MRAS obseveu deluje PI egulato koj se zatvaa ovatna sega o ocenjenoj bzn otoa: ˆ. 8.. Na osnovu ove zavsnost za funkcja segnutog enosa geške se dobja:, qs do as as qs as do as do as L L ε 8.3. gde su:,, do as as k k Nakon daljeg ueđenja zaza 8.3, lneazovana zavsnost geške MRAS obsevea bzne od nezavsnh ulaznh sgnala qs glas: qs do as k as L ε Slčna funkcja segnutog enosa važ za sgnal ocenjene bzne: qs do as k as L ˆ Ove funkconalne zavsnost se ogu dodatno uostt odgovaajuć zboo ojačanja zatvoene ovatne sege MRAS estatoa. U lteatu [] se edlaže elatvno jednostavno odešavanje aaetaa MRAS PI egulatoa. Po edloženoj dej etostavlja se neoteećen ogon u koe je oguće zaneat staconanu vednost učestanost klzanja. Uz ko, ostaju:
3 8. Pocena veenske konstante otoa u ogonu bez davača oložaja 9 as L qs ko as do L do as, 8.7. as ˆ qs ko Da b se funkcjaa enosa geške ocenjene bzne odeso željen ousn oseg c, odgovaajuć fakto gušenja ξ, za PI ojačanja teba usvojt: ξc c, as as Ov funkcje segnutog enosa za ˆ ostaju: L as qs ko ξc c do, 8.. ξc c L ˆ qs. 8.. ko c c do ξ Za c ad/s ξ.9, ousn oseg estatoa bzne se ogančava na ad/s. Slke 8. kazaju ezultujuće Bode djagae funkcja ˆ W [db] W [db] -9 agw [deg] agw [deg] -8 c -9 3 c 3 ad/sec ad/sec Sl. 8.. Bode djaga a ocenjena bzna otoa b geška MRAS obsevea bzne aaet PI eg. odešen za c ad/s, ξ.9 Dosad kazana ateatčka analza je okazala da al sgnal geške MRAS obsevea bzne zavs od dve nezavsne velčne, ale oene bzne otoa ale oene u q koonent stuje statoa. Ova zavsnost se ože dalje uostt ako se osataju sao elatvno vsoke učestanost. Usled ogančenog ousnog osega ehančkog dela sstea,
4 8. Pocena veenske konstante otoa u ogonu bez davača oložaja 9 nje za očekvat značajne koonente sgnala bzne otoa na elatvno vsok učestanosta. Ukolko su ste ujedno van ousnog osega funkcje segnutog enosa MRAS obsevea > c, na nja ne teba očekvat n značajne oene u ocenjenoj bzn. Sa duge stane, kontua kontole oenta a znatno š ousn oseg na t učestanosta ogu ostojat značajne sektalne koonente sgnala oene qs. Pedložena nova tehnka ocene je zasnovana na vez zeđu vog zvoda geške MRAS obsevea alh oena qs. a veza je data sa: L as qs ξc c do. 8.. Za elatvno vsoke učestanost ulaznh sgnala, tansfe funkcja W ξ c c oseduje skoo konstantnu altudnu kaaktestku unos naln fazn oeaj u ulazn sgnal. čan Bode djaga ove funkcje dat je na slc 8.3. d / dt - -4 W [db] agw [deg] c ad/sec Sl Bode djaga vog zvoda geške MRAS obsevea aaet PI eg. odešen za c ad/s, ξ.9. Bode djaga na slc 8.3 okazuje da funkcja enosa na vsok učestanosta ne unos značajno slabljenje ulaznh sgnala. Na st učestanosta bzna otoa kao jedan od ulaza ne oseduje značajne sektalne koonente sgnala. e se konačno f dolaz do zaključka da ukolko ostoj značajna koonenta zvoda geške MRAS estatoa bzne na vš učestnosta sta je nastala kao osledca qs. Mal sgnal qs su koelsan sao ukolko je aaeta netačan. akođe je važno uočt da ukolko koelacja ovh sgnala ostoj, njen znak je defnsan znako geške oenutog aaeta: f as dol qs Veza zeđu sgnala qs na elatvno vsok učestanosta otvaa novu ogućnost ocene aaeta veenske konstante otoa. Pvo, neohodno je zdvojt sao koonente sekta ovh sgnala koje su zvan ousnog osega MRAS obsevea bzne.
