Obične diferencijalne jednadžbe

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Obične diferencijalne jednadžbe"

Transcript

1 1 Obične diferencijalne jednadžbe 1.1 Uvod U uvodnom dijelu ponavljamo neke definicije i teoreme iz teorije običnih diferencijalnih jednadžbi. Neka je I 0 R interval i f : I 0 R n R n neprekidna funkcija. Za zadano t 0 I 0 i x 0 R n treba naći derivabilnu funkciju x: I 0 R n koja zadovoljava t I 0, ẋ(t) = f(t,x(t)), (1.1) x(t 0 ) = x 0. (1.2) Zadaću (1.1), (1.2) nazivamo Cauchyjeva zadaća za običnu diferencijalnu jednadžbu (1.1). Funkcija x(t) je rješenje zadaće na intervalu I 0. U mnogim fizikalnim zadaćama varijabla t ima značenje vremena, pa stoga (1.2) nazivamo početnim uvjetom, a t 0 početnim trenutkom. Najčešće promatramo slučaj I 0 = [t 0, T) (T > t 0 ) ili I 0 = [t 0, ). Time se ne smanjuje općenitost problema jer se slučaj I 0 = (t 0 T, t 0 ] svodi na slučaj I 0 = [t 0, t 0 + T) zamjenom varijabli t 2t 0 t. Slično, problem u kojem je I 0 = (t 0 T, t 0 + T) može se promatrati kao dva odvojena problema na intervalima I 1 = (t 0 T, t 0 ] i I 2 = [t 0, t 0 + T). Zadaća (1.1), (1.2) nema nužno rješenje na cijelom intervalu I 0, na kojem je funkcija f dobro definirana i neprekidna. Stoga se uvodi pojam lokalnog rješenja: Kažemo da je par (I,x), koji se sastoji od intervala I I 0, t 0 I, i funkcije x: I R n, lokalno rješenje Cauchyjeve zadaće (1.1), (1.2), ako je x rješenje na intervalu I. Za lokalno rješenje (J,x 1 ) kažemo da proširuje lokalno rješenje (I,x), ako je I J i x 1 (t) = x(t) za svako t I. Ako je J I, onda govorimo o strogom proširenju. Lokalno rješenje (I, x) je maksimalno rješenje zadaće (1.1), (1.2) ako ne postoji lokalno rješenje koje ga strogo proširuje. Maksimalno rješenje jednostavno zovemo rješenje. 1

2 2 Obične diferencijalne jednadžbe Lokalno rješenje (I,x) je globalno rješenje zadaće (1.1), (1.2) na intervalu I 0, ako je I = I 0. Egistenciju lokalnog rješenja osigurava sljedeći teorem. Teorem 1.1 (Cauchy-Péano) Neka je funkcija f neprekidna na nekoj okolini točke (t 0,x 0 ) R n+1. Tada postoji barem jedno lokalno rješenje zadaće (1.1), (1.2). Pokazuje se da vrijedi: Lema 1.1 Ako Cauhyjeva zadaća ima lokalno rješenje, onda ona ima barem jedno maksimalno rješenje koje ga proširuje. Primjer 1. Zadaća ẋ(t) = 2tx(t) 2 x(0) = 1, ima jedinstveno globalno rješenje na R; x(t) = 1/(1 + t 2 ). Primjer 2. Zadaća ẋ(t) = 2tx(t) 2 x(0) = 1, ima jedinstveno maksimalno rješenje na R: (( 1, 1), x(t) = 1/(1 t 2 )). Globalno rješenje na R ne postoji. Primjer 3. Zadaća ẋ(t) = 3 x(t) 2 x(0) = 0, ima dva globalna rješenja na R: x 0 i x(t) = t 3 /27. Kažemo da zadaća (1.1), (1.2) ima jedinstveno rješenje ako ima jedinstveno globalno rješenje i ako je svako lokalno rješenje restrikcija tog globalnog rješenja. Jedinstvenost rješenja se osigurava uvjetom lipšicovosti. Teorem 1.2 (Cauchy-Lipschitz) Neka je funkcija f neprekidna na I 0 R n i neka postoji konstanta L takva da je (t,x 1 ), (t,x 2 ) I 0 R n, f(t,x 1 ) f(t,x 2 ) L x 1 x 2. Tada problem (1.1), (1.2), ima jedinstveno rješenje. Uvjet iz teorema nazivamo uvjet lipšicovosti, a L Lipschitzovom konstantom. Radna verzija

3 1.2 Eulerova metoda Eulerova metoda Zadana je skalarna Cauchyjeva zadaća ẋ(t) = f(t, x(t)), t > 0, (1.3) x(0) = x 0. (1.4) Pretpostavit ćemo da je f : [0, T] R R neprekidna funkcija, Lipschitzova s konstantom L po drugoj varijabli, tj., (t, x 1 ), (t, x 2 ) [0, T] R, f(t, x 1 ) f(t, x 2 ) L x 1 x 2. U nizu ekvidistantnih točaka t 0 = 0, t 1 = t 0 + h, t 2 = t 1 + h,...želimo generirati niz vrijednosti x i, i = 0, 1, 2,... koje aproksimiraju rješenje Cauchyjeve zadaće (1.3), (1.4) u točkama t i (x i x(t i )). Najjednostavniji način diskretizacije problema je taj da se derivacija zamijeni diferencijskim kvocijentom. Time dolazimo do postupka x i+1 x i h = f(t i, x i ), i = 0, 1,... Početna vrijednost x 0 je zadana. To je Eulerova metoda. Korak metode h ne mora nužno biti konstantan. Moguće je prema nekim kriterijima dinamički povećavati i smanjivati korak metode kako bi se postigla tražena točnost približnog rješenja. Metoda u tom slučaju ima oblik x i+1 = x i + h i f(t i, x i ), i = 0, 1, 2,... gdje je t i+1 = t i + h i te x i x(t i ). Za početak, mi ćemo se baviti metodama s konstantnim korakom. Eulerova se metoda neposredno generalizira na sustave diferencijalnih jednadžbi. Ako je zadana funkcija f : R R n R n i Cauchyjev problem onda metoda glasi: ẋ(t) = f(t,x(t)), t > 0, (1.5) x(0) = x 0, (1.6) x i+1 = x i + hf(t i,x i ), i = 0, 1, 2,... Da bi se metoda primijenila na diferencijalne jednadžbe višeg reda, kao npr. M. Jurak 31. svibnja x (n) (t) = f(t, x(t), ẋ(t),...,x (n 1) (t)),

4 4 Obične diferencijalne jednadžbe potrebno je prvo jednadžbu zapisati u obliku sustava prvog reda: ẋ 1 = x 2 ẋ 2 = x 3 ẋ n 1 = x n ẋ n = f(t, x 1, x 2,...,x n ). Slično se postupa i sa sustavima višeg reda. Napomena. Eulerovu smo metodu izveli aproksimacijom derivacije. Umjesto toga, mogli smo poći od integralne jednadžbe i aproksimirati integral: ti+1 x(t i+1 ) x(t i ) = ti+1 t i f(t, x(t)) dt, t i f(t, x(t)) dt hf(t i, x(t i )). Time dobivamo isti numerički postupak. Analizu Eulerove metode nije teško provesti. Pretpostavit ćemo da je točno rješenje Cauchyjevog problema x C 2 ([0, T]), za neki T > 0. Razvojem u Taylorov red dobivamo za neki τ (t i, t i+1 ). Izraz x(t i+1 ) = x(t i ) + hẋ(t i ) + h2 2 ẍ(τ) = x(t i ) + hf(t i, x(t i )) + h2 ẍ(τ), (1.7) 2 ε i = x(t i+1 ) x(t i ) hf(t i, x(t i )) nazvamo lokalna greška diskretizacije. Ona je ostatak koji se dobiva kada se točno rješenje Cauchyjevog problema uvrsti u numeričku metodu. U slučaju Eulerove metode iz (1.7) vidimo da je lokalna greška diskretizacije proporcionalna s h 2. Preciznije, ako je M = max{ ẍ(t) : t [0, T]}, onda je ε i 1 2 Mh2, i. (1.8) je Pogledajmo sada kako evoluira greška metode. U trenutku t i greška metode e i = x(t i ) x i, Radna verzija

5 1.2 Eulerova metoda 5 gdje je x(t) egzaktno rješenje Cauchyjeve zadaće. Imamo e i+1 = x(t i+1 ) x i+1 = ε i + x(t i ) + hf(t i, x(t i )) x i hf(t i, x i ) = ε i + e i + h[f(t i, x(t i )) hf(t i, x i )]. Treći član koji se pojavljuje u ovoj jednakosti možemo ocijeniti na osnovu pretpostavke uniformne lipšicovosti funkcije f po drugom argumentu. Time dobivamo e i+1 ε i + (1 + Lh) e i (1 + Lh) e i Mh2. (1.9) Lema 1.2 (Diskretna Gronwallova lema) Neka je h > 0, L > 0 i b 0 te neka je (x i ), i = 0, 1, 2,... niz nenegativnih brojeva koji zadovoljava x i+1 (1 + Lh)x i + b. Tada je za sve n 0 x n x 0 e Lnh + elnh 1 b. Lh Dokaz. Jedostavnim iteriranjem i korištenjem nejednakosti 1 + a e a, koja vrijedi za a 0. Primjenom Gronwallove leme na (1.8) dobivamo, Time smo dobili zaključak: e n e 0 e Lnh + elnh 1 2Lh Mh2 = elnh 1 2L Mh. Teorem 1.3 Neka je funkcija f : [0, T] R R neprekidna i Lipschitzova s konstantom L po drugoj varijabli. Neka je x C 2 ([0, T]) rješenje Cauchyjeve zadaće (1.3), (1.4) i neka je M = max{ ẍ(t) : t [0, T]}. Ako je h = T/N i ako su x i, i = 0, 1, 2,..., N vrijednosti generirane Eulerovom metodom, onda je za sve i = 1, 2,...,N x(t i ) x i Mh 2L (elt i 1). Teorem 1.3 pretpostavlja da se računanje vrši u egzaktnoj aritmetici. Ako su prisutne greške zaokruživanja, onda računamo vrijednosti ξ 0 = x 0 + δ 0 ξ i+1 = ξ i + hf(t i, ξ i ) + δ i+1, i = 0, 1, 2,... M. Jurak 31. svibnja 2006.

