ADSORPCIJA. Adsorbat supstancija koja se adsorbuje Adsorbens supstancija na kojoj se vrši adsorpcija
|
|
- Ολυμπία Ταμτάκος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 DSORCIJ
2 DSORCIJ dsorpcja pojava da se na površn faze povećava l smanjuje (negatvna adsorpcja l desorpcja) oncentracja pojednh omponenata, pr čemu dolaz do smanjvanja slobodne energje grančne površne. dsorbat supstancja oja se adsorbuje dsorbens supstancja na ojoj se vrš adsorpcja
3 DSORCIJ S C C Oblast zmeđu površna predstavlja grančn sloj čja debljna, zbog ratog dometa međumoleulsh sla, znos svega neolo moleulsh prečna.
4 DSORCIJ I SORCIJ adsorpcja apsorpcja
5 DSORCIJ I SORCIJ adsorpcja apsorpcja
6 ZŠTO DOLZI DO DSORCIJE? dsorpcjom se smanjuje površnsa slobodna energja.
7 ZOSEDNUTOST OVRŠINE Zaposednutost površne je odnos zmeđu broja zaposednuth adsorpconh mesta broja raspoložvh adsorpconh mesta. rzna adsorpcje v ad je promena prervenost površne u jednc vremena: v ad d dt t 0 v ad dt
8 METODE Z ODREĐIVNJE ZOSEDNUTOSTI OVRŠINE Termostat Vauum umpa Uzora dsorbens dsorbat dsorbens (a) (b) gravmetrjsa volumetrjsa protočna fleš desorpcja merenjem radoatvnost
9 IDELN OVRŠIN Na svaoj površn postoj nezasćeno polje sla, oje je uzro adsorpcje.
10 RELN OVRŠIN
11 RIROD DSORENS dsorpcja se dešava na površn čvrste faze tečne faze z gasne l tečne faze.
12 RIROD DSORENS dsorpcja se dešava na površn čvrste faze tečne faze z gasne l tečne faze.
13 DSORCIJ N ČVRSTOJ OVRŠINI fzča adsorpcja hemjsa adsorpcja
14 FIZIČK DSORCIJ van der Valsove sle (dugog dometa, al slabe) toplota adsorpcje, H ads, negatvna (reda 20 J/mol), ao posledca smanjenja entropje, zavs u većoj mer od prrode adsorbata denttet adsorbovanh moleula ostaje st, a veze u moleulma stegnute l uvjene všeslojna adsorpcja
15 HEMIJSK DSORCIJ moleul se vezuju za površnu ovalentnom vezom zauzmaju mesta oja povećavaju njhov oordnacon broj sa supstratom energja vezvanja je reda 200 J/mol površnu treba zagrevat do vsoh temperatura vršt spumpavanje da b se desorbovao hemsorbovan gas desorbovan gas često je razlčt od adsorbovanog adsorpcja je monoslojna
16 RIMER Monoslojev alltola formran na površn zlata hemsorpcjom tolnh grupa agregata allnh lanaca rroda veze zmeđu adsorbata adsorbensa određuje tp adsorpcje površna zlata
17 HEMISORCIJ Hemsorpcja mnogh gasova na čstm metalnm površnama ne zahteva određenu energju atvacje tada se proces adsorpcje odgrava veoma brzo. Energja atvacje > 0 atvrana adsorpcja (znatno sporja od neatvrane). Npr. adsorpcja vodona na nlu (moleul dsosuju na atome).
18 FIZISORCIJ I HEMISORCIJ fzsorpcja hemsorpcja
19 TOLOT DSORCIJE Najčešće H ads < 0. Hemsorpcja dsocjacja može bt spontan proces, ao je slabo endoterman (npr. adsorpcja vodona na stalu).