5 8. Pocena veenske konstante otoa u ogonu bez davača oložaja 9 e se elnšu koonente sekta sgnala unuta ovog osega koje ne zavse sključvo od qs čja koelacja ne b dovela do tačne nfoacje o gešc. Razdvajanje všh sektalnh koonent oba sgnala se vš ouštanje koz dentčne vsokoousne flte. oelacja fltanh koonent ova dva sgnala donos nfoacju o znaku geške aaeta koja se kost u tčnoj ntegalnoj akcjo za koekcju aaeta. Slke lustuju edloženu šeu za ocenu aaeta /. U še se kost ecočna vednost aaeta z nekolko azloga. Pvo, aaeta / se dektno kost u IFOC stuktu kao u MRAS estatou dugo, oena ecočne vednost otoske konstante je u dektnoj vez sa edložen sgnalo geške. Slka 8.4 okazuje načn zdvajanja kosne nfoacje z sgnala qs. Iz oba sgnala se vo zdvajaju vsoke učestanost. Nakon fltacje, koelacja ovh sgnala je zvšena jednostavno oeacjo noženja kojo se odeđuje tenutn znak njhove fazne azlke. aj sgnal se ujedno kost kao znak geške u aaetu / dovod se na ulaz ntegatoa čjo se akcjo st aaeta koguje. qs d dt Vsokoousn flte Vsokoousn flte e NF e nf Pojačavač lte / Sl Uošćen kaz bloka za ocenu znaka geške aaeta / zasnovanu na koelacj alh sgnala MRAS obsevea bzne. Na slc 8.5 je kazana stuktua IFOC ogona sa MRAS obseveo bzne. U ovu stuktuu je takođe uključen edložen ehanza za ocenu /. ef ef s Regulato v stuja e jθ s dq s Račun klzanja ˆ s θ dq v s MRAS obseve ˆ ε estato Sl. 8.5 IFOC ogon sa MRAS obseveo bzne bloko za koekcju /.
6 8. Pocena veenske konstante otoa u ogonu bez davača oložaja 93 Model za ačun učestanost klzanja adatvn odel otoskog fluksa u MRAS obseveu bzne koste stu ecočnu vednost aaeta. oekcju ada ova dva bloka je neohodno všt aalelno, sa sto oeno u aaetu. Ovo je neohodan uslov za avlan ad edloženog koektvnog ehanza. o nje ogančavajuć fakto ene stog ošto se u MRAS obseveu bzne uvek kost st aaeta kao u IFOC ogonu te elnše eventualna geška u ostavljanju olja statoa. Rad edloženog ehanza za koekcju aaeta / je delčno stan ute ačunaskh sulacja u ogasko aketu Matlab, Sulnk oolbox. Izgađen je dnačk odel za sulacju ada IFOC ogona sa MRAS obseveo bzne. U odel je, na načn kazan na slc 8.5, uključen blok za koekcju aaeta /. Analzan je ad ogona u ežu kontole oenta kao u ežu kontole bzne otoa. U slučaju kontole oenta zadate su nonalne vednost stuje d q ose statoa dok je bzna otoa ovatno sego u odelu ehančkog dela odžavana u okoln 35 ad/s. P ežu kontole bzne otoa ef 35 ad/s zadata je nonalna stuja d ose dok je stuja q ose ezultat ačunaske sulacje ovatne sege o bzn otoa. Da b se obezbedlo dovoljno alog sgnala u stuju q ose u oba slučaja je dodat bel šu ogančenog sekta ozveden na zlazu Matlab bloka Band Lted Whte Nose. Model ogona u oba slučaju ulaz u staconano stanje nakon otekle 4 sekunde sulaconog veena. Da b se odelovala ealna stuacja u ogonu vednost aaeta košćena u odelu kontolea nje jednaka sa vednošću aaeta košćenog u odelu otoa. e dolaz do geške u ocenjenoj bzn otoa. Nakon ulaska odela u staconano stanje oogućuje se ad ehanza za koekcju /. Usled utsnutog alog sgnala ta belog šua na učestanosta od nteesa ostoj dovoljno sgnala za ad ovog ehanza koj na kazan ezultata ačunaskh sulacja usešno koguje oenut aaeta. Na slkaa koje slede kazan su ezultat sulacja za ostvaenu ocenjenu bznu otoa ˆ sekdana lnja, ecočnu vednost kogovanog aaeta /, faznu gešku nakon nožača e kao fltanu vednost ove geške e nf. Slke su date za odel ogona sa kontolo oenta, dok su slke date za odel ogona sa zatvoeno ovatno sego o bzn otoa. U oba slučaja su stane dve oguće geške ecočne vednost aaeta /.5 / /.5 /. Sve ačunaske sulacje su zvšene na nelneano odelu IFOC ogona njhov dob ezultat edstavljaju jedan koak do konačnog ešenja otvde edloženog ehanza za koekcju. Ono što osane ačunaske sulacje ne ogu da otvde jeste onašanje algota uz sustvo alh sgnala već sutnh u ogonu, da l th sgnala a dovoljno kakav je sastav sekta th sgnala. akođe, edložen ehanza za koekcju aaeta otoskog kola kost vsoke učestanost sgnala koekcj aaeta te ojačava utcaj šua eenja kao eventualne neodelovane dnake. Rezultat aktčnh ekseenata koj obuhvataju sve ove utcaje su ložen u oglavlju 9 ovog ada.