6 6 Obične diferencijalne jednadžbe gdje je δ i greška zaokruživanja u i-tom koraku. Greška metode je sada x(t i+1 ) ξ i+1 = x(t i ) + hẋ(t i ) h2 ẍ(τ i ) [ξ i + hf(t i, ξ i ) + δ i+1 ] = x(t i ) ξ i + h[f(t i, x(t i )) f(t i, ξ i )] h2 ẍ(τ i ) δ i+1. Uvedimo oznaku e i = x(t i ) ξ i, iskoristimo lipšicovost funkcije f i uniformu ograničenost druge derivacije rješenja. Izlazi e i+1 (1 + Lh) e i Mh2 + δ i+1. Ako pretpostavimo da su greške zaokruživanja uniformno ograničene, odnosno da postoji δ > 0, takav da je za svako i 0 δ i δ, onda ponovo možemo primijeniti Gronwallovu lemu i dobivamo e i e 0 e Lt i + elt i 1 Lh (1 2 Mh2 + δ). Vidimo da se red metode ne mijenja ako je δ = O(h 2 ). Funkcija h Mh 2L + δ Lh ima svoj minimum u h = (2δ/M) 1/2, i manje korake ne treba birati jer tada dominiraju greške zaokruživanja. Zadatak. Dokažite sljedeću verziju diskretne Gronwallove leme: Lema 1.3 Neka je h > 0, L > 0 te neka su (x i ), (b i ) i = 0, 1, 2,... nizovi nenegativnih brojeva koji zadovoljavaju x i+1 (1 + Lh)x i + b i. Tada je za sve n 0 n 1 x n x 0 e Lnh + e L(n i 1)h b i. i=0 1.3 Runge-Kutta metode Promatrajmo, radi jednostavnosti, Cauchyjev problem za skalarnu diferencijalnu jednadžbu ẋ(t) = f(t, x(t)) (1.10) x(0) = x 0. (1.11) Radna verzija

7 1.3 Runge-Kutta metode 7 Eulerovu je metodu moguće izvesti polazeći od razvoja rješenja x(t) u Taylorov red x(t + h) = x(t) + hẋ(t) + h2 h3... ẍ(t) + x(t) Uzimajući aproksimaciju x(t + h) x(t) + hẋ(t) i uvažavajući da je ẋ(t) = f(t, x(t)), dobivamo x(t + h) x(t) + hf(t, x(t)), što vodi na numerički postupak x i+1 = x i + hf(t i, x i ). To je Eulerova metoda. Istim postupkom možemo generirati meode višeg reda točnosti; potrebno je jedino zadržati veći broj članova u Taylorovom razvoju. Pokažimo to na primjeru metode drugog reda. Zadržat ćemo prva tri člana u razvoju, pa stoga koristimo jednakost ẍ(t) = d dx f(t, x(t)) = f t(t, x(t)) + f x (t, x(t))ẋ(t) = f t (t, x(t)) + f x (t, x(t))f(t, x(t)), gdje je f t = f t itd. Time smo dobili aproksimaciju x(t + h) x(t) + hf(t, x(t)) + h2 2 [f t(t, x(t)) + f x (t, x(t))f(t, x(t))], iz koje slijedi metoda x i+1 = x i + hf(t i, x i ) + h2 2 [f t(t i, x i ) + f x (t i, x i )f(t i, x i )]. (1.12) Slično bi se izvodile metode trećeg i višeg reda. Metode ovog tipa ponekad se nazivaju Taylorove metode 1. Iz njihovog izvoda je jasno koji je red lokalne greške diskretizacije metode. Tako je za metodu (1.12) LGD reda O(h 3 ). Preciznije, x(t + h) = x(t) + hf(t, x(t)) + h2 2 [f t(t, x(t)) + f x (t, x(t))f(t, x(t))] + O(h 3 ). (1.13) Nedostatak metode je što moramo znati parcijalne derivacije funkcije f. On se može ukloniti na ovaj način: uočimo da Taylorovim razvojem dobivamo f(t+h, x(t)+hf(t, x(t))) = f(t, x(t))+[f t (t, x(t))+f x (t, x(t))f(t, x(t))]h+o(h 2 ), 1 Ili metode na osnovi Taylorovog razvoja. M. Jurak 31. svibnja 2006.

8 8 Obične diferencijalne jednadžbe odnosno, h 2 [f t (t, x(t))+f x (t, x(t))f(t, x(t))] = h[f(t+h, x(t)+hf(t, x(t))) f(t, x(t))]+o(h 3 ). Sada vidimo da izraz s parcijalnim derivacijama funkcije f možemo, bez smanjenja reda LGD, zamijeniti izrazom bez parcijalnih derivacija: x(t + h) = x(t) + hf(t, x(t)) + h [f(t + h, x(t) + hf(t, x(t))) f(t, x(t))] 2 + O(h 3 ). To vodi na novu metodu x i+1 = x i + h 2 [f(t i, x i ) + f(t i + h, x i + hf(t i, x i ))] (1.14) koja se naziva modificirana Eulerova metoda i zapisuje se u obliku m 1 = f(t i, x i ) m 2 = f(t i + h, x i + hm 1 ) x i+1 = x i + h 2 (m 1 + m 2 ). Dobivena metoda je jedna iz porodice Runge-Kutta metoda s lokalnom greškom diskretizacije trećeg reda. Drugi pristup izvo denju metoda ovog tipa je putem generalizacije dobivenih formula. Tako, na primjer, formulu (1.14) možemo generalizirati na sljedeći način: x i+1 = x i + w 1 hf(t i, x i ) + w 2 hf(t i + αh, x i + βhf(t i, x i )), gdje su w 1, w 2, α i β neke konstante. Pitamo se koje uvjete moraju zadovoljavati ove konstante da bi lokalna greška diskretizacije metode bila reda tri (skup takvih koeficijenata je očito neprazan). Preciznije, ako je x(t) točno rješenje, želimo imati x(t + h) = x(t) + w 1 hf(t, x(t)) + w 2 hf(t + αh, x(t) + βhf(t, x(t))) + O(h 3 ). Koristeći Taylorov razvoj, dobivamo f(t + αh, x(t) + βhf(t, x(t))) = f(t, x(t)) + [αf t (t, x(t)) + βf x (t, x(t))f(t, x(t))]h + O(h 2 ), pa prethodni izraz možemo zapisati u obliku x(t + h) = x(t) + (w 1 + w 2 )hf(t, x(t)) + w 2 h 2 [αf t (t, x(t)) + βf x (t, x(t))f(t, x(t))] + O(h 3 ) Radna verzija

9 1.3 Runge-Kutta metode 9 Usporedbom s (1.13) dobivamo sljedeće uvjete: w 1 + w 2 = 1, w 2 α = 1 2, w 2β = 1 2. Time dobivamo jednoparametarsku familiju metoda w 1 = 1 1 2α, w 2 = 1 2α, β = α. Modificiranu Eulerovu metodu dobivamo uz izbor α = 1. Drugi zanimljivi izbor je α = 1/2, što vodi na metodu odnosno x i+1 = x i + hf(t i h, x i f(t i, x i )), m 1 = f(t i, x i ) m 2 = f(t i + h 2, x i + h 2 m 1) x i+1 = x i + hm 2. To je midpoint metoda. Zadatak. Na dite geometrijsku interpretaciju modificirane Eulerove i midpoint metode. Generalizacijom gornjeg postupka dolazimo do ove definicije: Runge-Kutta metode su metode oblika Na primjer, za n = 3 imamo m 1 = f(t i, x i ) m 2 = f(t i + α 2 h, x i + hβ 2,1 m 1 ).. n 1 m n = f(t i + α n h, x i + h β n,j m j ) x i+1 = x i + h m 1 = f(t i, x i ) n w j m j. j=1 j=1 m 2 = f(t i + α 2 h, x i + hβ 2,1 m 1 ) m 3 = f(t i + α 3 h, x i + hβ 3,1 m 1 + hβ 3,2 m 2 ) x i+1 = x i + h(w 1 m 1 + w 2 m 2 + w 3 m 3 ). M. Jurak 31. svibnja 2006.