20 FIZISORCIJ I HEMISORCIJ Fzča adsorpcja všeslojna van der Valsove sle entalpja adsorpcje poztvnja od oo -20 J/mol dešava se samo na temperaturama nžm od tače ljučanja adsorbata zavs pretežno od aratersta adsorbata najčešće reverzblna energja atvacje nje uljučena Hemjsa adsorpcja monoslojna hemjse veze entalpja adsorpcje negatvnja od oo -200 J/mol dešava se na vsom temperaturama zavs od aratersta adsorbensa adsorbata reverzblna energja atvacje može bt uljučena
21 FIZISORCIJ I HEMISORCIJ onead se fzsorbovan sloj može javt preo hemsorbovanog. Moguće je da se fzsorpcja jav u jednoj oblast temperatura, a hemsorpcja u drugoj (npr. se azot fzsorbuje na gvožđu na 78 K, a hemsorbuje formranjem površnsog gvožđe-ntrda na 800 K) Zbog unverzalne prrode van der Valsovh sla, fzsorpcja je mnogo češća od hemsorpcje.
22 DESORCIJ uve atvran proces srednje vreme žvota adsorbovanh moleula na površn na sobnoj temperatur je oo 0 3 s za hemsorbovane 0-8 s za fzsorbovane vrste. sa porastom temperature, srednje vreme žvota naglo opada
23 ODREĐIVNJE TI DSORCIJE Ranje na osnovu velčne toplote adsorpcje l prema brzn adsorpcje: fzsorpcja je brz, a hemsorpcja spor proces (ma zuzetaa). Danas postoje osetljve metode za sptvanje površne (određuje se stanje adsorbovanh moleula prroda njhovh veza sa površnom)
24 spetrosopse METODE Z ODREĐIVNJE TI DSORCIJE Metoda dfracje eletrona nsh energja (LEED, low energy electron dffracton). Fotoeletronsa spetrosopja: utvrđvanje tpa veze. Vbracone metode nfracrvena (IC) Ramansa spetrosopja (unapređenjene oršćenjem FT lasera): utvrđvanje prrode adsorbovanh vrsta. Spetrosopja gubta energje eletrona (EELS, electron energy loss spectroscopy). Ožeova spetrosopja. Metoda moleulsh snopova.
25 DSORCIONE RVNOTEŽE dsorpcona ravnoteža je dnamča može se matematč zrazt opštom funcjom: n ad = n ad (), T= const. - zoterma f (n ad,, T) = 0 n ad = n ad (T), = const. - zobara = (T), n ad =const. - zostera
26 DSORCION IZOTERM hemsorpcja fzsorpcja adsorpcja O 2 na atvnom uglju na 50 K adsorpcja azota na slagelu na 77 K
27 DSORCION IZOTERM monoslojna adsorpcja Frojndlhova zoterma (emprjsa) x a / n m Langmrova zoterma (teorjsa) x a m K K
28 LNGMIROV IZOTERM retpostave: a) adsorbat je u dealnom gasnom stanju; b) čvrsta površna je unformna; c) formra se monosloj (model hemjse adsorpcje); d) zmeđu adsorbovanh moleula nema nteracje verovatnoća da se moleul veže za slobodno mesto l ga napust ne zavs od zauzetost ostalh mesta; e) pošto su mesta evvalentna, to je toplota adsorpcje onstantna, nezavsna od broja zaposednuth mesta.
29 LNGMIROV IZOTERM
30 LNGMIROV IZOTERM Stanje dnamče adsorpcone ravnoteže zmeđu gasa čvrste površne S može se zrazt jednačnom: ( g) S(površna) ad S( površna) des brzna adsorpcje: v ad ad N ( ) brzna desorpcje: v des des N
31 LNGMIROV IZOTERM Uslov za stanje dnamče ravnoteže je jednaost v ad = v des : des ad ad ad des ad des K K V V K K xa / m x a m K K
32 LNGMIROV IZOTERM Langmrove zoterme za razlčto K. xa m K K Kp xa m xa m K K Kp xa m Kp
33 DSORCIJ S DISOCIJCIJOM 2 ( g) S(površna) ad 2S( površna) des v ad ad - 2 N v des des N 2 / 2 / 2 K K
34 HEROV REKCIJ snteza amonjaa Fe + Fe osd C, 300 bar
35 DSORCIJ DV GS o je smeša gasova u ontatu sa čvrstm adsorbensom, tada će doć do adsorpcje oba gasa zavsno od njhovh oefcjenata adsorpcje. des ad N N ( ) des ad N N ( ) des ad des ad des ad K K K ) / ( ) / ( ) / ( des ad des ad des ad K K K ) / ( ) / ( ) / ( K K oefcjent adsorpcje gasova.