7 8. Pocena veenske konstante otoa u ogonu bez davača oložaja , ˆ [ad/s] 3 / [. j.].5.4. e [. j.] e nf [. j.] t [s] Sl Rezultat ačunaskh sulacja ocene. Ostvaena ocenjena bzna otoa, ecočna vednost ocenjenog aaeta, sgnal geške fltan sgnal geške. ontola oenta uz utsnut bel šu kao test sgnal, aaeta /.5 /. 35 3, ˆ [ad/s] 5.5 / [. j.] e [. j.] e nf [. j.] t [s] Sl Rezultat ačunaskh sulacja ocene. Ostvaena ocenjena bzna otoa, ecočna vednost ocenjenog aaeta, sgnal geške fltan sgnal geške. ontola oenta uz utsnut bel šu kao test sgnal, aaeta /.5 /.
8 8. Pocena veenske konstante otoa u ogonu bez davača oložaja , ˆ [ad/s] / [. j.].5.4. e [. j.] e nf [. j.] t [s] Sl Rezultat ačunaskh sulacja ocene. Ostvaena ocenjena bzna otoa, ecočna vednost ocenjenog aaeta, sgnal geške fltan sgnal geške. ontola bzne uz bel šu kao test sgnal, aaeta /.5 / , ˆ [ad/s] / [. j.] e [. j.] e nf [. j.] t [s] Sl Rezultat ačunaskh sulacja ocene. Ostvaena ocenjena bzna otoa, ecočna vednost ocenjenog aaeta, sgnal geške fltan sgnal geške. ontola bzne uz bel šu kao test sgnal, aaeta /.5 /.
6. Pogon asinhronog motora bez davača položaja
6. Pogon asnhonog otoa bez davača oložaja 68 6. Pogon asnhonog otoa bez davača oložaja Potet zgadnj većne ogona oenjve bzne nsu velka tačnost bzna odzva. U slučaju ogona ošte naene, tžšte nstantno zahteva
Reverzibilni procesi
Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
3. Uticaj nepoznavanja vremenske konstante rotora na rad pogona sa davačem položaja
3. Uticaj nepoznavanja na ad pogona sa davače položaja 3 3. Uticaj nepoznavanja veenske konstante otoa na ad pogona sa davače položaja U ovo poglavlju je izvšena analiza paaetaske osetljivosti algoita
POGON SA ASINHRONIM MOTOROM
OGON SA ASNHRON OTORO oučavaćemo amo ogone a tofaznim motoom. Najčešće koišćeni ogon. Ainhoni moto: - ota kontukcija; - jeftin; - efikaan. ETALN RSTEN LANRANO JEZGRO BAKARNE ŠKE KAVEZN ROTOR NAOTAJ LANRANO
Dinamika krutog tijela. 14. dio
Dnaka kutog tjela 14. do 1 Pojov: 1. Vekto sle F (tanslacja). Moent sle (otacja) 3. Moent toost asa 4. Rad kutog tjela A 5. Knetka enegja E k 6. Moent kolna gbanja 7. u oenta kolne gbanja oenta sle M (
Trigonometrijski oblik kompleksnog broja
Trgnmetrjsk blk kmpleksng brja Da se pdsetm: Kmpleksn brj je blka je realn de, je magnarn de kmpleksng brja, - je magnarna jednca, ( Dva kmpleksna brja su jednaka ak je Za brj _ je knjugvan kmpleksan brj.