10 10 Obične diferencijalne jednadžbe U skladu s našim osnovnim primjerom (n = 2) priodno je očekivati da se koeficijenti Runge-Kutta metode n-tog reda mogu odabrati tako da LGD bude reda O(h n+1 ). Dapače, za svako n očekujemo da postoji čitava familija takvih metoda. Zadatak. Pokažite da Runge-Kutta metoda trećeg reda ima lokalnu grešku diskretizacije reda O(h 4 ) ako njezini koeficijenti zadovoljavaju sljedeće uvjete: w 1 + w 2 + w 3 = 1 w 2 α 2 + w 3 α 3 = 1 2 w 2 α w 3α 2 3 = 1 3 w 2 β 2,1 + w 3 (β 3,1 + β 3,2 ) = 1 2 w 2 α 2 β 2,1 + w 3 α 3 (β 3,1 + β 3,2 ) = 1 3 w 2 β 2 2,1 + w 3 (β 3,1 + β 3,2 ) 2 = 1 3 w 3 α 2 β 3,2 = 1 6, w 3β 2,1 β 3,2 = 1 6. Uvjerite se da je skup rješenja tog sustava neprazan. Najčešće primijenjivana Runge-Kutta metoda je tzv. klasična Runge-Kutta metoda: m 1 = f(t i, x i ) m 2 = f(t i h, x i hm 1) m 3 = f(t i h, x i hm 2) m 4 = f(t i + h, x i + hm 3 ) x i+1 = x i + h 6 (m 1 + 2m 2 + 2m 3 + m 4 ). Osnovna prednost metoda višeg reda je u tome što dozvoljavaju upotrebu većeg koraka h prilikom računanja rješenja. Na taj se način izbjegavaju greške zaokruživnja. S druge strane, u praksi se pokazuje da su metode višeg reda (posebno metoda četvrtog reda) numerički efikasnije. Na primjer, iako za RK4 metodu treba 4 računanja funkcije u svakom koraku, dok Eulerova metoda treba samo jedno, RK4 metoda će za istu točnost trebati daleko manji broj koraka. Zadatak. Modificiranom Eulerovom, midpoint i klasičnom Runge-Kutta metodom izračunati rješenje zadaće: ẋ(t) = 5(t 1)x(t) x(0) = 5. Radna verzija

11 1.4 Jednokoračne metode 11 Izračunajte točno rješnje. Za svaku pojedinu metodu eksperimentalno prona dite broj koraka potreban da se u t = 1 postigne točnost od Zadatak. Klasičnom Runge-Kutta metodom riješiti problem gibanja harmonijskog oscilaora u polju sile teže: mẍ + kx = 0 mÿ + ky = mg x(0) = x 0, y(0) = y 0, ẋ(0) = 0, ẏ(0) = 0. Prikažite grafički stazu materijalne točke za neki izbor parametara. 1.4 Jednokoračne metode Promatramo Cauchijevu zadaću ẋ(t) = f(t, x(t)) (1.15) x(0) = x 0, (1.16) gdje je f : [0, T] R R neprekidna funkcija, Lipschitzova po drugoj varijabli, s konstantom lipšicovosti L. Sve do sada uvedene numeričke metode su jednokoračne u smislu da za računanje vrijednosti x i+1 koriste samo prethodnu vrijednost x i. Sve se takve metode mogu prikazati u obliku x i+1 = x i + hφ(t i, x i ; h). (1.17) Pri tome zahtijevamo da je neprekidna funkcija za neki h > 0. Φ: [0, T] R [0, h ] R Definicija 1.1 Kažemo da je metoda (1.17) konzistentna s jednadžbom (1.15) ako za svako rješenje x = x(t) jednadžbe (1.15) vrijedi gdje je T = Nh. Uočimo da je izraz x(t i+1 ) x(t i ) hφ(t i, x(t i ); h) = 0, N 1 lim h 0 i=0 lokalna greška diskretizacije u točki x i. M. Jurak 31. svibnja ε i = x(t i+1 ) x(t i ) hφ(t i, x(t i ); h),

12 12 Obične diferencijalne jednadžbe Definicija 1.2 Za metodu (1.17) kažemo da je stabilna ako postoji konstanta M, neovisna o h, takva da za svaka dva niza x i i y i, i = 0, 1,..., N, koji zadovoljavaju vrijedi x i+1 = x i + hφ(t i, x i ; h), y i+1 = y i + hφ(t i, y i ; h) + ε i, max x i y i M 0 i N [ x 0 y 0 + N 1 Stabilnost implicira da male promjene podataka povlače male promjene rješenja. Definicija 1.3 Kažemo da je metoda (1.17) konvergentna ukoliko lim max x(t i) x i = 0, h 0 0 i N gdje je x = x(t) rješenje zadaće (1.15)-(1.16), a x i je dano metodom (1.17), uz početni uvjet x 0 i T = Nh. Teorem 1.4 Ako je metoda (1.17) stabilna i konzistentna, onda je ona i konvergentna. Dokaz. Uočimo da y i = x(t i ) zadovoljava jednadžbu gdje je i=0 y i+1 = y i + hφ(t i, y i ; h) + ε i, ε i ε i = x(t i+1 ) x(t i ) hφ(t i, x(t i ); h), lokalna greška diskretizacije u točki x i. Zbog istog početnog uvjeta, stabilnost nam daje N 1 max x i x(t i ) M ε i, 0 i N a desna strana teži u nulu po pretpostavci konzistentnosti. Lema 1.4 Nužan i dovoljan uvjet da bi metoda (1.17) bila konzistentan je i=0 ]. t [0, T], x R, Φ(t, x; 0) = f(t, x). Dokaz. Lokalnu grešku diskretizacije ε i = x(t i+1 ) x(t i ) hφ(t i, x(t i ); h), možemo zapisati pomoću Lagrangeovog teorema srednje vrijednosti u obliku ε i = h[f(c i, x(c i )) Φ(t i, x(t i ); h)], Radna verzija

13 1.4 Jednokoračne metode 13 gdje je c i (t i, t i+1 ) neka točka. Nadalje, možemo pisati ε i = α i + hβ i, gdje je α i = h[f(c i, x(c i )) Φ(c i, x(c i ); 0)], Zbog uniformne neprekidnosti funkcije ona je Riemann integrabilna, pa imamo S druge strane je N 1 lim h 0 i=0 β i = Φ(c i, x(c i ); 0) Φ(t i, x(t i ); h). t f(t, x(t)) Φ(t, x(t); 0), α i = T 0 f(t, x(t)) Φ(t, x(t); 0) dt. β i β(h) = max Φ(t, x(t); 0) Φ(t, x(t ); h ). t t h 0 h h Po pretpostavci je funkcija Φ neprekidna na kompaktu [0, T] [a, b] [0, h ] (za svako a < b) i ako je x(t) uniformno neprekidna na [0, T], dobivamo Time dobivamo Stoga je N 1 i=0 N 1 lim h 0 i=0 lim β(h) = 0. h 0 N 1 h β i Tβ(h) lim h 0 ε i = T 0 i=0 h β i = 0. f(t, x(t)) Φ(t, x(t); 0) dt. (1.18) Ako je metoda konzistentna, onda na svakom rješenju x(t) jednadžbe ẋ(t) = f(t, x(t)) vrijedi t [0, T], f(t, x(t)) = Φ(t, x(t); 0). Koristeći teorem jedinstvenosti i egzistencije rješenja, zaključujemo da je f(t, x) = Φ(t, x; 0) za svako t [0, T] i x R. Obrat je evidentan iz formule (1.18). M. Jurak 31. svibnja 2006.

14 14 Obične diferencijalne jednadžbe Lema 1.5 Jedan dovoljan uvjet stabilnosti metode (1.17) je da postoji konstanta Λ takva da je t [0, T], x, y R, h [0, h ], Φ(t, x; h) Φ(t, y; h) Λ x y ; Tada je M = e ΛT. Dokaz. U oznakama iz definicije stabilnosti, koristeći lipšicovost, dobivamo Koristeći Lemu 1.3 dobivamo x i+1 y i+1 (1 + hλ) x i y i + ε i. n 1 x n y n e nhλ x 0 y 0 + e (n i 1)hΛ ε i i=0 n 1 e ΛT ( x 0 y 0 + ε i ). Iz dobivenoga možemo dobiti ocjenu greške posve analognu onoj kod Eulerove metode. Uvedemo li oznaku za maksimalnu lokalnu grešku diskretizacije onda dobivamo i=0 ε(h) = max 0 i<n ε i, n 1 x n x(t n ) e nhλ x 0 x(t 0 ) + e (n i 1)hΛ ε i i=0 n 1 e ΛT x 0 x(t 0 ) + ε(h) i=0 e (n i 1)hΛ = e ΛT x 0 x(t 0 ) + ε(h) enhλ 1 e hλ 1 e ΛT x 0 x(t 0 ) + ε(h) enhλ 1 hλ gdje smo iskoristili nejednakost e x 1 + x, (x R). Time smo dobili max x n x(t n ) e ΛT x 0 x(0) + ε(h) 0 n N hλ (eλt 1). Ova ocjena greška kaže da za sve jednokoračne metode vrijedi pravilo: ako je LGD reda n + 1, onda je točnost metode reda n. Radna verzija

15 1.5 Višekoračne metode Višekoračne metode Želimo li točnije diskretizirati vremensku derivaciju u jedadžbi ẋ = f(t, x) možemo se poslužiti centralnom diferencijom ẋ(t i ) (x i+1 x i 1 )/2h. Time dolazimo do sljedće metode: x i+1 = x i 1 + 2hf(t i, x i ). Osnovna razlika prema prethodnim metodama je u tome što je ova metoda višekoračna: za računanje vrijednosti x i+1 potrebni su nam x i i x i 1. Lokalna greška diskretizacije se lako dobiva na osnovu Taylorovog razvoja: x(t i+1 ) [x i 1 + 2hf(t i, x i )] = [x(t i ) + hẋ(t i ) + h2 2 ẍ(t i) + h x(τ i )] [x(t i ) hẋ(t i ) + h2 2 ẍ(t i) h3... x(τ i+1 )] 2hf(t i, x i ) 6 = 2hẋ(t i ) + h3 6 [... x(τ i ) +... x(τ i+1 )] = h3... x(τ i+2 ), 3 gdje su τ i, τ i+1 i τ i+2 neke točke iz intervala (t i 1, t i+1 ). Vidimo dakle da je loklna greška diskretizacije reda O(h 3 ). Sustavniji način izvo denja višekoračnih metoda oslanja se na integralnu formulaciju problema. Diferencijalna jednadžba se integrira na intervalu (t i, t i+1 ): x(t i+1 ) = x(t i ) + ti+1 t i ẋ(τ) dτ. Provucimo Lagrangeov interpolacijski polinom kroz točke (t i 1, ẋ(t i 1 )) i (t i, ẋ(t i )), te ekstrapolirajmo tu vrijednost na interval (t i, t i+1 ). Dobivamo: p 2 (t) = t i t h ẋ(t i 1) + t t i 1 ẋ(t i ) h i tu ćemo vrijednost koristiti kao aproksimaciju za ẋ(t) na intervali (t i, t i+1 ); stoga je x(t i+1 ) x(t i ) + = x(t i ) + 1 h = x(t i ) 1 h ti+1 t i ti+1 t i h 0 p 2 (τ) dτ (t i τ) dτ ẋ(t i 1 ) + 1 h u du ẋ(t i 1 ) + 1 h = x(t i ) h 2ẋ(t i 1) + 3h 2 ẋ(t i). 2h h ti+1 t i (τ t i 1 ) dτ ẋ(t i ) u du ẋ(t i ) M. Jurak 31. svibnja 2006.

16 16 Obične diferencijalne jednadžbe Time dolazimo do Adams-Bashforthove metode x i+1 = x i + h 2 [3f(t i, x i ) f(t i 1, x i 1 )]. (1.19) Prednost ovakve metode prema odgovarajućoj Runge-Kutta metodi je u tome što ona treba samo jedno računanje funkcije po koraku. Naime, jednu funkcijsku vrijednost možemo iskoristiti iz prethodnog koraka. Prirodniji postupak bi bio interpolirati ẋ na intervalu (t i, t i+1 ). Opisani postupak vodi na aproksimaciju što vodi na Adams-Moultonovu metodu x(t i+1 ) x(t i ) + h 2 [ẋ(t i+1) + ẋ(t i )]. x i+1 = x i + h 2 [f(t i, x i ) + f(t i+1, x i+1 )]. (1.20) Zadatak. Pokažite da su lokalne greške diskretizacije za Adams-Bashfortovu i Adams-Moultonovu metodu dane formulama: x i+1 = x i + h 2 [3f(t i, x i ) f(t i 1, x i 1 )] x(τ i )h 3, 12 x i+1 = x i + h 2 [f(t i, x i ) + f(t i+1, x i+1 )] x(τ i )h Adams-Moultonova metoda je implicitna. To znači da u svako koraku moramo rješavati nelinarnu jednadžbu kako bismo došli do aproksimacije na sljedećem vremenskom sloju. S tim u vezi javlja se pitanje da li jednadžba ima rješenje. Odgovor je pozitivan za dovoljno male vrijednosti koraka h. Da bismo to pokazali uočimo da u svakom koraku Adams-Moultonove metode rješavamo problem fiksne točke Φ(x) = x, gdje je Kako je Φ(x) = x i + h 2 [f(t i, x i ) + f(t i+1, x)]. Φ(x) Φ(y) = h 2 f(t i+1, x) f(t i+1, y) h L x y, 2 gdje je L konstanta lipšicovosti funkcije f, vidimo da je Φ kontrakcija za hl/2 < 1, i stoga problem ima jedinstveno rješenje. U praksi se za rješavanje nelinearne jednadžbe u svakoj iteracji najčešće koristi Newtonova metoda. Razlog je taj što za male h iz prethodne iteracije već imamo dobru početnu iteraciju za Newtonov algoritam. Najčešće su zatim dovoljne dvije do tri Newtonove iteracije. Radna verzija

17 1.5 Višekoračne metode 17 Da bismo primijenili Newtonovu metodu napišimo Adams-Moultonovu metodu u obliku G(x i+1 ) = x i+1 x i h 2 [f(t i, x i ) + f(t i+1, x i+1 )] = 0. Stoga Newtonove iteracije glase x (n+1) i+1 = x (n) G (x) = 1 h 2 i+1 G(x(n) i+1 ) f x (t i+1, x). n = 0, 1, 2,... G (x (n) ), i+1 Za početnu iteraciju možemo uzeti x (0) i+1 = x i, ili x (0) i+1 = x i + hf(t i, x i ). Iteracije se zaustavljau kad je x (n+1) i+1 x (n) i+1 < ε i/ili G(x(n+1) i+1 ) < ε, gdje je ε zadana tolerancija. Zadnja iteracija se uzima za x i+1. Jedan način da se izbjegne rješavanje nelinearne jednadžbe je da se formira metoda tipa prediktor-korektor. To se čini tako da se spoje dvije metode istog reda točnosti: jedna implicitna i jedna eksplicitna. Eksplicitna metoda se koristi kao prediktor - ona računa me duvrijednost koja ulazi u implicitnu metodu, koja funkcionira kao korektor. Na primjer, Adams-Bashfortovu i Adams-Moultonovu metodu možemo povezati u jednu prediktor-korektor metodu na sljedeći način: x p i+1 = x i + h 2 [3f(t i, x i ) f(t i 1, x i 1 )] x i+1 = x i + h 2 [f(t i, x i ) + f(t i+1, x p i+1 )] Koristeći u implicitnoj metodi vrijednost x p i+1, koju je izračunala prediktor metoda, izbjegavamo rješavanje nelinearne jednadžbe. Zadatak. Izračunajte lokalnu grešku diskretizacije Adamsove pediktor-korektor metode. Pokažite da je ona ostala reda O(h 3 ). Napomena. Modificirana Eulerova metoda može se interpretirati kao metoda tipa prediktor-korektor. Metoda ima oblik što se može zapisati u obliku x i+1 = x i + h 2 [f(t i, x i ) + f(t i + h, x i + hf(t i, x i ))], x p i+1 = x i + hf(t i, x i ) x i+1 = x i + h 2 [f(t i, x i ) + f(t i+1, x p i+1 )] M. Jurak 31. svibnja 2006.

18 18 Obične diferencijalne jednadžbe Prediktor je, dakle, Eulerova metoda, a korektor Adams-Moultonov metoda. Adamsove metode (Adams-Bashfortova i Adams-Moultonova) mogu se poopćiti do metoda proizvoljno visokog reda. Potrebno je samo povećati broj točaka u kojima se interpolira derivacije ẋ. Adams-Bashfortova metoda s n točaka dobiva se tako da se ẋ aproksimira Lagrangeovim interpolacijskim polinomom p n 1, (n 1)-og stupnja, kroz točke Zatim se koristi aproksimacija (t i n+1, ẋ(t i n+1 )),...,(t i 1, ẋ(t i 1 )), (t i, ẋ(t i )). x(t i+1 ) x(t i ) + ti+1 t i p n 1 (τ) dτ, i ẋ(t j ) se zamijeni s f(t j, x j ). Evidentno, takvim postupkom dobivamo eksplicitnu metodu. Adams-Moultonova metoda s n točaka dobiva se tako da se ẋ aproksimira Lagrangeovim interpolacijskim polinomom (n 1)-og stupnja p n 1, kroz točke i zatim se koristi aproksimacija (t i n+2, ẋ(t i n+2 )),...,(t i, ẋ(t i )), (t i+1, ẋ(t i+1 )). x(t i+1 ) x(t i ) + ti+1 t i p n 1 (τ) dτ. Time se dobiva implicitna metoda. Zadatak. Izvedite sljedeće dvije Adamsove metode s 4 točke: x i+1 = x i + h 24 [55f(t i, x i ) 59f(t i 1, x i 1 ) + 37f(t i 2, x i 2 ) 9f(t i 3, x i 3 )], x i+1 = x i + h 24 [9f(t i+1, x i+1 ) + 19f(t i, x i ) 5f(t i 1, x i 1 ) + f(t i 2, x i 2 )]. Pokažite da metode respektivno imaju greške diskretizacije x(5) (τ i )h 5, x(5) (τ i )h 5. Pomoću Adamsovih metoda 4. reda možemo konstruirati prediktor-korektor metodu 4. reda. Ona pred klasičnom Runge-Kutta metodom ima tu prednost da treba samo dva računanja funkcije po iteraciji: x p i+1 = x i + h 24 [55f(t i, x i ) 59f(t i 1, x i 1 ) + 37f(t i 2, x i 2 ) 9f(t i 3, x i 3 )], x i+1 = x i + h 24 [9f(t i+1, x p i+1 ) + 19f(t i, x i ) 5f(t i 1, x i 1 ) + f(t i 2, x i 2 )]. Zadatak. Usporedite točnost klasične Runge-Kutta metode i Adamsove prediktorkorektor metode 4. reda na test-primjeru. Pokažite da je Runge-Kutta metoda preciznija. Radna verzija

19 1.6 Metode varijabilnog koraka Metode varijabilnog koraka Metode varijabilnog koraka dinamički mijenjaju korak h kako bi držale grešku metode ispod zadane tolerancije ε. Metode tog tipa moraju na neki način procijeniti grešku metode. Kao osnovu metode varijabilnog koraka koristit ćemo jednu Runge-Kutta metodu reda n. Greška takve metode je oblika Ch n, gdje je C neka konstanta koja ovisi o egzaktnom rješenju, pa nam je stoga nepoznata. Postavimo se u situaciju kada imamo aproksimaciju x t točnog rješenja x(t) u trenutku t. Ta je vrijednost izračunata s vremenskim korakom kojeg ćemo označiti s h 0. Koristeći odabranu Runge-Kutta metodu računamo dvije apoksimacije x (1) t+h 0 i x (2) t+h 0 točne vrijednosti x(t + h 0 ): x (1) t+h 0 računamo s korakom h 0, a x (2) t+h 0 s korakom h 0 /2. Drugim riječima, prvu aproksimaciju računamo s jednim korakom Runge-Kutta metode, a drugu s dva. Nakon toga računamo veličinu E = x (1) t+h 0 x (2) t+h 0, koja nam služi za procjenu greške. Na osnovu naše pretpostavke da je greška Runge-Kutta metode oblika Ch n, gdje je C približno konstanta, možemo procijeniti C: E = x (1) t+h 0 x (2) t+h 0 = (x (1) t+h 0 x(t t+h0 )) (x (2) t+h 0 x(t t+h0 )) ( ) n Ch n 0 C h0 = (1 2 n )Ch n 0 2. Imamo prema tome E C. (1 2 n )h n 0 Mi bismo htjeli da je Ch n 0 < ε. Ukoliko je taj uvjet ispunjen smatramo da je korak h 0 dovoljno mali i uzimamo točniju vrijednost x (2) t+h 0 kao aproksimaciju u trenutku t+h 0. Ukoliko je Ch n 0 ε, onda trebamo smanjiti korak h 0 kako bismo postigli traženu točnost. Novi korak h ε mora biti takav da je ε Ch n ε. Uočimo da mi ne želimo prevelik, ali niti premalen korak. Stoga novi korak računamo iz E ε h n (1 2 n )h n ε, 0 što daje [ ] (1 2 n 1/n )ε h ε = h 0. E Naš postupak će biti sljedeći: U svakom slučaju računamo optimalni korak h ε. M. Jurak 31. svibnja 2006.

20 20 Obične diferencijalne jednadžbe Ako je E/(1 2 n ) < ε prihvaćamo aproksimaciju x (2) t+h 0 i za korak h 0 na sljedećem vremenskom sloju koristimo h ε. Ako je E/(1 2 n ) ε ponavljamo račun s novim korakom h 0 = h ε. Uočimo da se uzimanjem h ε za novi korak u slučaju kad je aproksimacija zadovoljavajuća osiguravamo od premalenog koraka. U tom slučaju je h ε > h 0. Prelazimo na kostrukciju algoritma. Uočimo da metoda smanjuje korak ako je to potrebno pa stoga treba staviti neku minimalnu vrijednost koraka h min ispod koje ne želimo smanjivati korak. Pretjerano smanjivanje koraka može biti znak približavanja kraju domene egzistencije rješenja. Algoritam 1 daje rješenje kroz polja t i x koja sadrže niz vremenskih trenutaka (t) i niz aproksimacija rješenja u tim trenucima (x). Uzet ćemo jednostavan pristup u kojem se ta polja dimenzioniraju izvan rutine. Rutina će se zaustaviti ako su polja suvuše mala. U Algoritmu 1 koristimo rutinu RK(n, t0, x0, t, x) koja računa Runge-Kutta aproksimaciju x rješenja x(t), uz početni uvjet x(t0) = x0, u n koraka. Za n ćemo uzimati 1 ili 2. Rutine RK() poziva funkciju f(t, x) koja mora biti kodirana kao potprogram. Zadatak. Programirati Algoritam 1 i testirati ga na donjim primjerima. Zadajete si T > t 0 te ε > 0 i provjerite da li algoritam postiže zadanu točnost. Eksperimentalno odredite korak h potreban da metoda s fiksnim korakom postigne istu točnost u krajnjem trenutku. Odredite broj poziva funkcije f u oba slučaja. Test primjeri. 1. Aproksimirati x(1.25) za ẋ = 5(t 1)x, x(0) = 5. Rješenje: 2. Aproksimirati x(1.5) za x(t) = 5e (5/2)t2 5t. ẋ = 1 + x 2, x(0) = 0. Rješenje: 3. Aproksimirati x(30) za Rješenje: x(t) = tanx. ẋ = cos πt x, x(0) = x(t) = cos(πt/12) + (π/12) sin(πt/12) + [ 1 ] 50 e t. 1 + (π/12) (π/12) 2 Radna verzija

21 1.6 Metode varijabilnog koraka Aproksimirati x 1 (3), x 2 (3) i x 3 (3) za ẋ 1 = 2x 1 x 2 + e 3t, x 1 (0) = 1 ẋ 2 = 2x 1 x 2 + x 3, x 2 (0) = 0 ẋ 3 = 2x 2 2x 3 2e 3t, x 3 (0) = 0. Rješenje: x 1 (t) = 2e t + (4 + 2t)e 2t e 3t x 2 (t) = 2e t 2e 2t x 3 (t) = 4e t (6 + 4t)e 2t + 2e 3t. 5. Aproksimirati x 1 (20) i x 2 (20) za ẍ 1 = 2x x 2, x 1 (0) = 0, ẋ 1 (0) = 0 ẍ 2 = 2x 1 2x cos(2t), x 2 (0) = 0, ẋ 2 (0) = 0 Rješenje: x 1 (t) = 5 3 cos(2t) cost 5 2 cos( 3t) x 2 (t) = 20 3 cos(2t) cost + 5 cos( 3t). Efikasnost metode varijabilnog koraka može se povećati ako se umjesto jedne Runge-Kutta metode upotrijebe dvije takve metode različitog reda. Uzmimo, na primjer, da imamo jednu RK metodu reda n i jednu reda n + 1. Polazimo od vrijednosti x t koja predstavlja aproksimaciju za x(t) i od koraka h 0. Računamo aproksimaciju rješenja u trenutku t + h 0 pomoću obje metode: prva daje vrijednost x 1 t+h 0, s greškom proporcionalnom s h n, a druga vrijednost x 2 t+h 0, s greškom proporcionalnom s h n+1. Za dovoljno malo h 0 imamo približno E = x 1 t+h 0 x 2 t+h 0 = (x 1 t+h 0 x(t + h 0 )) (x 2 t+h 0 x(t + h 0 )) C 1 h n 0 C 2h n+1 0 C 1 h n 0. Time smo dobili procjenu za konstantu C 1 : C 1 E. h n 0 Naša je želja raditi s optimalnim korakom h ε, za zadanu toleranciju ε. Takav korak treba zadovoljavati C 1 h n ε ε, M. Jurak 31. svibnja 2006.

22 22 Obične diferencijalne jednadžbe Algoritam 1 krk metoda varijabilnog koraka Ulaz: t 0, x 0, početni podaci x(t 0 ) = x 0 ; Krajnje vrijeme T; Tolerancija ε; Minimalni korak h min > 0; N dimenzija polja t i x; Polja t i x; t0=t 0, t1=t, x0=x 0, k = 0, x(0)=x0, t(0)=t0, h0=t1-t0, flag=false repeat repeat RK(1,t0,x0,t1,x1), RK(2,t0,x0,t1,x2) E = x1 x2 if (E < ε) then t0=t1, x0=x2, flag=true if k N 1 then Izlaz: x, t. Dimenzija polja je suviše mala. end if k = k + 1 t(k) =t0, x(k)=x0 end if {Računanje novog koraka} if E > 0 then h0=h0 n (1 2 n )ε/e if (flag = FALSE & h0< h min ) then Izlaz: x, t. Korak je suviše mali. end if t1=t0+h0 if t1> T then h0=t-t0, t1=t end if else h0=t-t0, t1=t end if until (flag = TRUE) until (t0 T) Izlaz: Polja t i x sadrže aproksimativno rješenje. Radna verzija

23 1.6 Metode varijabilnog koraka 23 pa stoga za optimalni korak dobivamo procjenu h ε n ε E h 0. Mi ćemo uzimati h ε = σ n ε E h 0, 0 < σ 1, gdje je σ 0.9. Metoda kontrole koraka je ista kao i ranije. Ukoliko je E < ε, prihvaćamo aproksimaciju izračunatu s korakom h 0 ; pri tome uzimamo točniju aproksimaciju x 2 t+h 0. Aproksimaciju na sljedećem vremenskom sloju računamo s korakom h 0 = h ε. Ako je E ε onda odbacujemo izračunatu aproksimaciju i ponavljamo postupak s h 0 = h ε. Uočimo da je u tom slučaju h ε manji od prethodnog h 0. Pogledajmo sada kako ovakav postupak omogućava optimizaciju broja računskih operacija po koraku metode. Pri tome ćemo kao značajnu operaciju uzimati samo poziv funkcije f. Uzmimo jednu metodu drugog reda i jednu trećeg reda. Metoda 2. reda: m 1 = f(t i, x i ) m 2 = f(t i + α (1) 2 h, x i + hβ (1) 2,1 m 1) x i+1 = x i + h(w (1) 1 m 1 + w (1) 2 m 2). Metoda 3. reda: m 1 = f(t i, x i ) m 2 = f(t i + α (2) 2 h, x i + hβ (2) 2,1m 1 ) m 3 = f(t i + α (2) 3 h, x i + hβ (2) 3,1m 1 + hβ (2) 3,2m 2 ) x i+1 = x i + h(w (2) 1 m 1 + w (2) 2 m 2 + w (2) 3 m 3). Ovdje smo te metode zapisali u općenitoj formi. Da bismo imali korektan red metode koeficijenti moraju zadovoljavati: w (1) 1 + w (1) 2 = 1, w (1) 2 α (1) 2 = 1 2, w(1) 2 β (1) 2,1 = 1 2. M. Jurak 31. svibnja 2006.

24 24 Obične diferencijalne jednadžbe za metodu drugog reda i w (2) 1 + w (2) 2 + w (2) 3 = 1 w (2) 2 α (2) 2 + w (2) 3 α (2) 3 = 1 2 w (2) 2 (α (2) 2 ) 2 + w 3 (α (2) 3 ) 2 = 1 3 w (2) 2 β (2) 2,1 + w (2) 3 (β (2) 3,1 + β (2) 3,2) = 1 2 w (2) 2 α(2) 2 β(2) 2,1 + w(2) 3 α(2) 3 (β(2) 3,1 + β(2) 3,2 ) = 1 3 w (2) 2 (β(2) 2,1 )2 + w 3 (β (2) 3,1 + β(2) 3,2 )2 = 1 3 w (2) 3 α(2) 2 β(2) 3,2 = 1 6, w(2) 3 β(2) 2,1 β(2) 3,2 = 1 6. za metodu trećeg reda. Usporedimo li metodu drugog i trećeg reda vidimo da se vrijednost m 1 treba računati najviše jednom. Najviše što možemo postići je da se i m 2 računa samo jednom. To nas vodi do dodatnog uvjeta Zadatak. Krenite od modificirane Eulerove metode α (1) 2 = α (2) 2, β (1) 2,1 = β (2) 2,1. (1.21) m 1 = f(t i, x i ) m 2 = f(t i + h, x i + hm 1 ) x i+1 = x i + h 2 (m 1 + m 2 ). ( α (1) 2 = β (1) 2,1 = 1 i w(1) 1 = w (1) 2 = 1/2.) Uvjeti (1.21) koje treba zadovoljiti su sada Pokažite da metoda m 1 = f(t i, x i ) α (2) 2 = 1, β (2) 2,1 = 1. m 2 = f(t i + h, x i + hm 1 ) m 3 = f(t i + h/2, x i + (h/4)m 1 + (h/4)m 2 ) x i+1 = x i + h 6 (m 1 + m 2 + 4m 3 ). zadovoljava traženi uvjet kao i sve uvjete kompatibilnosti koeficijenata za metodu trećeg reda. Radna verzija

25 1.6 Metode varijabilnog koraka 25 Ocjenu greške za ovaj par metoda možemo računati na sljedeći način (t = t i pa je x t = x i ): E = x 1 t+h x2 t+h = (x t + h 2 (m 1 + m 2 )) (x t + h 6 (m 1 + m 2 + 4m 3 )) = h 3 2m 3 m 1 m 2. Vidimo da x 1 t+h 0 uopće ne trebamo računati. Time smo došli do metode koja se naziva Runge-Kutta-Felbergova (2)3 metoda. Ona može biti zapisana na sljedeći način: m 1 = f(t, x t ) m 2 = f(t + h, x t + hm 1 ) m 3 = f(t + h/2, x t + (h/4)m 1 + (h/4)m 2 ) E = h 3 2m 3 m 1 m 2 x t+h = x t + h 6 (m 1 + m 2 + 4m 3 ). Iz izvoda Runge-Kutta-Felbergova (2)3 metode je jasno da se upotrebom metoda višeg reda mogu postići veće uštede. Ovdje, bez izvoda, dajemo primjer Runge-Kutta-Felbergove (4)5 metode. m 1 = f(t, x t ) m 2 = f(t h, x t hm 1) m 3 = f(t h, x t hm hm 2) m 4 = f(t h, x t hm hm hm 3) m 5 = f(t + h, x t hm hm hm hm 4) m 6 = f(t h, x t hm hm hm hm hm 5) E = h m m m m m 6 x t+h = x t + h( m m m m m 6). Implementacija Runge-Kutta-Felbergove (4)5 metode dana je u Algoritmu 2. Zadatak.Testirajte Algoritam 2 i usporedite ga s Algoritmom 1. M. Jurak 31. svibnja 2006.

26 26 Obične diferencijalne jednadžbe Algoritam 2 krkf 4(5) metoda Ulaz: t 0, x 0, početni podaci x(t 0 ) = x 0 ; Krajnje vrijeme T; Tolerancija ε; Minimalni korak h min > 0; N dimenzija polja t i x; Polja t i x; t0=t 0, t1=t, x0=x 0, k = 0, x(0)=x0, t(0)=t0, h0=t1-t0, flag=false repeat repeat RK(1,t0,x0,t1,x1), RK(2,t0,x0,t1,x2) E = x1 x2 if (E < ε) then t0=t1, x0=x2, flag=true if k N 1 then Izlaz: x, t. Dimenzija polja je suviše mala. end if k = k + 1 t(k) =t0, x(k)=x0 end if {Računanje novog koraka} if E > 0 then h0=h0 n (1 2 n )ε/e if (flag = FALSE & h0< h min ) then Izlaz: x, t. Korak je suviše mali. end if t1=t0+h0 if t1> T then h0=t-t0, t1=t end if else h0=t-t0, t1=t end if until (flag = TRUE) until (t0 T) Izlaz: Polja t i x sadrže aproksimativno rješenje. Radna verzija

27 1.7 O stabilnosti. Kruti sustavi O stabilnosti. Kruti sustavi Matematička zadaća je dobro postavljena (ili korektna) ukoliko ima jedno i samo jedno rješenje, koje neprekidno ovisi o ulaznim podacima. Na primjer, u uvjetima Cauchy-Lipschitzovog teorema, Cauchyjeva zadaća za običnu diferencijalnu jednadžbu je dobro postavljena. Na diskretu zadaću primijenjuje se ista definicija korektnosti. Zadaća je korektna ako ima jedinstveno rješenje koje neprekidno ovisi o zadanim podacima. To znači da male promjene ulaznih podataka proizvode male promjene rješenja. U diskretnim zadaćama malost promjene rješenja se uvijek mjeri u odnosu na diskretizacijski parametar. Stoga korektna kontinuirana zadaća može postati nekorektna u fp-sustavu odre dene preiznosti. Uzmimo, na primjer, Cauchyjev problem ẋ(t) = 3x(t) 3t, t [0, 5] x(0) = 1/3. Točno rješenje je ẋ(t) = 1/3 + t. Budući da broj 1/3 nije moguće reprezentirati u računalu, stvarni početni uvjet u diskretnom problemu je x(0) = 1/3 + ε, gdje je ε greška reda veličine strojnog epsilona. Pripadno egzaktno rješenje je x 1 (t) = 1/3+εe 3t, a razlika izme du dva rješenja u trenutku t = 5 je εe 15 3ε10 6. Primijenimo li, dakle, bilo koju numeričku metodu u sustavu fp-brojeva čija je preciznost 10 6, nećemo moći postići zadovoljavajuću aproksimaciju u t = 5; problem je numerički nekorektan. S druge strane, u fp-sustavu s preciznošću dobivamo numerički korektan problem. 2 Pokazali smo da su jednokoračne metode, primijenjene na Cauchyjevu zadaću, stabilne. Konstanta koja se pojavljuje u ocjeni stabilnosti ovisi, izme du ostalog, o duljini vremenskog intervala na kojem se jednadžba integrira i o diskretizacijskom parametru h. Ukoliko je ta konstanta vrlo velika kažemo da je numerička zadaća slabo uvjetovana. U krajnjim slučajevima zadaća može postati numerički nekorektna. Pogledajmo, na primjer, Cauchyjevu zadaću ẋ(t) = 2tx(t), t [0, 15] (1.22) x(0) = 1. (1.23) Egzaktno rješenje je x(t) = e t2, koje vrlo brzo konvergira u nulu kada t. Primijenimo li Eulerovu metodu s korakom 0.2 na ovaj problem dobit ćemo zadovoljavajuće rješenje sve do trenutka t 10, kada se javljaju snažne oscilacije. Eulerova metoda je na ovom primjeru nestabilna. Nestabilnost se pojavila za velika vremena t pa možemo pretpostaviti da je konstanta u ocjeni stabilnosti, koja ovisi o krajnjem vremenu T, postala suviše 2 Ovo je ekstreman primjer u kojem se umjesto diskretizacijskog parametra pojavljuje preciznost fp-sustava kao faktor koji odre duje je li numerička zadaća korektna ili nije. M. Jurak 31. svibnja 2006.

28 28 Obične diferencijalne jednadžbe velika. Da bismo bolje razumjeli pojavu nestabilnosti, pogledajmo jednostavniju zadaću: ẋ(t) = λx(t), x(0) = x 0. Primjenom Eulerove metode dobivamo x 1 = x 0 + hλx 0 = (1 + λh)x 0 x 2 = (1 + λh)x 1 = (1 + λh) 2 x što daje x n = (1+λh) n x 0. Za λ < 0 rješenje x(t) = x 0 e λt teži u nulu kada t. Eulerova metoda će imati isto asimptotsko ponašanje ako je 1 + λh < 1. (1.24) Taj se uvjet svodi na 2 < λh < 0, odnosno dobivamo ograničenje na korak h: h < 2 λ. Na osnovu ovog primjera možemo bolje razumijeti nestabilnost Eulerove metode u prethodnom primjeru. U njemu λ nije konstantan već imamo λ = 2t. Primijenim li formalno uvjet stabilnosti (1.24) na problem (1.22), (1.23), dobivamo 2 < 2ht < 0. Uz h = 0.2 uvjet će biti narušen za t > 5. Možemo zaključiti da ova analiza daje kvalitativno dobro objašnjenje pojave nestabilnosti, pa ju stoga generaliziramo na diferencijalnu jednadžbu oblika ẋ(t) = f(t, x(t)). Pri tome moramo pretpostaviti da diferencijalna jednadžba ima jedno stacionarno rješenje i da druga rješenja, barem za bliske početne uvjete, konvergiraj k stacionarnom, kada t. Kriterij egzistencije stacionarnog rješenja je vrlo jednostavan: x(t) = x je stacionarno rješenje ako i samo ako je f(t, x) = 0, za sva vremena t. U ovoj diskusiji mi bez smanjenja općenitosti možemo uzeti da je x = 0, tj. f(t, 0) = 0. Jednadžbu ćemo najprije linearizirati tako da desnu stranu razvijemo u Taylorov red oko x = x = 0, f(t, x) = f(t, 0) + f x (t, 0)x + O(x2 ) = f x (t, 0)x + O(x2 ). Radna verzija

29 1.7 O stabilnosti. Kruti sustavi 29 Sada u slučaju da je f (t, 0) < 0 zaključujemo da će Eulerova metoda biti stabilna x ako je 2 < h f (t, 0) < 0. x Ovi primjeri nas navode na sljedeću definiciju. Definicija 1.4 Interval (a, b) nazivamo interval apsolutne stabilnosti numeričke metode ako za hλ (a, b) metoda daje aproksimaciju (x n ) problema sa svojstvom ẋ(t) = λx(t), x(0) = x 0. lim x n = 0. n Uočimo da mora vrijediti λ < 0, tako da je a, b < 0. Interval apsolutne stabilnosti za Eulerovu metodu je ( 2, 0). Zadatak. Odredite interval apsolutne stabilnosti za modificiranu Eulerovu metodu. x i+1 = x i + h 2 [f(t i, x i ) + f(t i + h, x i + hf(t i, x i ))]. Rješenje. Za f(t, x) = λx dobivamo Odavde slijedi uvjet x i+1 = x i + h 2 [λx i + λ(x i + hλx i )] = (1 + hλ + h2 λ 2 2 )x i. 1 + hλ + h2 λ 2 2 < 1, što nakon jednostavnog računa daje interval apsolutne stabilnosti ( 2, 0). Kod Runge-Kutta metoda općenito se dobiva jednadžba oblika x n = P(hλ) n x 0, gdje je P neki polinom. Uvjet apsolutne stabilnosti je tada P(hλ) < 1. Zadatak. Pokažite da je za klasičnu Runge-Kutta metodu P(hλ) = 1 + hλ (hλ) (hλ) (hλ)4, što daje interval apsolutne stabilnosti ( 2.78, 0), približno. Izračunajmo interval apsolutne stabilnosti implicitne Eulerove metode. Dobivamo rekurriju x i+1 = x i + hλx i+1, M. Jurak 31. svibnja 2006.

30 30 Obične diferencijalne jednadžbe što daje x i = 1 (1 hλ) ix 0. Vidimo da je metoda apsolutno stabilna za sve hλ < 0. Drugim riječima, interval apsolutne stabilnosti je (, 0). To je osnovna prednost implicitnih metoda: One ne postavljaju dodatna ograničenja na korak metode. Kod višekoračnih metoda uvjet apsolutne stabilnosti je složenije izračunati. Uzmimo kao primjer metodu x i+1 = x i 1 + 2hf(t i, x i ). Primijenjena na linearizirani problem, ona daje x i+1 = x i 1 + 2hλx i. Ovdje se radi o diferencijskoj jednadžbi drugog reda. Njena rješenja možemo tražiti u obliku x i = r i. Uvrštavanjem u jednadžbu i skraćivanjem dobivamo kvadratnu jednadžbu za r: r 2 = 1 + 2hλr, koja ima općenito dva rješenja r 1 i r 2. Opće rješenje diferencijske jednadžbe će biti oblika x i = C 1 r1 i + C 2r2 i, pa stoga za stabilnost moramo zahtjevati Jednostavno je izračunati r 1 < 1, r 2 < 1. r 1 = hλ + h 2 λ 2 + 1, r 2 = hλ h 2 λ 2 + 1, i vidjeti da za hλ < 0 ne možemo zadovoljiti r 2 < 1. Interval apsolutne stabilnosti je stoga prazan. Zadatak. Pokažite da je Adams-Moultonova metoda apsolutno stabilna. Metode tipa prediktor-korektor općenito ne zadržavaju svojstvo apsolutne stabilnosti svog implicitnog dijela. Stabilnost metoda za sustave običnih diferencijalnih jednadžbi definira se na sličan način. Neka je zadana konstantna matrica A reda N i Cauchyjev problem ẋ = Ax x(0) = x 0. Promatrat ćemo jednostavnu situaciju u kojoj matrica A ima N jednostrukih svojstvenih vrijednosti λ i i bazu svojstvenih vektora v i : σ(a) = {λ 1, λ 2,..., λ N }, Av i = λ i v i, i = 1, 2,..., N. Radna verzija

31 1.7 O stabilnosti. Kruti sustavi 31 Opće rješenje diferencijalne jednadžbe ima oblik x(t) = C 1 v 1 e λ 1t + + C N v N e λ Nt. Promatramo one sustave čija se rješenja stabiliziraju u nulu (koja je stacionarno rješenje), tj. uzimamo matricu A čije sve svojstvene vrijednosti imaju negativan realan dio. Primijenom Eulerove metode dobivamo: x i+1 = x i + hax i, i = 0, 1,.... (1.25) Rješenje diferencijske jednadžbe tražimo u obliku x i = r i v p (p = 1,...,N). Uvrštavanjem u (1.25) dobivamo r = 1 + hλ p, pa stoga opće rješenje ima oblik Uvjet apsolutne stabilnosti je tada x i = C 1 v 1 (1 + hλ 1 ) i + + C N v N (1 + hλ N ) i 1 + hλ p < 1, p = 1, 2,..., N. Odavde vidimo da je uvjet stabilnosti zadovoljen ako se korak h nalazi u presjeku N diskova. Taj je uvjet stoga teže zadovoljiti u slučaju sustava, nego u skalarnom slučaju. Primjer. Zapisano kao sustav ẍ + (b + 1)ẋ + bx = 0 x(0) = 1, ẋ(0) = 0, ẋ 1 = x 2, x 1 (0) = 1 ẋ 2 = bx 1 (b + 1)x 2, x 2 (0) = 0. Točno rješenje: Matrica sustava je x 1 (t) = b b 1 e t 1 b 1 e bt x 2 (t) = b b 1 e t + 1 b 1 e bt. [ ] 0 1 b (b + 1) a svojstvene vrijednosti su λ 1 = 1 i λ 2 = b. Uvjet stabilnosti se svodi na h < 2, hb < 2. M. Jurak 31. svibnja 2006.

32 32 Obične diferencijalne jednadžbe U slučaju kad je b velik, drugi uvjet postaje ograničavajući. U tom slučaju rješenje ima dvije komponente (e t i e bt ) koje se mijenjaju na dvije bitno različite vremenske skale. Za takav sustav kažemo da je krut. Kod krutih sustava potrebno je koristiti implicitne metode kako bi se izbjegli mali vremenski koraci. Ako se traži metoda višeg reda može se primijeniti Richardsonova aproksimacija. Radna verzija

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a. Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos . KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..

Διαβάστε περισσότερα

Iterativne metode - vježbe

Iterativne metode - vježbe Iterativne metode - vježbe 5. Numeričke metode za ODJ Zvonimir Bujanović Prirodoslovno-matematički fakultet - Matematički odjel 21. studenog 2010. Sadržaj 1 Eulerove metode (forward i backward). Trapezna

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

MJERA I INTEGRAL 2. kolokvij 30. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!)

MJERA I INTEGRAL 2. kolokvij 30. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) JMBAG IM I PZIM BOJ BODOVA MJA I INTGAL 2. kolokvij 30. lipnja 2017. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (ukupno 6 bodova) Neka je (, F, µ) prostor mjere i neka je (

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

Obične diferencijalne jednadžbe 2. reda

Obične diferencijalne jednadžbe 2. reda VJEŽBE IZ MATEMATIKE 2 Ivana Baranović Miroslav Jerković Lekcija 13 Obične diferencijalne jednadžbe 2. reda Obične diferencijalne jednadžbe 2. reda U ovoj lekciji vježbamo rješavanje jedne klase običnih

Διαβάστε περισσότερα

16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum

16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum 16 Lokalni ekstremi Važna primjena Taylorovog teorema odnosi se na analizu lokalnih ekstrema (minimuma odnosno maksimuma) relanih funkcija (više varijabli). Za n = 1 i f : a,b R ako funkcija ima lokalni

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Uvod u teoriju brojeva

Uvod u teoriju brojeva Uvod u teoriju brojeva 2. Kongruencije Borka Jadrijević Borka Jadrijević () UTB 2 1 / 25 2. Kongruencije Kongruencija - izjava o djeljivosti; Teoriju kongruencija uveo je C. F. Gauss 1801. De nicija (2.1)

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

1 / 79 MATEMATIČKA ANALIZA II REDOVI

1 / 79 MATEMATIČKA ANALIZA II REDOVI / 79 MATEMATIČKA ANALIZA II REDOVI 6.. Definicija reda Promatrajmo niz Definicija reda ( ) n 2 :, 2 2 3 2 4 2,... Postupno zbrajajmo elemente niza: = + 2 2 = 5 4 + 2 2 + 3 2 = 49 36 + 2 2 + 3 2 + 4 2 =

Διαβάστε περισσότερα

1 Obične diferencijalne jednadžbe

1 Obične diferencijalne jednadžbe 1 Obične diferencijalne jednadžbe 1.1 Linearne diferencijalne jednadžbe drugog reda s konstantnim koeficijentima Diferencijalne jednadžbe oblika y + ay + by = f(x), (1) gdje su a i b realni brojevi a f

Διαβάστε περισσότερα

6 Polinomi Funkcija p : R R zadana formulom

6 Polinomi Funkcija p : R R zadana formulom 6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s

Διαβάστε περισσότερα

DIFERENCIJALNE JEDNADŽBE

DIFERENCIJALNE JEDNADŽBE 9 Diferencijalne jednadžbe 6 DIFERENCIJALNE JEDNADŽBE U ovom poglavlju: Direktna integracija Separacija varijabli Linearna diferencijalna jednadžba Bernoullijeva diferencijalna jednadžba Diferencijalna

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Sustavi diferencijalnih jednadžbi

Sustavi diferencijalnih jednadžbi PMF-Matematički odsjek Sveučilište u Zagrebu Maja Starčević Sustavi diferencijalnih jednadžbi Skripta Zagreb, 2015. Predgovor Skripta je napisana prema predavanjima iz kolegija Sustavi diferencijalnih

Διαβάστε περισσότερα

Sortiranje prebrajanjem (Counting sort) i Radix Sort

Sortiranje prebrajanjem (Counting sort) i Radix Sort Sortiranje prebrajanjem (Counting sort) i Radix Sort 15. siječnja 2016. Ante Mijoč Uvod Teorem Ako je f(n) broj usporedbi u algoritmu za sortiranje temeljenom na usporedbama (eng. comparison-based sorting

Διαβάστε περισσότερα

4. poglavlje (korigirano) LIMESI FUNKCIJA

4. poglavlje (korigirano) LIMESI FUNKCIJA . Limesi funkcija (sa svim korekcijama) 69. poglavlje (korigirano) LIMESI FUNKCIJA U ovom poglavlju: Neodređeni oblik Neodređeni oblik Neodređeni oblik Kose asimptote Neka je a konačan realan broj ili

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

Linearna algebra I, zimski semestar 2007/2008

Linearna algebra I, zimski semestar 2007/2008 Linearna algebra I, zimski semestar 2007/2008 Predavanja: Nenad Bakić, Vježbe: Luka Grubišić i Maja Starčević 22. listopada 2007. 1 Prostor radijvektora i sustavi linearni jednadžbi Neka je E 3 trodimenzionalni

Διαβάστε περισσότερα

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Redovi funkcija. Redovi potencija. Franka Miriam Brückler

Redovi funkcija. Redovi potencija. Franka Miriam Brückler Franka Miriam Brückler Redovi funkcija 1 + (x 2) + 1 + x + x 2 + x 3 + x 4 +... = (x 2)2 2! + (x 2)3 3! + +... = sin(x) + sin(2x) + sin(3x) +... = x n, + + n=1 (x 2) n, n! sin(nx). Redovi funkcija 1 +

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

6. Nelinearne jednadžbe i sustavi

6. Nelinearne jednadžbe i sustavi 6. Nelinearne jednadžbe i sustavi 6.. Osnovne napomene Neka je I interval u R, f : I R neprekidna funkcija na I inekajedana jednadžba f(x) =0. (6.) Riješiti jednadžbu (6.) znači naći one x za koje vrijedi

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

Prikaz sustava u prostoru stanja

Prikaz sustava u prostoru stanja Prikaz sustava u prostoru stanja Prikaz sustava u prostoru stanja je jedan od načina prikaza matematičkog modela sustava (uz diferencijalnu jednadžbu, prijenosnu funkciju itd). Promatramo linearne sustave

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

1.3. Rješavanje nelinearnih jednadžbi

1.3. Rješavanje nelinearnih jednadžbi 1.3. Rješavanje nelinearnih jednadžbi Rješavanje nelinearnih jednadžbi sastoji se od dva bitna koraka: nalaženja intervala u kojem se nalazi nultočka (analizom toka), što je teži dio posla, nalaženja nultočke

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

Praktikum iz numeričkih metoda u statistici. Tina Bosner. Rješavanje nelinearnih sustava. Tina Bosner

Praktikum iz numeričkih metoda u statistici. Tina Bosner. Rješavanje nelinearnih sustava. Tina Bosner Praktikum iz Praktikum iz jednadžbi Tražimo riješenje sistema jednadžbi, tj. za dani F : R n R n želimo naći x R n takava da je F(x ) = 0. Pretpostavit ćemo da je F neprekidno diferencijabilna. Najčešće

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Dijagonalizacija operatora

Dijagonalizacija operatora Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Uvod Kako naći ortogonalne trajektorije. 1 Polje smjerova. 2 Eulerova metoda za rješavanje dif. jednadžbi prvog reda. 3 Ortogonalne trajektorije

Uvod Kako naći ortogonalne trajektorije. 1 Polje smjerova. 2 Eulerova metoda za rješavanje dif. jednadžbi prvog reda. 3 Ortogonalne trajektorije Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje 5 1 / 34 Sadržaj: Sadržaj 1 Polje smjerova 2 Eulerova metoda za rješavanje dif. jednadžbi prvog reda 3 Uvod Kako naći ortogonalne trajektorije

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj

( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj Zadaak (Ines, hoelijerska škola) Ako je g, izračunaj + 5 + Rješenje Korisimo osnovnu rigonomerijsku relaciju: + Znači svaki broj n možemo zapisai n n n ( + ) + + + + 5 + 5 5 + + + + + 7 + Zadano je g Tangens

Διαβάστε περισσότερα

Dužina luka i oskulatorna ravan

Dužina luka i oskulatorna ravan Dužina luka i oskulatorna ravan Diferencijalna geometrija Vježbe Rješenja predati na predavanjima, u srijedu 9. ožujka 16. god. Zadatak 1. Pokazati da je dužina luka invarijantna pod reparametrizacijom

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

Prediktor-korektor metodi

Prediktor-korektor metodi Prediktor-korektor metodi Prilikom numeričkog rešavanja primenom KP: x = fx,, x 0 = 0, x 0 x b LVM α j = h β j f n = 0, 1, 2,..., N, javlja se kompromis izmed u eksplicitnih metoda, koji su lakši za primenu

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

2.6 Nepravi integrali

2.6 Nepravi integrali 66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,

Διαβάστε περισσότερα

IZRAČUNAVANJE KONAČNIH SUMA METODIMA DIFERENTNOG RAČUNA

IZRAČUNAVANJE KONAČNIH SUMA METODIMA DIFERENTNOG RAČUNA IZRAČUNAVANJE KONAČNIH SUMA METODIMA DIFERENTNOG RAČUNA Izlaganje - Seminar za matematičare, Fojnica 2017.g. Prof. dr. MEHMED NURKANOVIĆ Prirodno-matematički fakultet Univerziteta u Tuzli 13.01.2015. godine

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

Matematika 4. pismeni ispiti. Sadržaj

Matematika 4. pismeni ispiti. Sadržaj Matematika 4 Sadržaj pismeni ispiti 23. lipnja, 2005.................................................. 2 07. srpnja 2005.................................................. 3 0. listopad 2005.................................................

Διαβάστε περισσότερα

Uvod. - linearne jednadžbe. - nelinearne jednadžbe

Uvod. - linearne jednadžbe. - nelinearne jednadžbe Uvod - linearne jednadžbe - direktne metode - Gaussova eliminacija - Gauss-Jordanova metoda - iterativne metode - Gauss-Seidlova metoda - Jacobijeva metoda - nelinearne jednadžbe - iterativne metode -

Διαβάστε περισσότερα

Nositeljica kolegija: izv. prof. Nermina Mujaković 1 Asistentica: Sanda Bujačić 1

Nositeljica kolegija: izv. prof. Nermina Mujaković 1 Asistentica: Sanda Bujačić 1 Uvod u numeričku matematiku Nositeljica kolegija: izv. prof. Nermina Mujaković 1 Asistentica: Sanda Bujačić 1 1 Odjel za matematiku Sveučilište u Rijeci Numerička integracija O problemima integriranja

Διαβάστε περισσότερα