36 DSORCIJ DV GS K K K K K K K K K K orvenost površne:
37 DSORCIJ I TEMERTUR
38 DSORCION IZOSTER K K K const. ln K ln const. K onstanta ravnoteže, H ads zosterna toplota adsorpcje Van t Hof: ln K T H RT ads 2 ln T H RT ads 2
39 DSORCION IZOSTER Entalpja zosterne adsorpcje: d d ln / T R n ad ΔH m, ad
40 ZVISNOST H ads OD H ad /(KJ/mol) Fe Rh W 50 Ta 0,2 0,4 0,6 0,8,0 o se pretpostav da se entalpja adsorpcje menja lnearno sa zaposednutošću površne, tada se dobja Temnova (Temn) zoterma obla: c ln( c 2 )
41 ETOV IZOTERM Stephen runauer Edward Teller aul Emmett
42 ETOV IZOTERM retpostave: a) adsorbat je u dealnom gasnom stanju; b) čvrsta površna je unformna; c) formra se vše slojeva (model fzče adsorpcje) pr čemu se adsorbat u drugom všm slojevma tretra ao da je u tečnom stanju; d) zmeđu adsorbovanh moleula nema nteracje verovatnoća da se moleul veže za slobodno mesto l ga napust ne zavs od zauzetost ostalh mesta; e) pošto su mesta evvalentna, to je toplota adsorpcje onstantna, nezavsna od broja zaposednuth mesta.
43 ETOV IZOTERM
44 ETOV IZOTERM Zaposednutost -tog sloja: broj adsorpconh centara sa adsorbovanh moleula uupn broj adsorpconh centara Uslov za stanje dnamče ravnoteže je jednaost brzna adsorpcje desorpcje u svaom sloju, v ad, = v des,.
45 ETOV IZOTERM ČVRST OVRŠIN Sama površna: d dt 0 vdes, vad,0 des,n ad,n0 Stanje ravnoteže: d dt 0 ad, 0 0 des,
46 ETOV IZOTERM RVI SLOJ Zaposednutost prvog sloja: d dt v v v v ad,0 N N N N ad, des,2 0 des,2 ad, 2 des, ad,2 des, Stanje ravnoteže: d dt 2 0 ad,2 des,2 2 2 ad,2 des,2 ad,2 ad, des, N 0 des, des,2 N N ad, N 0
47 ETOV IZOTERM DRUGI SLOJ Zaposednutost drugog sloja: d2 dt v v v v ad, N N N N ad,2 des,3 des,3 ad,2 3 des,2 ad,3 2 des,2 2 Stanje ravnoteže: d dt ad,3 des, ad,3 des,3 ad,3 ad,2 des,2 N 2 ad, des, 0 des,2 des,3 N N 2 ad,2 N
48 ETOV IZOTERM -t SLOJ 0,,,2,2,,,, des ad des ad des ad des ad Zaposednutost -tog sloja: Kondenzacja:,,2,,,,2,, des des des des ad ad ad ad
49 ETOV IZOTERM des ad f,, ezdmenzona velčna f: 0, 0, 0,, 0,, 0,, c f f c f f f des ad des ad des ad
50 ETOV IZOTERM Uupna porvenost površne: uupn broj adsorbovanh moleula brojadsorpconh centara n a n n a 0 N n 0 N
51 ETOV IZOTERM f c f c cf cf N N 2 f f f f dx d f f df d f f df d f f f f f f f f c f cf ) ( ) (
52 ETOV IZOTERM Všeslojna fzča adsorpcja (ET-ova zoterma) : V V cf ( f ) ( c ) f f = p/p 0 odnos ravnotežnog prtsa, p, napona pare adsorbata, p 0 c exp(h m, H m,on )/RT H m, molarna entalpja adsorpcje sa prvog adsorbovanog sloja H m,on molarna entalpja ondenzacje adsorbata
53 ETOV IZOTERM Garfc ET-ovh zoterm za razlčte vrednost c. V/V mon raste jer se adsorbat može ondenzovat na prervenoj površn.