Moguća i virtuelna pomjeranja
Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
DINAMIKA. Dinamički sistem - pogon sa motorom jednosmerne struje: N: u f Ulazi Izlazi (?) U opštem slučaju ovaj DS je NELINEARAN!!!!
DINAMIKA Dnčk sste - ogon s otoro jednoserne struje: N: { DS } u u Ulz Izlz (?),,, [ ] θ U ošte slučju ovj DS je NELINEAAN!!!! BLOK DIJAGAM MAEMAIČKOG MODELA POGONA Iz jednčne ndukt u e e Iz Njutnove jednčne
( ) BROJNI PRIMER 4. Temeljni nosač na sloju peska. Slika 6.3. Rešenje: Ekvivalentni modul reakcije podloge/peska k i parametar krutosti λ :
BROJNI PRIMER 4 Armrano etonsk temeljn nosač (slka 63), fundran je na dun od D f =15m, u sloju poto-pljenog peska relatvne zjenost D r 75% Odredt sleganje w, nag θ, transverzalnu slu T, moment savjanja
Elektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo
Elektrotehnčk fakultet unverzteta u Beogradu 6.maj 8. Odsek za Softversko nžnjerstvo Performanse računarskh sstema Drug kolokvjum Predmetn nastavnk: dr Jelca Protć (35) a) () Posmatra se segment od N uzastonh
9. Opis prototipa i eksperimentalni rezultati
9. Ekpeentaln eultat 96 9. Op pototpa ekpeentaln eultat 9.. Op pototpa algota upavljanja Sv ekpeent opan u ovo poglavlju u všen na tofano anhono otou a paaeta dat u plogu. Moto je ehančk pegnut a dnaoeto
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
SUČELJNI SISTEM SILA Ako se napadne linije svih sila koje sačinjavaju sistem seku u jednoj tački onda se takav sistem sila naziva sučeljnim sistemom.
SUČELJNI SISTEM SIL ko se napadne lnje svh sla koje sačnjavaju sstem seku u jednoj tačk onda se takav sstem sla nazva sučeljnm sstemom.,, Pme. k j k j 6 k j 6 k j k j k j ( ) ( ) Pme. cos6, sn 6 cos, sn
Ekonometrija 5. Ekonometrija, Osnovne studije. Predavač: Aleksandra Nojković
Ekoometja 5 Ekoometja, Osove studje Pedavač: Aleksada Nojkovć Stuktua pedavaja Klasč dvostuk (všestuk) lea egeso model - metod ONK. Petpostavke všestukog KLM. Koelacja u všestukom KLM. Oča kogova. Dvostuk
10.1. Bit Error Rate Test
.. Bt Error Rat Tst.. Bt Error Rat Tst Zadata. Izračuat otrba broj rth formacoh bta u BER tstu za,, ogršo dttovaa bta a rjmu, tao da s u sstmu sa brzoom sgalzacj od Mbs mož tvrdt da j vrovatoća grš rosa
Osnovni sklopovi pojačala sa bipolarnim tranzistorom
Osnovn sklopov pojačala sa bpolarnm tranzstorom Prrodno-matematčk fakultet u Nšu Departman za fzku dr Dejan S. Aleksd Elektronka dr Dejan S. Aleksd Elektronka - Pojačavač polarn tranzstor kao pojačavač
Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam
Polarzacja Proces asajaja polarzrae svjelos: a refleksja b raspršeje c dvolom d dkrozam Freselove jedadžbe Svjelos prelaz z opčkog sredsva deksa loma 1 u sredsvo deksa loma, dolaz do: refleksje (prema
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
Rešenje: X C. Efektivne vrednosti struja kroz pojedine prijemnike su: I R R U I. Ekvivalentna struja se određuje kao: I
. Otnik tnsti = 00, kalem induktivnsti = mh i kndenzat kaacitivnsti = 00 nf vezani su aaleln, a između njihvih kajeva je usstavljen steidični nan efektivne vednsti = 8 V, kužne učestansti = 0 5 s i četne
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Ekonometrija 4. Ekonometrija, Osnovne studije. Predavač: Aleksandra Nojković
Ekonometrja 4 Ekonometrja, Osnovne studje Predavač: Aleksandra Nojkovć Struktura predavanja Nelnearne zavsnost Prmene u ekonomskoj analz Prmer nelnearne zavsnost Isptujemo zavsnost zmeđu potrošnje dohotka.
