POVRŠINSKE POJAVE ADSORPCIJA
|
|
- Ἡρὼ Βλαβιανός
- 6 χρόνια πριν
- Προβολές:
Transcript
1 POVRŠINSKE POJAVE ADSORPCIJA
2 Površina čvrstih i tečnih supstanci se specifično ponaša i što je ta površina razvijenija to ta specifičnost više dolazi do izražaja. Usitnjavanjem supstanci ta se površina razvija. Npr. supstanca oblika kocke sa ivicom 1 cm ima P=6 cm 2. Ako se ova kocka usitni na kocke sa ivicom 1 mm dobija se 1000 kocki ukupne površine 60 cm 2 (ako je l=1x10-6 cm; 1x10 18 kocki; P=6x10 6 cm 2 itd.). Ako je neka pojava uslovljena površinom čvrste faze, razvijanjem površine pojava dolazi sve više do izražaja (procesi u praksi:flotacija mineralnih sirovina, adsorpcija, bojenje tkanine, jonski izmenjivači). POVRŠINSKI NAPON gasna faza granica faza Površinski napon se javlja kao posledica neuniformnih međumolekulskih interakcija na međufaznoj granici. Naime, privlačne sile između molekula u unutrašnjosti tečnosti su u ravnoteži jer je svaki molekul okružen sa svih strana istim molekulima pa je rezultujuća sila tečna faza To nije slučaj sa molekulima na površini koji su sa jedne strane okruženi npr. molekulima nekog gasa koji nisu u stanju da uravnoteže privlačne sile molekula tečnosti pa se javlja rezultujuća sila ka unutrašnjosti tečnosti (tangencijalno zatezanje). Posledica ovoga je da se molekuli u površinskom sloju tečnosti nalaze pod dejstvom sila odnosno pritiska koji je upravljen u unutrašnjost tečnosti- KOHEZIONA SILA (KOHEZIONI PRITISAK).
3 Da bi se molekul iz unutrašnjosti tečnosti doveo na površinu potrebno je izvršiti određeni rad nasuprot te kohezione sile što ukazuje na to da molekuli na površini imaju višak potencijalne energije-površinska ENERGIJA. Dovođenje molekula na površinu znači povećanje površine a obrnuto smanjenje. Ravnotežno stanje je stanje minimuma potencijalne energije; sistem će težiti tom minimumu tako da površina tečnosti teži da ima najmanju moguću vrednost tj. da se skupi (sferni oblik)-kap tečnosti koja se obrazuje pri isticanju tečnosti kroz kapilaru. Sila koja teži da smanji površinu tečnosti zove se POVRŠINSKI NAPON. POVRŠINSKI NAPON: -sila normalna na jedinicu dužine površine tečnosti (Nm -1 ) -rad utrošen za jediničnu promenu površine (Jm -2 =Nm -1 ) Sledi direktna veza između površinskog napona i kohezije u tečnosti: što u nekoj tečnosti postoje veće kohezione sile ta tečnost pruža veći otpor povećanju površine. Tako je npr. kod vode, pošto je dipol, jače kohezione sile, pruža se veći otpor pa je veći i površinski napon. Površinski napon je funkcija temperature-opada sa porastom temperature
4 ADSORPCIJA Kada se dve faze dodiruju one su razdvojene graničnim slojem A S B αfaza σ βfaza AA' i BB'-granične površine faza σ-granični sloj gde se sastav menja od čiste faze α do sastava čiste faze β. Zbog malog dometa međumolekulskih sila, granični sloj nije deblji od nekoliko molekulskih prečnika pa se kaže da ima površinu a nema debljinu Granična oblast između dve faze (AA'BB')- sastav sistema nije isti zbog površinskih pojava koje se javljaju na dodirnoj površini. Kao što je rečeno površina tečnosti se nalazi u stanju napona, teži da smanji slobodnu energiju površine smanjenjem slobodne površine. Do smanjenja slobodne energije površine može doći i povećanjem koncentracije rastvorene supstance na površini u odnosu na ostali deo rastvora.