54 RIROD DSORENS dsorpcja se dešava na površn čvrste faze tečne faze z gasne l tečne faze.
55 DSORCIJ N OVRŠINI TEČNOSTI Kvanttatvno merlo za adsorbovanje supstancje na površn rastvora je površnsa atvnost oja predstavlja promenu površnsog napona rastvora sa oncentracjom supstancje, d / dc. površns atvne supstancje d / dc <0 površns natvne supstancje d / dc >0 S C C
56 GISOV DSORCION IZOTERM ovršnsa oncentracja rastvorene supstancje 2 je vša l manja olčne rastvora u grančnom sloju u odnosu na olčnu u unutrašnost faze po jednc površne grančnog sloja: 2 n2 n Gbsova slobodna energja dvoomponetnog otvorenog sstema ada se razmatra mogućnost promene površne sstema je: G n 2n2 0 2 dg dn nd 2dn2 n2d2 d d dg SdT Vd dn 2dn2 d SdT Vd n d n2d2 d 0.
57 GISOV DSORCION IZOTERM površnsa faza: n d n2d2 d 0 unutrašnjost faze: n 0 0 d n2d n n n n d d / 2 d d 2 n 2 2 nn 0 2 RT / n 0 d d ln a 2 a 2 RT 2 d da 2 d d 2 RT d d ln x dealn rastvor x RT d dx RT d d ln C C RT razblažen rastvor d dc
58 RIMEN DSORCIJE postzanje nsh p T ulanjanje otrovnh gasova z vazduha (gas mase) ulanjanje rastvorene supstancje z rastvora deterdžent hromatografja atalza
ADSORPCIJA. Adsorbat supstancija koja se adsorbuje Adsorbens supstancija na kojoj se vrši adsorpcija
DSORCIJ DSORCIJ dsorpcja pojava da se na površn faze povećava l smanjuje (negatvna adsorpcja l desorpcja) oncentracja pojednh omponenata, pr čemu dolaz do smanjvanja slobodne energje grančne površne. dsorbat
ADSORPCIJA. Adsorbatje supstancija koja se adsorbuje Adsorbens ili substrat je supstancija na kojoj se adsorpcija vrši
DSORCIJ dsorpcija je pojava da se na površini faze povećava ili smanjuje (negativna adsorpcija ili desorpcija), oncentracija pojedinih omponenata pri čemu dolazi do smanjivanja slobodne energije granične
Reverzibilni procesi
Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože
OSNOVI HEMIJSKE TERMODINAMIKE I TERMOHEMIJA
OSNOVI HEMIJSKE TERMODINAMIKE I TERMOHEMIJA OSNOVI HEMIJSKE TERMODINAMIKE Hemjska termodnamka proučava promene energje (toplotn efekat) pr odgravanju hemjskh reakcja. MATERIJA ENERGIJA? Energja je dskontnualna
Moguća i virtuelna pomjeranja
Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +
). Po njemu najveći hemijski afinitet imaju supstance čijim sjedinjavanjem dolazi do najvećeg smanjenja slobodne energije.
HEMIJSKA RAVNOTEŽA HEMIJSKI AFINITET SUPSTANCI: težnja da stupe u hemjsku reakcju. Ranje se smatralo da je krterjum afnteta brzna. Kasnje se ocena hemjskog afnteta davala na osnovu kolčne oslobođene toplote
). Po njemu najveći hemijski afinitet imaju supstance čijim sjedinjavanjem dolazi do najvećeg smanjenja slobodne energije.