TEHNIČKI FAKULTET SVEUČILIŠTA U RIJECI Zavod za elektroenergetiku. Prijelazne pojave. Osnove elektrotehnike II: Prijelazne pojave
THNIČKI FAKUTT SVUČIIŠTA U IJI Zavod za elekroenergek Sdj: Preddplomsk srčn sdj elekroehnke Kolegj: Osnove elekroehnke II Noselj kolegja: v. pred. mr.sc. Branka Dobraš, dpl. ng. el. Prjelazne pojave Osnove
Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum
27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
KOPOLIMERIZACIJA. UGRADNJA VIŠE RAZLIČITIH MONOMERA u istu makromolekulu Je li stupnjevita polimerizacija tipa A 2. kopolimerizacija?
KOPOLIERIZIJ UGRDNJ VIŠE RZLIČITIH ONOER u stu maomoleulu Je l stunevta olmezaca ta oolmezaca? ltenauć (zmenčn) oolme KOPOLIERIZIJ POLIURETNI Stunevta oolmezaca: ugadna vše azlčth monomea ste unconalnost
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
Identitet filter banke i transformacije transformacije sa preklapanjem
OASDSP: asoacije i ile bae asoacije disei sigala File bae Ideie ile bae i asoacije asoacije sa elaaje Uslov eee eosucije ovi Sad 6 saa OASDSP: asoacije i ile bae ovi Sad 6 saa DF: vadaa asoacija DF IF
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Obrada signala
Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p
Trigonometrijske nejednačine
Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja
Ubrzanje. Parametri ubrzanja: vreme zaleta put zaleta Koliko sekundi / metara je potrebno da bi se dostigla određena brzina?
Paamet ubzanja: veme zaleta put zaleta Kolko sekund / metaa je potebno da b se dostgla odeđena bzna? Važnost: gadska vožnja petcanje bezbednost Utcaj: dnamčke kaaktestke pogonskog motoa vozla boj penosnh
Aritmetički i geometrijski niz
Zadac sa prethodh prjemh spta z matematke a Beogradskom uverztetu Artmetčk geometrjsk z. Artmetčk z. 00. FF Zbr prvh dvadeset člaova artmetčkog za čj je prv čla, a razlka A) 0 B) C) D) 880 E) 878. 000.
III VEŽBA: FURIJEOVI REDOVI
III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
Osnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
Periodičke izmjenične veličine
EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
ZBIRKA POTPUNO RIJEŠENIH ZADATAKA
**** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:
Zenica, 70006 + y+ z+ 4= 0 y+ z : i ( q) : = = y + z 4 = 0 a) Napisati pavu p u kanonskom, a pavu q u paametaskom obliku b) Naći jednačinu avni koja polazi koz pavu p i okomita je na pavu q ate su pave
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
VALJAK. Valjak je geometrijsko telo ograničeno sa dva kruga u paralelnim ravnima i delom cilindrične površi čije su
ALJAK ljk je geometijsko telo ogničeno s dv kug u plelnim vnim i delom ilindične povši čije su izvodnie nomlne n vn ti kugov. Os vljk je pv koj polzi koz ente z. Nvno ko i do sd oznke su: - je povšin vljk
SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK
SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK. Rši sism jdnačina: d 7 d d d Ršnj: Ša j idja kod ovih zadaaka? Jdnu od jdnačina difrniramo, o js nađmo izvod l jdnačin i u zamnimo drugu jdnačinu.
Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo
Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra
OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK
OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika
Dinamika rotacije (nastavak)
Dnaka rotacje (nastaak) Naučl so: Moent sle: M r F II Njutno zakon za rotacju krutog tela oko nepokretne ose: Analogno sa: F a I je skalarna elčna analogna as predstalja nertnost tela prea rotacj. Zas
Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu
7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc
2. Pogon asinhronog motora sa davačem položaja na vratilu
. Pogon anhonog otoa a avače položaja na vatl 14. Pogon anhonog otoa a avače položaja na vatl Da b e otvalo optalno pavljanje anhon otoo neophono je nezavno pavljat flko otvaen elektoagnetn oento [C1].
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.
Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo Najpre da se podsetimo tablice i osnovnih pravila:. C0.. (. ( n n n-. (a a lna 6. (e e 7. (log a 8. (ln ln a (>0 9. ( 0 0. (>0 (ovde je >0 i a >0. (cos. (cos - π. (tg kπ cos. (ctg
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
Elementi energetske elektronike
ELEKTRIČNE MAŠINE Elemen energeske elekronke Uvod Čme se bav energeska elekronka? Energeska elekronka se bav konverzjom (prevaranjem) razlčh oblka elekrčne energje. Uvod Gde se kors? Elemen energeske elekronke
Elektrotehnički fakultet univerziteta u Beogradu 26. jun Katedra za Računarsku tehniku i informatiku
Elektrotehički fakultet uiverziteta u Beogradu 6. ju 008. Katedra za Račuarku tehiku i iformatiku Performae račuarkih itema Rešeja zadataka..videti predavaja.. Kretaje Verovatoća Opi 4 4 Kretaje u itom
4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.
4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos
KUPA I ZARUBLJENA KUPA
KUPA I ZAUBLJENA KUPA KUPA Povšin bze B Povšin omotč M P BM to jet P B to jet S O o kupe Oni peek Obim onog peek O op Povšin onog peek P op Pimen pitgoine teoeme vnotn jednkotn kup je on kod koje je, p
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Rešenje: U režimu praznog hoda generatora: I 1 0. Kako je unutrašnja otpornost generatora: R 0, biće: E U 1 100V. Kada se priključi otpornik:
. r raznom hodu eneratora zmeren je naon od 00 na njeovm rključcma. Kada se rključ otornk od k naon adne na 50. Odredt struje u oba slučaja, ems unutrašnju otornost eneratora. ešenje: režmu razno hoda
4. Trigonometrija pravokutnog trokuta
4. Trigonometrij prvokutnog trokut po školskoj ziri od Dkić-Elezović 4. Trigonometrij prvokutnog trokut Formule koje koristimo u rješvnju zdtk: sin os tg tg ktet nsuprot kut hipotenuz ktet uz kut hipotenuz
VILJUŠKARI. 1. Viljuškar se koristi za utovar standardnih euro-pool paleta na drumsko vozilo u sistemu prikazanom na slici.
VILJUŠKARI 1. Viljuškar e korii za uoar andardnih euro-pool palea na druko ozilo u ieu prikazano na lici. PALETOMAT a) Koliko reba iljuškara da bi ree uoara kaiona u koji aje palea bilo anje od 6 in, ako
Sistemi veštačke inteligencije primer 1
Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
1. Pojam fazi skupa. 2. Pojam fazi skupa. 3. Funkcija pripadnosti, osobine i oblici. 4. Funkcija pripadnosti, osobine i oblici
Meko računarstvo Student: Indeks:. Poja fazi skupa. Vrednost fazi funkcije pripadnosti je iz skupa/opsega: a) {0, b) R c) N d) N 0 e) [0, ] f) [-, ] 2. Poja fazi skupa 2. Na slici je prikazan grafik: a)
ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla.
Mnogougo oji im četii stnice nziv se četvoougo. ČETVOROUGAO D δ δ γ C A α β B β Z svi četvoougo vži im je zi unutšnji i spoljšnji uglov isti i iznosi 0 0 α β γ δ 0 0 α β γ δ 0 0 Njpe žemo četvoouglovi
DINAMIČKI MODEL TROFAZNOG SINHRONOG NA ROTORU [1]
DINAMIČKI MODEL TROFAZNOG SINHRONOG MOTORA SA PERMANENTNIM MAGNETIMA NA ROTORU [1] Saconan ef. ssem q osa N 1 Naponske jednačne za sao: u R p qs qqsq qs f u R p ds d ds ds N 1 Saconan ef. ssem d osa Šemask
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE
TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne
Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
FURIJEOVI REDOVI ZADACI ( II
FURIJEOVI REDOVI ZADACI ( II deo Primer. Fukciju f ( = rzviti u Furijeov red segmetu [,] ztim izrčuti sumu red. ( Rešeje: Kko je f ( = = = f ( zkjučujemo d je fukcij pr. Koristimo formue: = f ( = + ( cos
Numerično reševanje. diferencialnih enačb II
Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke
POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE
**** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
XI dvoqas veжbi dr Vladimir Balti. 4. Stabla
XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla