ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Σχετικά έγγραφα
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 11 Ιουνίου 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

= R * ως πράξη παραγωγίσιμων συναρτήσεων με 0 x 4 2x 8x 8 x x x x x. και γνησίως αύξουσα στο (0, + ). = με τιμή ( )

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

g x είναι συνάρτηση 1 1 στο Ag = R αλλά δεν είναι γνησίως

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

Επιμέλεια: Παναγιώτης Γιαννές

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ

είναι 1-1 αλλά δεν είναι γνησίως μονότονη.

γ) Ισχύει lim = 0. ΑΠΑΝΤΗΣΕΙΣ συνx x δ) Αν η f είναι αντιστρέψιμη συνάρτηση, τότε οι γραφικές παραστάσεις C και C των συναρτήσεων f και

ΘΕΜΑ Α. β) Για κάθε παραγωγίσιμη συνάρτηση f σε ένα διάστημα Δ, η οποία είναι γνησίως αύξουσα, ισχύει f (x) 0 για κάθε x Δ.

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

ΜΑΘΗΜΑΤΙΚΑ ΟΠ- Γ ΓΕΛ 12:50

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΟΠ- Γ ΓΕΛ 12:50

Εξετάσεις 11 Ιουνίου Μαθηματικά Προσανατολισμού Γ Λυκείου ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

1 ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΘΕΜΑ Α. β) Για κάθε παραγωγίσιμη συνάρτηση f σε ένα διάστημα Δ, η οποία είναι γνησίως αύξουσα, ισχύει f (x) 0 για κάθε x Δ.

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2018 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΑΠΑΝΤΗΣΕΙΣ

2x 4 0, αδύνατη. x Πανελλαδικές Εξετάσεις Μαθηματικά Κατεύθυνσης 11 Ιουνίου Θέμα Α Α1. Σχολικό βιβλίο σελ.99

ΜΑΘΗΜΑΤΙΚΑ - ΠΛΗΡΟΦΟΡΙΚΗ

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2016

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 11/6/2018

Προτεινόμενες λύσεις. f (x) f (x ) f (x) f (x ) f (x) f (x ) (x x ). f (x) f (x ) lim[f (x) f (x )] lim (x x ) lim[f (x) f (x )] 0 lim f (x) f (x ),

ΜΑΘΗΜΑΤ ΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤ ΗΣΕΙΣ ΣΤ Α ΘΕΜΑΤ Α ΕΞΕΤ ΑΣΕΩΝ 2016.

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ. f (f )(x) x f (f )(x) x f (f )(x) (f ) (x)

ΘΕΜΑ 1 ο. Α1. Θεωρία, στη σελίδα 260 του σχολικού βιβλίου (Θ. Fermat). Α2. Θεωρία, στη σελίδα 169 του σχολικού βιβλίου.

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

x, οπότε για x 0 η g παρουσιάζει

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ. x x. = 3, x (2,5) 0 είναι η h. Α4. α) Σ β) Σ γ) Σ δ) Λ

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

Πανελλαδικές εξετάσεις 2018

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου

x, x γνησίως μονότονη. (σελ. 35 σχολικό βιβλίο)

ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

. Β2. Η συνάρτηση f είναι παραγωγίσιμη με: 1 1 1, και f ( x) ( ln(ln x) ).

ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΠΟΥ ΥΠΗΡΕΤΟΥΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 2018

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Σελίδα 1 από 8. f στο, τότε

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ

( ) ( ) ( 3 ) ( ) = ( ) ( ) ( ) ( ) ( ) ( 1) ( ) (( ) ( )) ( ) + = = και και και και. ζ να ταυτισθούν, δηλαδή θα πρέπει: f x ημ x. 6 x x x.

f(x) γν. φθίνουσα ολ.ελ. γν. αύξουσα

3o Επαναληπτικό Διαγώνισμα 2016

ΠΑΡΟΡΑΜΑΤΑ ΣΤΟ ΒΙΒΛΙΟ ΤΟΥ Η. ΡΟΥΣΑΛΗ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. ΤΟ 3ο ΚΑΙ ΤΟ 4ο ΘΕΜΑ (ΕΚΔΟΣΕΙΣ ΠΑΤΑΚΗ)

Πανελλαδικές εξετάσεις 2017

για κάθε x 0. , τότε f x στο Απάντηση είναι εσωτερικό σημείο του Δ και η f παρουσιάζει σ αυτό τοπικό μέγιστο, υπάρχει 0 τέτοιο, ώστε (x , ισχύει

και γνησίως αύξουσα στο 0,

ΜΑΘΗΜΑ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ

0 ένα εσωτερικό σημείο του Δ. Αν η f παρουσιάζει τοπικό ακρότατο στο x

f(x) 0 (x f(x) g(x), lim f(x) lim g(x).

ΘΕΜΑ Α A1. Έστω μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο του x 0, στο οποίο όμως η f είναι συνεχής.

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Λύσεις του διαγωνίσματος στις παραγώγους

x x f x για κάθε f x x ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α Α1. α) Σχολικό σελίδα 15

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Κατεύθυνσης. Απαντήσεις Θεμάτων Επαναληπτικών Πανελληνίων Εξετάσεων Ημερησίων Γενικών Λυκείων

Μαθηματικά Ο.Π. Γ ΓΕΛ 05/ 05 / 2019 ΘΕΜΑ Α. Α1. Σελίδες Σχολικού Βιβλίου. Α2. Σελίδα 161 Σχολικού Βιβλίου

Κεφάλαιο 2ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ

Μαθηματικά προσανατολισμού

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Απαντήσεις στα Μαθηματικά Κατεύθυνσης 2016

Πες το με μία γραφική παράσταση

ÖÑÏÍÔÉÓÔÇÑÉÁ ÓÕÍÏËÏ ËÁÌÉÁ. ( i) ( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ( ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β ΘΕΜΑ Γ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ.

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣΗΣ ΝΟ 2 Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕ.Λ. 18 ΜΑΙΟΥ 2018 ΘΕΜΑ Α. η f ικανοποιεί τις υποθέσεις του θεωρήματος μέσης.

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

Α2. Να διατυπώσετε το θεώρημα του Fermat. (Απάντηση : Θεώρημα σελ. 260 σχολικού βιβλίου) Μονάδες 4

Γ1. Να μελετήσετε την f ως προς τη μονοτονία και να αποδείξετε ότι το σύνολο τιμών της είναι το διάστημα (0, + ).

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2019

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ

Τελευταία Επανάληψη. την ευθεία x=1 και τoν x x. 2 1 x. Λύση. x 2 1 x 0, άρα. x 1 x. x x 1. γ) x 1 e x x 1 x e ln x 1 x f x.

ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 10 ΙΟΥΝΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ

, να αποδείξετε ότι και η συνάρτηση f+g είναι παραγωγίσιμη στο x. και ισχύει. Μονάδες 9 Α2. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και [, ]

1o. Θ Ε Μ Α Β Ε. Γ Κ Ο Ρ Α. βρίσκεται ολόκληρη μέσα στο τετράγωνο ΑΒΓΔ.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Κεφάλαιο 1, 2, 3)

Transcript:

Ιουνίου 08 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απαντήσεις Θεμάτων Πανελλαδικών Εξετάσεων Ημερησίων Γενικών Λυκείων Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών & Σπουδών Οικονομίας και Πληροφορικής Ιουνίου 08 ΘΕΜΑ Α Α. Σχολικό βιβλίο σελ. 99 Α. α) Ψευδής β), 0 f, 0 Βλέπε σχήμα στο σχολικό βιβλίο σελίδα 5 Στο,0 f είναι γνησίως αύξουσα, άρα - Στο 0, f είναι γνησίως φθίνουσα, άρα - Αν,0, 0, τότε 0, 0, άρα f 0, f 0, οπότε f f Άρα η f είναι - στο,0 0, Όμως η f δεν είναι γνησίως μονότονη στο αφου είναι γνησίως αύξουσα στο,0 και γνησίως φθίνουσα στο 0,. Α. Σχολικό βιβλίο σελ. 6 Α. α) Λάθος β) Λάθος γ) Σωστό δ) Σωστό ε) Σωστό

ΘΕΜΑ Β f, 0 B. f παραγωγίσιμη στο - 0 ως ρητή, με: 8 8 f f 0 8 0 8 8 f 0 0 8 0 8 f - - + - + + + - + f f συνεχής στο, f στο, f 0 στο, f συνεχής στο,0 f στο, 0 f 0 στο,0-0 f συνεχής στο 0, f στο0, f 0 στο 0, f παρουσιάζει τοπικό μέγιστο στο o, f Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών & Σπουδών Οικονομίας και Πληροφορικής Ιουνίου 08

B. f παραγωγίσιμη στο 0, ρητή με: 8 f 8 0 για κάθε 0,f συνεχής στο 0 ά η f είναι κοίλη στο,0 και στο 0, και δεν έχει σημείο καμπής. Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών & Σπουδών Οικονομίας και Πληροφορικής Ιουνίου 08 Β. Για κατακόρυφη ασύμπτωτη στο o = 0 lim 0 0 lim f lim 0 0 lim 0 ί και lim f 0 Άρα η C f έχει κατακόρυφη ασύμπτωτη την ευθεία = 0, δηλαδή τον άξονα yy. Για πλάγια/οριζόντια στο και στο lim lim lim lim f lim 0 lim f lim lim 0 β f ί : lim και lim f 0 Άρα η C έχει πλάγια ασύμπτωτη και στο και στο + την ευθεία: y Β. f - - - - y f 7 9 - -5 -

Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών & Σπουδών Οικονομίας και Πληροφορικής Ιουνίου 08

Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών & Σπουδών Οικονομίας και Πληροφορικής Ιουνίου 08 ΘΕΜΑ Γ Γ. φού με το σχήμα μήκους m φτιάχνω τετράγωνο, η πλευρά του είναι m και το εμβαδόν του είναι Ε m 6 To σύρμα έχει μήκος 8 m άρα με σύρμα μήκους 8 m φτιάχνω τον κύκλο, άρα 8 μήκος κύκλου πr 8 r m π 8 8 8 Ο κύκλος έχει εμβαδόν Ε π r π π m π π π 0 0 Πρέπει: 0 8 8 0 8 To άθροισμα των εμβαδών των δύο σχημάτων είναι: 8 π 8 π 6 6 Ε Ε Ε 6 π 6π 6π π 6 6 π 6 56, 0,8 6π 6π 5

Γ. π 6 56 Ε, 0,8 6π Ε π 6 56 π 6 π 6π 6π 8π Ε 0 π 0 π 8π π Δηλαδή Ε 0,8 και Ε 0 0, π π Άρα η Ε() παρουσιάζει ελάχιστο όταν π 8 8 8 π 8π 8 Επειδή r r διάμετρος π π π π π π 8 πλευρά του τετραγώνου είναι: π π, r Άρα το Ε ελαχιστοποιείται όταν η διάμετρος r ισούται με την πλευρά του τετραγώνου Γ. Αρκεί να αποδείξω ότι υπάρχει μοναδικό 0,8 με E 0 - + E 8 o o 5 Σύμφωνα με τον παραπάνω πίνακα μεταβολών για την Ε έχουμε: Ε γνησίως φθίνουσα στο Δ 0, π Ε m ελάχιστο π m Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών & Σπουδών Οικονομίας και Πληροφορικής Ιουνίου 08 6

π 6 56 6 lim Ε lim 5 0 0 6π π 6 άρα το σύνολο τιμών Ε m, π Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών & Σπουδών Οικονομίας και Πληροφορικής Ιουνίου 08 () γνησίως αύξουσα στο Δ,8 π π 6 56 π 6 68 56 lim Ε lim 8 8 6π 6π 6π 6 86 56 6π άρα το σύνολο τιμών Ε m, Επειδή 5 m,,δεν υπάρχει τέτοιο ώστε 5 o o 6 6 πειδή 5, το 5 m,, η Ε γνησίως φθίνουσα στο Δ 0, π π π άρα, οπότε υπάρχει μοναδικός αριθμός ο 0, 0,8 π τέτοιο ώστε Ε 5 ΘΕΜΑ Δ Δ. f() e α ο f παραγωγίσιμη στο ως διαφορά παραγωγίσιμων με: α α f () e ( α) (e ) α f παραγωγίσιμη στο με f () (e ) e : α α o f () 0 e e e α 0 α e α α o f () 0 e e e α 0 α Αφού η f έχει μοναδική ρίζα το o α και αλλάζει πρόσημο εκατέρωθεν αυτής η C f έχει ακριβώς ένα σημείο καμπής, το Α(α,f(α)) (α, α ) με α 7

Δ. α f () (e ),α α f () 0 e 0 f () 0 στο (α,+ ) f f συνεχής στο α,+ στο α,+ f () 0 στο (,α) f f συνεχής στο,α στο,α f : συνεχής = f ([α,+ )) f α, lim f' α, f Διότι: ο f(α) (e α) ( α) 0,αφού α e α α lim f () lim e lim e διότι: α lim e α lim, lim e α lim e α D.L.H. lim 0 α e f : συνεχής Δ f,α f α, lim f α, f e lim e 0 lim e α α lim f () lim e lim Αφού f α α 0 για α, έχω Ο Δ και Ο Δ και f στο α,+ και f στο,α, άρα η εξίσωση f 0 έχει ακριβώς ρίζα, α και ακριβώς ρίζα α,+ με α Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών & Σπουδών Οικονομίας και Πληροφορικής Ιουνίου 08 8

Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών & Σπουδών Οικονομίας και Πληροφορικής Ιουνίου 08,α, f ( ) 0, f στο,α f Για f () f ( ) f () 0 f Για α f () 0 άρα η f παρουσιάζει μοναδικό τοπικό μέγιστο στο α,+, f ( ) 0, f στο α,+ f Για α f () f ( ) f () 0 f Για f () 0 άρα η f παρουσιάζει μοναδικό τοπικό ελάχιστο στο Δ. Στο Δ έδειξα: f 0 στο, και στο, και f 0 στο, Επιπλέον f συνεχής στο, άρα η f είναι γνησίως φθίνουσα στο, άρα και. α α f e 0 αφού α α 0 e, δηλ.,. Οπότε α f - δηλ. α, οπότε για κάθε α,, f f οπότε η εξίσωση f f είναι AΔΥΝΑΤH στο α, 9

Δ. ια α : f e, Από Δ στο, f κυρτή, άρα κάθε εφαπτομένη της βρίσκεται κάτω απο τη C, f με εξαίρεση το σημείο επαφής. Η εφαπτομένη της C f στο σημείο Μ,f είναι: ε : y f f f κα y y y Οπότε θα ισχύει: 0 ι f f για κάθε και το "=" θα ισχύει μόνο για f, άρα: f d d θέτω: u u u d = du d du d u 0 u u du u du u du u u u 0 0 0 5 5 u u u u 5 5 5 5 0 0 Άρα f d 5 Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών & Σπουδών Οικονομίας και Πληροφορικής Ιουνίου 08 0