HEMIJSKA RAVNOTEŽA HEMIJSKI AFINITET SUPSTANCI: težnja da stupe u hemjsku reakcju. Ranje se smatralo da je krterjum afnteta brzna. Kasnje se ocena hemjskog afnteta davala na osnovu kolčne oslobođene toplote
POVRŠINSKE POJAVE ADSORPCIJA
POVRŠINSKE POJAVE ADSORPCIJA Površina čvrstih i tečnih supstanci se specifično ponaša i što je ta površina razvijenija to ta specifičnost više dolazi do izražaja. Usitnjavanjem supstanci ta se površina
PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET
TEORJA ETONSKH KONSTRUKCJA 1 PRESEC SA PRSLNO - VELK EKSCENTRCTET ČSTO SAVJANJE - SLOODNO DENZONSANJE Poznato: Nepoznato: - statčk tcaj za pojedna opterećenja ( ) - sračnato - kvaltet materjala (, σ v
Elektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo
Elektrotehnčk fakultet unverzteta u Beogradu 6.maj 8. Odsek za Softversko nžnjerstvo Performanse računarskh sstema Drug kolokvjum Predmetn nastavnk: dr Jelca Protć (35) a) () Posmatra se segment od N uzastonh
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
SEKUNDARNE VEZE međumolekulske veze
PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min
Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu
Ekonometrija 4. Ekonometrija, Osnovne studije. Predavač: Aleksandra Nojković
Ekonometrja 4 Ekonometrja, Osnovne studje Predavač: Aleksandra Nojkovć Struktura predavanja Nelnearne zavsnost Prmene u ekonomskoj analz Prmer nelnearne zavsnost Isptujemo zavsnost zmeđu potrošnje dohotka.
Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam
Polarzacja Proces asajaja polarzrae svjelos: a refleksja b raspršeje c dvolom d dkrozam Freselove jedadžbe Svjelos prelaz z opčkog sredsva deksa loma 1 u sredsvo deksa loma, dolaz do: refleksje (prema
( ) BROJNI PRIMER 4. Temeljni nosač na sloju peska. Slika 6.3. Rešenje: Ekvivalentni modul reakcije podloge/peska k i parametar krutosti λ :
BROJNI PRIMER 4 Armrano etonsk temeljn nosač (slka 63), fundran je na dun od D f =15m, u sloju poto-pljenog peska relatvne zjenost D r 75% Odredt sleganje w, nag θ, transverzalnu slu T, moment savjanja
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
HEMIJSKA RAVNOTEŽA.
HEMIJSA RAVOTEŽA htt://www.ffh.bg.ac.rs/geograf_fh_roces.html HEMIJSA RAVOTEŽA - regled Uslov hemjske ravnoteže Reverzblne hemjske reakcje arakterstke hemjske ravnoteže Termodnamčka, formalna koncentracona
Kombinovanje I i II zakona termodinamike
Kombnovanje I II zakona termodnamke Gbsove jednačne Maksvelove relacje Džul-omsonov efekat Džul-omsonov koefcjent Džul-omsonova nverzona temperatura 1 11.3.00 3:3 M Kombnovanje I II zakona- Gbsove jednačne
F (t) F (t) F (t) OGLEDNI PRIMJER SVEUČILIŠTE J.J.STROSSMAYERA U OSIJEKU ZADATAK
OGLEDNI PRIMJER ZADAAK Odredte dnamčke karakterstke odzv armranobetonskog okvra C-C prkazanog na slc s prpadajućom tlorsnom površnom, na zadanu uzbudu tjekom prve tr sekunde, ako je konstrukcja prje djelovanja
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
transformacija j y i x x promatramo dva koordinatna sustava S i S sa zajedničkim ishodištem z z Homogene funkcije Ortogonalne transformacije
promatramo dva oordnatna sustava S S sa zaednčm shodštem z z y y x x blo o vetor možemo raspsat u baz, A = A x + Ay + Az = ( A ) + ( A ) + ( A ) (1) sto vred za ednčne vetore sustava S = ( ) + ( ) + (
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.
Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Obrada signala
Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Izbor prenosnih odnosa teretnog vozila - primer
FTN No Sad Katedra za motore ozla Teorja kretanja drumskh ozla Izbor prenosnh odnosa Izbor prenosnh odnosa teretnog ozla - prmer ata je karakterstka dzel motora MG OM 906 LA (Izor: http://www.dmg-dusburg.de/html/d_c_om906la.html)
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
10.1. Bit Error Rate Test
.. Bt Error Rat Tst.. Bt Error Rat Tst Zadata. Izračuat otrba broj rth formacoh bta u BER tstu za,, ogršo dttovaa bta a rjmu, tao da s u sstmu sa brzoom sgalzacj od Mbs mož tvrdt da j vrovatoća grš rosa
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
Elementi energetske elektronike
ELEKTRIČNE MAŠINE Elemen energeske elekronke Uvod Čme se bav energeska elekronka? Energeska elekronka se bav konverzjom (prevaranjem) razlčh oblka elekrčne energje. Uvod Gde se kors? Elemen energeske elekronke
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A
Psmen spt z OTPORNOSTI MATERIJALA I - grupa A 1. Kruta poluga ABC se oslanja pomoću dvje špke BD CE kao na slc desno. Špka BD, dužne 0.5 m, zrađena je od čelka (E AB 10 GPa) ma poprečn presjek od 500 mm.
Modeliranje turbulencije u cilju primene numeričkih simulacija u hidrotehnici
Modelrane rblence cl prmene nmerčh smlaca hdroehnc nverze Beorad Građevns fale - Krs Mehane flda na doorsm sdama - Nenad Jaćmovć Ma, 03. CFD Compaonal Fld Mechancs Račnsa mehana flda Prmena meoda nmerče
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Primer: gas ili smeša gasova p = 1 tečnost ili smeša mešljivih tečnosti p = 1 dve delimično mešljive ili nemešljive tečnosti p = 2 kristal p = 1
RAVNOTEŽA FAZA 1 Faza, p svaki homogeni deo sistema, uniforman po svojim fizičkim osobinama i hemijskom sastavu u celoj zapremini, koji od ostalih homogenih delova razdvajaju granice, tj. površine na kojima
Aritmetički i geometrijski niz
Zadac sa prethodh prjemh spta z matematke a Beogradskom uverztetu Artmetčk geometrjsk z. Artmetčk z. 00. FF Zbr prvh dvadeset člaova artmetčkog za čj je prv čla, a razlka A) 0 B) C) D) 880 E) 878. 000.
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE
Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
12. STATISTIČKI MODEL ZVUČNOG POLJA U PROSTORIJAMA
AKUSTIKA TEMA 12 Statstčk model zvučnog polja u prostorjama 157 12. STATISTIČKI MODEL ZVUČNOG POLA U PROSTORIAMA 12.1 Uvod Statstčka analza zvučnog polja u prostorj, takozvan statstčk model l statstčka
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa
ADSORPCIJA. Adsorbatje supstancija koja se adsorbuje Adsorbens ili substrat je supstancija na kojoj se adsorpcija vrši
ADSORPCIJA Adsorpcija je pojava da se na površini faze povećava ili smanjuje (negativna adsorpcija ili desorpcija), koncentracija pojedinih komponenata pri čemu dolazi do smanjivanja slobodne energije
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.
Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. 3. Λίστα Παραμέτρων 3.. Λίστα Παραμέτρων Στην αρχική ρύθμιση, μόνο οι παράμετροι
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =
x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},
Dvanaesti praktikum iz Analize 1
Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.
!"!# ""$ %%"" %$" &" %" "!'! " #$!
" "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Protok., tada je relativna brzina gibanja čestica fluida u odnosu na površinu w i., a protok Q je definiran izrazom Q= wnds = v u nds
EHNIK FLUI I Što valja zapamtt 0 Protok olumensk protok l jenostao protok Q jest volumen čestca flua koje u jenčnom vremenu prođu kroz promatranu površnu orjentranu jenčnm vektorom normale n ko se čestce
BROJ NEZAVISNIH KOMPONENTI
RAVNOTEŽA FAZA FAZA p-homogeni deo nekog heterogenog sistema, uniforman po svojim fizičkim osobinama i hemijskom sastavu u celoj zapremini a koji je od ostalih delova sistema odvojen granicom faza. Granica
Trigonometrijske nejednačine
Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja
JMAK の式の一般化と粒子サイズ分布の計算 by T.Koyama
MAK by T.Koyama MAK MAK f () = exp{ fex () = exp (') v(, ') ' () (') ' v (, ') ' f (), (), v (, ') f () () f () () v (, ') f () () v (, ') f () () () = + {exp( A) () f () = exp( K ) () K,,, A *** ***************************************************************************
Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Byeong-Joo Lee
yeg-j ee OTECH - ME alphad@psteh.a.k yeg-j ee www.psteh.a.k/~alphad ufae Tast ad Allyg Effet N.M. Hwag et al., 000. ue W W 0.4wt% N Vau Aealg yeg-j ee www.psteh.a.k/~alphad Abal a wth f N.M. Hwag yeg-j
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. C. Složeno gibanje. Pojmovi: A. Translacijsko gibanje krutog tijela. 12.
Pojmo:. Vekor sle F (ranslacja). omen sle (roacja) Dnamka kruog jela. do. omen romos masa. Rad kruog jela A 5. Kneka energja k 6. omen kolna gbanja L 7. u momena kolne gbanja momena sle L f ( ) Gbanje
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)
3525$&8158&1(',=$/,&(6$1$92-1,095(7(120
Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Matematka 1 Zadaci za drugi kolokvijum
Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()
Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom
Kolegij: Obrada industrijskih otpadnih voda Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom Zadatak: Ispitati učinkovitost procesa koagulacije/flokulacije na obezbojavanje
NAVODNJAVANJE MODELI DISTRIBUCIJE VODE U SISTEMIMA ZA NAVODNJAVANJE ŠKOLSKA 2016/2017 UNIVERZITET U BEOGRADU GRAĐEVINSKI FAKULTET
UNIVERZITET U BEOGRADU GRAĐEVINSKI FAKULTET NAVODNJAVANJE ŠKOLSKA 2016/2017 MODELI DISTRIBUCIJE VODE U SISTEMIMA ZA NAVODNJAVANJE Predmetn profesor: dr Mloš Stanć, dpl. građ. nž. Predmetn asstent: Željko
Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo
Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra
Adsorpcija. Fizička hemija II Dr Gordana Ćirić-Marjanović
Fizička hemija II Dr Gordana Ćirić-Marjanović Adsorpcija Adsorpcija je povećanje količine neke komponente u međufaznoj oblasti, u odnosu na njenu količinu u ostalom delu sistema. Međufazna oblast ima debljinu
OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
gdje je E k, max kinetička energija izbijenog elektrona, a W izlazni rad. Formula se može i ovako napisati: c
Zadata (Maro, gnazja) Cezjev ploč obajao eletroagnet zračenje valne dljne 450 n. Kola je razla potenjala potrebna za zatavljanje eje eletrona z ploče? Izlazn rad za ezj zno ev. (Planova ontanta h 6.66
U unutrašnja energija H entalpija S entropija G 298. G Gibsova energija TERMOHEMIJA I TERMODINAMIKA HEMIJSKA TERMODINAMIKA
HEMIJSKA TERMODINAMIKA Bavi se energetskim promenama pri odigravanju hemijskih reakcija. TERMODINAMIČKE FUNKCIJE STANJA U unutrašnja energija H entalpija S entropija Ako su određene na standardnom pritisku
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)
PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =
100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
Rešenje: X C. Efektivne vrednosti struja kroz pojedine prijemnike su: I R R U I. Ekvivalentna struja se određuje kao: I
. Otnik tnsti = 00, kalem induktivnsti = mh i kndenzat kaacitivnsti = 00 nf vezani su aaleln, a između njihvih kajeva je usstavljen steidični nan efektivne vednsti = 8 V, kužne učestansti = 0 5 s i četne
KOPOLIMERIZACIJA. UGRADNJA VIŠE RAZLIČITIH MONOMERA u istu makromolekulu Je li stupnjevita polimerizacija tipa A 2. kopolimerizacija?
KOPOLIERIZIJ UGRDNJ VIŠE RZLIČITIH ONOER u stu maomoleulu Je l stunevta olmezaca ta oolmezaca? ltenauć (zmenčn) oolme KOPOLIERIZIJ POLIURETNI Stunevta oolmezaca: ugadna vše azlčth monomea ste unconalnost
Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design
Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
KINETIČKA TEORIJA GASOVA
KIETIČKA TEORIJA GASOA Klasčna termodnama se ne ba tanjma unutrašnje struture materje mada ntutno se može osett da elčne oje fguršu u zaonma termodname ao što su rtsa zaremna temeratura sgurno zase od