5 ADSORPCIJA-pojava da se na površini faze poveća ili smanjuje (desorpcija-negativna adsorpcija) koncentracija neke komponente pri čemu se smanjuje slobodna energija površine. ADSORBAT- supstanca koja se adsorbuje ADSORBENS- supstanca na kojoj se adsorbuje Moguća je istovremeno i APSORPCIJA (prodiranje supstance unutar faze) pa se često koristi termin SORPCIJA. Adsorpcija može da bude: -na površini čvrste faze -na površini tečnosti iz gasne ili tečne faze. ADSORPCIJA NA POVRŠINI TEČNOSTI POVRŠINSKI AKTIVNE SUPSTANCE: supstance koje smanjuju površinski napon rastvora tako što se koncentruju na površini rastvora pa će koncentracija biti veća na površini nego u glavnini rastvora (sapuni i deterdženti). POVRŠINSKI NEAKTIVNE SUPSTANCE: supstance koje povećavaju površinski napon (negativna adsorpcija na graničnoj površini) kao što su npr. elektroliti koji takvu aktivnost pokazuju zbog jakih elektrostatičkih sila pa je veća koncentracija u glavnini rastvora.
6 POVRŠINSKA AKTIVNOST: kvantitativna mera adsorpcije supstance na površini rastvora Adsorpcija na površini rastvora se definiše kao višak ili manjak količine rastvorka u graničnom sloju u odnosu na količinu u unutrašnjosti faze po jedinici površine graničnog sloja: molovi u graničnom sloju površinska koncentracija rastvorene supstance molovi rastvorene supstance u jedinici zapremine rastvora granična površina koncentracija adsorbovane komponente-kmolm -2 (Г>0 ili Г<0)
7 GIBSOVA ADSORPCIONA IZOTERMA ZA ADSORPCIJU NA POVRŠINI TEČNOSTI (veza između adsorpcije i površinskog napona) Supstance koje smanju površinski napon dγ<0 imaće povećanu površinsku koncentraciju tj. Г>0 POZITIVNA ADSORPCIJA. Supstance koje povećavaju površinski napon dγ>0 imaće smanjenu površinsku aktivnost tj. Г<0-one se desorbuju odnosno imaju manju koncentraciju u površinskom sloju-negativna ADSORPCIJA.
8 ADSORPCIJA NA ČVRSTOJ POVRŠINI Molekuli, atomi ili joni na čvrstoj površini nemaju zasićeno polje sila (neravnotežnost sila) pa adsorbovanje čestica iz gasne faze ili tečne faze smanjuje površinsku energiju. Dobri čvrsti adsorbensi: silika-gel i aktivni ugalj. Ako se posmatra jedan adsorbens pri različitim uslovima: priroda adsorbovane supstance, temperatura, pritisak gasa, površina adsorbensa, dolazi se do zaključka da količina adsorbovane supstance zavisi od svih ovih faktora: -sa porastom T k gasa raste i količina adsorbovanog gasa. Što je veća kritična temperatura gasa to je gas lakše prevesti u tečnost pa sledi da se gas utoliko više adsorbuje ukoliko je gas lakše kondenzovati -količina adsorbovane supstance je manja što je temperatura veća jer je adsorpcija egzoterman proces -povećanje P povećava adsorpciju -povećanje površine adsorbensa povećava adsorpciju. TOPLOTA ADSORPCIJE Δ ads H<0: pri adsorpcija gasa na čvrstoj površini dolazi do smanjenja S sistema (sistem postaje uređeniji) pa sledi da S okoline mora da raste da bi ukupna entropija izolovanog sistema bila veća od 0. Da bi entropija okoline rasla ona mora da primi neku količinu toplote odnosno pri adsorpciji se oslobađa energija u okolinu. Adsorpcija se kvantitativno izražava preko: Zaposednutosti površine θ (odnos broja zaposednutih mesta i broja raspoloživih mesta; kreće se od 0 do 1) Brzina adsorpcije v ads (promena pokrivenosti površine u jedinici vremena)
9 U zavisnosti od načina vezivanja adsorbata za površinu adsorbensa, razlikuju se: -FIZIČKA ADSORPCIJA (FIZISORPCIJA) -HEMIJSKA ADSORPCIJA (HEMISORPCIJA) FIZIČKA ADSORPCIJA -između adsorbata i adsorbensa se ostvaruju Vandervalsove sile (sile koje učestvuju u kondenzaciji gasa) -sile su slabe ali dugog dometa pa je moguća i višeslojna adsorpcija -količina adsorbovane supstance zavisi od prirode adsorbensa a veoma retko od prirode adsorbata -reverzibilna je i nema energiju aktivacije -dešava se ispod tačke ključanja adsorbata HEMIJSKA ADSORPCIJA -gradi se hemijska veza (kovalentna) -ove sile su jake ali kratkog dometa pa je monoslojna -odigrava se i na visokim temperaturama -obzirom da se gradi hemijska veza zavisi i od prirode adsorbensa i od prirode adsorbata -može da se odigrava spontano i brzo i to je neaktivirana adsorpcija -može da zahteva neku energiju aktivacije i to je aktivirana adsorpcija -ireverzibilna je Fizisorpcija je češća od hemisorpcije. Može se desiti da nastupi fizisorpcija preko hemisorpcije ili da u jednoj oblasti temperature bude fizisorpcija a u drugoj hemisorpcija.
10 ADSORPCIONA RAVNOTEŽA: posle izvesno vremena uspostavlja se stanje adsorpcione ravnoteže koja ima dinamički karakter (v ads =v des ). Parametri stanja: P, T i n ads, odnosno broj molova adsorbovane supstance po jedinici površine ili mase adsorbensa zavisi od ravnotežnog pritiska gasa i temperature (odnosno od c ako je adsorpcija iz rastvora). Jedan od ovih parametara se drži konstantnim: T=const. n ads =f(p) ADSORPCIONA IZOTERMA P=const. n ads =f(t) ADSORPCIONA IZOBARA n ads =const. P=f(T) ADSORPCIONA IZOSTERA Meri se pritisak za različite T pri n ads =const. na osnovu čega se određuje ΔH. Obično se količina adsorbata prikazuje kao zapremina gasa po jedinici mase adsorbensa u funkciji od relativnog pritiska P/P 0 gde je P-ravnotežni pritisak gasa; P 0 -napon pare adsorbata u tečnom stanju na posmatranoj temperature.
11 TIPOVI ADSORPCIONIH IZOTERMI V V V P/Po V P/Po Kada P/P 0 1 količina adsorbovanog gasa naglo raste jer se tada gas kondenzuje. Prvi tip izoterme je svojstven za hemisorpciju a svih pet za fizisorpciju. P/Po P/Po V P/Po
12 Za prvi tip adsorpcione izoterme važi FROJNDLIHOVA JEDNAČINA: masa ili zapremina adsorbovanog gasa masa adsorbensa ravnotežni pritisak gasa k i n su empirijske konstante koje zavise od temperature i prirode adsorbensa i adsorbata. Sa porastom P u početku adsorbovana zapremina gasa raste brzo a zatim se lagano približava nekoj graničnoj vrednosti kada je površina prekrivena molekulima gasa odsečak nagib za adsorpciju iz rastvora ravnotežna koncentracija rastvorene supstance
13 LANGMIROVA ADSORPCIONA IZOTERMA Langmir je izveo univerzalniju jednačinu za adsorpcionu izotermu tipa I. Posmatrao je hemisorpciju O 2 na W polazeći od pretpostavki: -gas koji se adsorbuje se ponaša kao idealan -čvrsta površina uniformna sa konstantnim brojem ekvivalentnih mesta za adsorpciju -formira se monosloj -nema interakcija između adsorbovanih molekula -verovatnoća da se molekul veže za slobodno mesto ili da ga napusti ne zavisi od zauzetosti ostalih mesta. Langmir kaže da se istovremeno dešavaju dva suprotna procesa: -adsorpcija molekula iz gasne faze na čvrstu površinu (kondenzacija) -desorpcija molekula sa površine ponovo u gasnu fazu (isparavanje) Na početku su sva mesta slobodna pa svaki molekul gasa pri sudaru sa površinom biva vezan za nju tj. kondenzuje se i tada je v ads najveća.sa napredovanjem adsorpcije broj slobodnih mesta opada i molekul biva adsorbovan samo pri sudaru sa delom nezaposednute površine tako da početna brzina opada. Adsorbovani molekuli mogu, kada dostignu dovoljnu Ek da se otkinu od površine i da pređu u gasnu fazu.brzina ove desorpcije (isparavanja) zavisi od prekrivenosti površine i postaje sve veća što proces adsorpcije napreduje odnosno što je veća zaposednutost površine. U određenom momentu se ove dve brzine izjednačavaju i uspostavlja se stanje dinamičke adsorpcione ravnoteže kada je broj molekula koji se u jedinici vremena adsorbuje=broju molekula koji se desorbuju.
14 Prema kinetičkoj teoriji gasova, brzina kojom molekuli udaraju u jedinicu površine je proporcionalna P gasa pa sledi da je i brzina adsorpcije zaposednuta mesta raspoloživa površina KOEFICIJENT ADSORPCIJE (konstanta za svaki sistem i T) LANGMIROVA ADSORPCIONA IZOTERMA zadovoljava linearnost u većini slučajeva hemisorpcije dok u većini slučajeva fizisorpcije ne zadovoljava
15 θ na nekom pritisku P se može izraziti i kao V/V max gde je V-zapremina gasa adsorbovana na pritisku P a V max granična zapremina pri visokim P (monosloj prekriva čitavu površinu) Sledi: Dva granična slučaja: 1. veoma visoki pritisci odsečak nagib adsorbovana količina dostiže maksimalnu i konstantnu vrednost; površina potpuno pokrivena monoslojem i kriva dostiže plato 2. veoma niski pritisci pravolinijska zavisnost
16 U oblasti srednjih pritisaka: Frojndlihova adsorpciona izoterma x/m Frojndlihova adsorpciona izoterma je poseban slučaj opšte Langmirove izoterme i važi u ograničenoj oblasti P. const. log deo pravolinijski deo P Može se adsorbovati smeša gasova i tada uslov ravnoteže mora biti istovremeno ispunjen za sve gasove. Pri adsorpciji može da dođe do disocijacije gasa i tada su za adsorpciju potrebna dva adsorpciona mesta pa je brzina adsorpcije proporcionalna P i verovatnoći da oba atoma nastala disocijacijom nađu svoje mesto
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Adsorpcija. Fizička hemija II Dr Gordana Ćirić-Marjanović
Fizička hemija II Dr Gordana Ćirić-Marjanović Adsorpcija Adsorpcija je povećanje količine neke komponente u međufaznoj oblasti, u odnosu na njenu količinu u ostalom delu sistema. Međufazna oblast ima debljinu
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
ADSORPCIJA. Adsorbatje supstancija koja se adsorbuje Adsorbens ili substrat je supstancija na kojoj se adsorpcija vrši
DSORCIJ dsorpcija je pojava da se na površini faze povećava ili smanjuje (negativna adsorpcija ili desorpcija), oncentracija pojedinih omponenata pri čemu dolazi do smanjivanja slobodne energije granične
SEKUNDARNE VEZE međumolekulske veze
PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
ADSORPCIJA. Adsorbatje supstancija koja se adsorbuje Adsorbens ili substrat je supstancija na kojoj se adsorpcija vrši
ADSORPCIJA Adsorpcija je pojava da se na površini faze povećava ili smanjuje (negativna adsorpcija ili desorpcija), koncentracija pojedinih komponenata pri čemu dolazi do smanjivanja slobodne energije
Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE
Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
MEĐUMOLEKULSKE SILE JON-DIPOL DIPOL VODONIČNE NE VEZE DIPOL DIPOL-DIPOL DIPOL-INDUKOVANI INDUKOVANI JON-INDUKOVANI DISPERZNE SILE
MEĐUMLEKULSKE SILE JN-DIPL VDNIČNE NE VEZE DIPL-DIPL JN-INDUKVANI DIPL DIPL-INDUKVANI INDUKVANI DIPL DISPERZNE SILE MEĐUMLEKULSKE SILE jake JNSKA VEZA (metal-nemetal) KVALENTNA VEZA (nemetal-nemetal) METALNA
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min
Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu
Reverzibilni procesi
Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Idealno gasno stanje-čisti gasovi
Idealno gasno stanje-čisti gasovi Parametri P, V, T i n nisu nezavisni. Odnos između njih eksperimentalno je utvrđeni izražava se kroz gasne zakone. Gasni zakoni: 1. ojl-maritov: PVconst. pri konstantnim
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Osnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
BIOFIZIKA TERMO-FIZIKA
BIOFIZIKA TERMO-FIZIKA Akademik, prof. dr Jovan P. Šetrajčić jovan.setrajcic@df.uns.ac.rs Univerzitet u Novom Sadu Departman za fiziku PMF Powered byl A T E X 2ε! p. / p. 2/ Termika FENOMENOLOŠKA TEORIJA
GASNO STANJE.
GASNO STANJE http://www.ffh.bg.ac.rs/geografi_fh_procesi.html AGREGATNA STANJA MATERIJE Četiri agregatna stanja materije na osnovu stepena uređenosti, tj. odnosa termalne energije čestica i energije međumolekulskih
MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti
MEHANIKA FLUIDA Isticanje kroz otvore sa promenljivim nivoom tečnosti zadatak Prizmatična sud podeljen je vertikalnom pregradom, u kojoj je otvor prečnika d, na dve komore Leva komora je napunjena vodom
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
5 Ispitivanje funkcija
5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:
Dvanaesti praktikum iz Analize 1
Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.
Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja:
Anene Transformacija EM alasa u elekrični signal i obrnuo Osnovne karakerisike anena su: dijagram zračenja, dobiak (Gain), radna učesanos, ulazna impedansa,, polarizacija, efikasnos, masa i veličina, opornos
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Realno gasno stanje Kompresioni faktor
Realno gasno stanje Poglavlje 1.5 Kopresioni faktor Molekulske interakcije irijalni koeficijenti an der alsova jednačina Kondenzacija Kritično stanje Izotere Korespodentna stanja Druge jednačine stanja
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Ponašanje pneumatika pod dejstvom bočne sile
Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA
UZDUŽNA DINAMIKA VOZILA
UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,
OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK
OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Rastvori i osobine rastvora
Rastvori i osobine rastvora U srpskom jeziku reč rasvor predstavlja homogenu tečnu smešu. U engleskom reč solution predstavlja više od toga smešu dva gasa, legure (homogene smeše dva metala)... Na ovom
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Ponašanje pneumatika pod dejstvom bočne sile
Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
U unutrašnja energija H entalpija S entropija G 298. G Gibsova energija TERMOHEMIJA I TERMODINAMIKA HEMIJSKA TERMODINAMIKA
HEMIJSKA TERMODINAMIKA Bavi se energetskim promenama pri odigravanju hemijskih reakcija. TERMODINAMIČKE FUNKCIJE STANJA U unutrašnja energija H entalpija S entropija Ako su određene na standardnom pritisku
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
RAVNOTEŽA TEČNO-PARA
RAVNOTEŽA TEČNO-PARA Smeša dve isparljive komponente (dve tečnosti) koje se mešaju u svim odnosima: f = c p + 2 = 2 2 + 2 = 2 tečna homogena smeša+para iznad tečnosti Ako su te dve nezavisno promenjive
Predavanja iz FIZIČKE HEMIJE 2. Površinske pojave. Snežana Gojković. Beograd, novembar 2017.
Predavanja iz FIZIČKE HEMIJE 2 Površinske pojave Snežana Gojković Beograd, novembar 2017. 2 SADRŽAJ: GRANIČNA POVRŠINA I MEĐUFAZNA OBLAST... 4 POJAVE NA POVRŠINI TEČNOSTI... 5 Površinski napon... 5 Termodinamičke
DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE
TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne
Termohemija. C(s) + O 2 (g) CO 2 (g) H= -393,5 kj
Termohemija Termodinamika proučava energiju i njene promene Termohemija grana termodinamike odnosi izmeñu hemijske reakcije i energetskih promena koje se pri tom dešavaju C(s) + O 2 (g) CO 2 (g) H= -393,5
Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
3525$&8158&1(',=$/,&(6$1$92-1,095(7(120
Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Kiselo bazni indikatori
Kiselo bazni indikatori Slabe kiseline ili baze koje imaju različite boje nejonizovanog i jonizovanog oblika u rastvoru Primer: slaba kiselina HIn(aq) H + (aq) + In (aq) nejonizovani oblik jonizovani oblik
Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo
Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka
1 Afina geometrija 11 Afini prostor Definicija 11 Pod afinim prostorom nad poljem K podrazumevamo svaku uređenu trojku (A, V, +): A - skup taqaka V - vektorski prostor nad poljem K + : A V A - preslikavanje
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
Statika fluida. Tehnička fizika 1 15/12/2017 Tehnološki fakultet
Tehnička fizika 1 15/12/2017 Tehnološki fakultet Oblast koja proučava stanje fluida u mirovanju Hidrostatički pritisak Paskalov zakon Zemljina atmosfera i atmosferski pritisak Sila potiska i arhimedov
Drugi zakon termodinamike
Drugi zakon termodinamike Uvod Drugi zakon termodinamike nije univerzalni prirodni zakon, ne važi za sve sisteme, naročito ne za neobične sisteme (mikrouslovi, svemirski uslovi). Zasnovan je na zajedničkom
HEMIJSKA VEZA TEORIJA VALENTNE VEZE
TEORIJA VALENTNE VEZE Kovalentna veza nastaje preklapanjem atomskih orbitala valentnih elektrona, pri čemu je region preklapanja između dva jezgra okupiran parom elektrona. - Nastalu kovalentnu vezu opisuje
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
APROKSIMACIJA FUNKCIJA
APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu
4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.
4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
BROJ NEZAVISNIH KOMPONENTI
RAVNOTEŽA FAZA FAZA p-homogeni deo nekog heterogenog sistema, uniforman po svojim fizičkim osobinama i hemijskom sastavu u celoj zapremini a koji je od ostalih delova sistema odvojen granicom faza. Granica
TERMOENERGETIKA. Boričić Aleksandra
TERMOENERGETIKA Boričić Aleksandra Šta proučava termodinamika? Termodinamika je nauka koja proučava pojave vezane za međusobno pretvaranje jednog oblika energije u drugi. Termodinamika analizira i definiše
RAVNOTEŽA FAZA.
RAVNOTEŽA FAZA http://www.ffh.bg.ac.rs/geografi_fh_procesi.html 1 Definicija faze faznog prelaza nezavisne komponenete stepena slobode Termodinamički uslov ravnoteže faza Gibsovo pravilo faza Ravnoteža
PRELAZ TOPLOTE - KONVEKCIJA
PRELAZ TOPLOTE - KONVEKCIJA Prostiranje toplote Konvekcija Pri konvekciji toplota se prostire kretanjem samog fluida (tečnosti ili gasa): kroz fluid ili sa fluida na čvrstu površinu ili sa čvrste površine
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
Trigonometrijske nejednačine
Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
Primer: gas ili smeša gasova p = 1 tečnost ili smeša mešljivih tečnosti p = 1 dve delimično mešljive ili nemešljive tečnosti p = 2 kristal p = 1
RAVNOTEŽA FAZA 1 Faza, p svaki homogeni deo sistema, uniforman po svojim fizičkim osobinama i hemijskom sastavu u celoj zapremini, koji od ostalih homogenih delova razdvajaju granice, tj. površine na kojima
C 273,15, T 273,15, 1 1 C 1 50 C 273,15 K 50K 323,15K 50K 373,15K C 40 C 40 K
1 Zadatak temperatura K- C Telo A se nalazi na temperaturi 50 C i zagreje se za 50 K. Telo B se nalazi na temperaturi 313 K.i zagreje se za 40 C. Koje je telo toplije posle zagravanja i kolika je razlika
INŽENJERSTVO NAFTE I GASA. 2. vežbe. 2. vežbe Tehnologija bušenja II Slide 1 of 50
INŽENJERSTVO NAFTE I GASA Tehnologija bušenja II 2. vežbe 2. vežbe Tehnologija bušenja II Slide 1 of 50 Proračuni trajektorija koso-usmerenih bušotina 2. vežbe Tehnologija bušenja II Slide 2 of 50 Proračun
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića
Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
RAD, SNAGA I ENERGIJA
RAD, SNAGA I ENERGIJA SADRŢAJ 1. MEHANIĈKI RAD SILE 2. SNAGA 3. MEHANIĈKA ENERGIJA a) Kinetiĉka energija b) Potencijalna energija c) Ukupna energija d) Rad kao mera za promenu energije 4. ZAKON ODRŢANJA
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa