Gimzij: Lucij Vrji Mturl rdj: ETERMINANTE I MATRICE Izrdio: iko Koruić, učeik 4 G Metor: Mile Broić, profesor U Zgreu, 0 siječj 996
SARŽAJ I UVO II ETERMINANTE etermite drugog red etermite trećeg red 3 etermite viših redov 6 Svojstv determit 6 Rčuske opercije s determitm 8 Primje determiti kod rješvj sustv lierih jeddži 9 III MATRICE 9 Pojm i vrste mtric 9 Rčuske opercije s mtricm 3 Trspoirje mtric 5 Posee vrste kvdrtih mtric 6 Postupk z rčuje iverzih mtric 8 Reciproč mtric i trspoir reciproč mtric 9 etljije o rgu mtrice 9 Rješvje lierih mtričih jeddži 0 Rješvje sustv lierih jeddži pomoću mtričog rčuj Rstvljje mtric u lokove 4 IV LITERATURA 6
I UVO etermit je u mtemtici izrz predoče kvdrtom shemom u kojoj je poredo člov u redk i stupc, i to je determit -tog red (tko postoje pr determite -og ili 3-eg red):,,,,,,,,,,,,,, etermite je prvi otkrio i proučvo G W Leiiz 693 godie ispitujući rješej sistem lierih jeddži No ksije se z otkrivč determiti smtr G Crmer koji je 750 godie do prvil rješvj jeddži pomoću determit, u međuvremeu je Leiizovo otkriće plo u zorv etermite se široko primjejuju u mtemtici tek ko K J Jcoij Nziv determite uveo je u mtemtiku K F Guss Mtric je sustv od m rojev složeih u prvokutu shemu od m redov i stupc Simolički se mtric ozčv pomoću dv pr usporedih duži: m m m, li se u ovije vrijeme ozčv i s zgrdom: ili m m m m m m etermite drugog red II ETERMINANTE ismo riješili sistem od dviju lierih jeddži s dvije epozice x + y c () x + y c () potreo je jprije izjedčiti jeddže po epozici y, te zto jeddžu () tre pomožiti s, jeddžu () s Ako ko tog zrojimo te dvije jeddže doijmo: ( ) x c c (3)
N isti či tre izjedčiti i po epozici x iz sistem jeddži () i (), p se doije: ( ) y c c (4) Ako pretpostvimo d je 0 iz predhode dvije jeddže se doij određeo rješeje zdog sistem, i to tko d se jeddž (3) podijeli s fktorom uz x i logo tome jeddž (4) fktorom uz y: x c c, te y c c (5) i (6) Proučimo li jeddže (5) i (6), vidi se d su im zivici isti i d su im rojici sličo grđei Možemo uvesti ovu ozku z izrz, i to: Alogo tome, možemo zpisti d je: (7) c c c i c c c c (8) i (9) c Brojik i zivik doijeih jeddži (5) i (6) se zovu determite -og red i to su ovdje, i Općeito vrijedi z svk četiri roj, rspoređe u oliku kvdrte sheme:,,,, d se rzlik koj odgovr toj shemi zove determit -og red i ovdje je t rzlik ekvivlet, zpisuje se simolički Elemeti determite (u predhodom redu) su rojevi,,, ; pri čemu prvi dio ideks elemet pokzuje roj red u kojem se elemet lzi, drugi dio ideks elemet roj stupc u kojem se lzi tj elemet Elemeti i čie glvu dijgolu determite, elemeti i sporedu dijgolu Red ili redk determite čie elemeti determite koji stoje horizotlo jed do drugog Stupc determite čie elemeti koji su vertiklo jed ispod drugog Iz dosdšjeg izlgj očigledo je d rješeje sistem može iti izržeo pomoću determit ko je determit koeficijet epozic u sustvu jeddži () i (), je determit koj stje iz ko se koeficijeti i od x domjeste rojevim c i c desim strm jeddži, te je determit koj stje iz ko se koeficijeti
3 i od y domjeste rojevim c i c Kočo rješeje sistem jeddži () i () od možemo zpisti u oliku: x, i y (0) i () ili opširije: x c c, y c c () i (3) etermit u ziviku je sstvlje od koeficijet epozic sistem jeddži, ovdje jeddži () i (), i zove se determit tog sistem, te se ozčv s ili s Ako uvjet 0 ije zdovolje, tj 0, od i determite i morju iti jedke uli jer i iče izrzi (5) i (6) ili kotrdiktori Zči, ko je 0, rem jed od determiti i rzličit od ule, sistem em rješej Prem tome, možemo zpisti: ) ko su koeficijeti epozic u zdom sistemu (vidjeti početk) eproporcioli, sistem je moguć i određe; ) ko su koeficijeti epozic proporcioli, sloodi človi im isu proporcioli, sistem je emoguć zog proturječj u (5) i (6); 3) ko su koeficijeti epozic i sloodi človi proporcioli ( 0), sistem je eodređe jer im eskočo rješej Jeddže (5) i (6) te () i (3) z 0 i 0 čie tzv ehomogei sustv, z 0 homogei sustv jeddži Iz prethodih zključk slijedi d ehomogei sustv im ili smo jed sustv rješej, ili uopće em rješej, ili ih im eskočo mogo Homogei sustv od dvije liere jeddže s dvije epozice im rješej rzličit od očigledih, tzv trivijlih, smo u slučju kd je determit sustv jedk uli, i td ih im eskočo mogo Vrijedost determite -og red se izrčuv tko d se ukrso može človi determite i pri tome se drugi umožk dodje prvom s protivim predzkom: + etemite trećeg red Rješvje sistem dviju lierih lgerskih jeddži s dvije epozice dovodi s do determiti drugog red, logo tome s rzmtrje sistem triju lierih jeddži s tri epozice dovodi do determiti 3-eg red Tko immo sistem: x + y + cz d (4) x + y + cz d (5)
4 x 3 + y 3 + cz 3 d3 (6) ismo riješili tj sistem potreo je iz jeddži (4), (5) i (6) isključiti dvije epozice, pr y i z kko slijedi Možemo (5) i (6) izrziti ko: te od pomoću logije s (3) i (4) slijedi iz (7) i (8): y + cz d x (7) y 3 + cz 3 d3 x 3 (8) c c y d x c d x c 3 3 3 3 3 d c x c d c c d c x c d c c x, (9) 3 3 3 3 3 3 3 3 c c z d x d x 3 3 3 3 3 d d x (0) 3 3 3 3 Ako ko tog pomožimo jeddžu (4) s fktorom uz y i z u izrzu (9) odoso (0), uvrstimo ztim izrze iz (9) i (0), te ko determiti koj stoji uz x izmijeimo stupce uz promjeu predzk ko i stupce u determiti koj stoji uz c, doit ćemo: x c c 3 3 c c + c 3 3 3 3 d c d c c d + () 3 c3 d3 c3 d3 3 Vidimo d se fktor uz x može zpisti ko determit 3-eg red: c c c c c 3 c3 3 c3 c 3 3 3 3 3 () Pomoću te determite se može promijeiti des str jeddže () tko d se elemeti, i 3 u determiti zmijee s d, d i d 3, p jeddž () ovko izgled: pri čemu je tkođer determit trećeg red: x, (3) Alogo tome se doiv: pomoću d c d c (4) d c 3 3 3 y, (5)
5 d c d c ; (6) d c 3 3 3 i s z 3 (7) 3 d d (8) d 3 3 3 Iz izrz (3), (5) i (7) se mogu izrčuti x, y, z ko vrijedi d 0 Td je jedozčo rješeje sistem jeddži (4), (5) i (6): x, y te z 3 (9), (30), (3) Ako je 0, rem jed od determit, ili 3 rzličit od ule, vidi se d prem (9), (30) i (3) e može postojti rješeje Jeddže (4), (5) i (6) su od proturječe Ako je 3 0, od sistem (4), (5), (6) im eskočo mogo rješej Z izrčuvje vrijedosti determite trećeg red možemo se poslužiti Srrusovim prvilom: tre pisti determitu i uz ju deso još dv prv stupc: c c 3 3 c 3 3 c 3 Sd po shemi tvorimo produkte po tri čl i to prvo u smjeru glve dijgole, ztim produkte od tkođer po tri čl, o u smjeru suprote dijgole Produkte uzete u smjeru glve dijgole zrojimo i od tog oduzmemo zroj produkt uzetih u smjeru sporede dijgole Ako promotrimo izrz desoj stri izrz (), možemo vidjeti d su elemeti,, c pomožei determitm drugog red, koje se mogu doiti rzvijjem determite po stupcu ili po retku (u determiti trećeg red se precrt redk i stupc u kojem se lzi dotiči elemet) Z rzvijje determite se koristimo shemom predzk: + + + + + po kojoj uzimmo predzke pojediih elemet kd rzvijemo determitu Ako želimo d rzvijemo determitu po pr elemetim prvog retk, td prepišemo prvi elemet tog retk i precrtmo prvi redk i prvi stupc determite, te prepisi prvi elemet možimo s preostlim dijelom determite Tko doive determit -og red se zove
6 sudetermit ili mior dotičog elemet Ztim prepišemo s protivim predzkom (po shemi predzk) drugi elemet prvog retk, p ko i prije možimo tj elemet s jegovom determitom (koju doijemo kd precrtmo prvi redk i drugi stupc zde determite) Nposlijetku prepišemo treći elemet prvog retk i pomožimo g s jegovom sudetermitom (koj se doiv kd se precrt prvi redk i treći stupc u zdoj determiti) Sd možemo rzviti sudetermite već prije ojšjei či (vidi etermite -og red) N logi či se rzvij determit 3-eg red po elemetim drugog i trećeg retk, odoso ilo kojeg stupc etermite viših redov etermite -tog red rješvju se isti či ko i determite trećeg red, te ih isti či možemo rzviti Shem predzk z rzvijje determite poš se logo shemi predzk determiti 3-eg red Npr shem predzk determite 4-og red: + + + +, + + + + rzvijjem determite 4-og red doivju se četiri mior trećeg red Pod vrijedosti determite -tog red,,,,,,,,,,,,,, (3) podrzumijevmo sumu ± k k, gdje je (k,k,,k k ) ek permutcij rojev,,, Sumciju tre proteguti preko svih tkvih permutcij Pojedii človi doivju predzk plus ko je dotič permutcij pr, predzk mius ko je epr Često se umjesto sheme (3) piše smo ik Nehomogei sustv od lierih jeddži s epozic im z ilo koje dese stre tih jeddži smo jed sustv rješej x, x,, x, ko je determit sustv rzličit od ule Z 0 tj sustv em rješej, ko su determite u rojicim izrz z epozice rzličite od ule, odoso im eskočo mogo rješej, ko su te determite jedke uli Homogei sustv od lierih lgerskih jeddži s epozic im rješej rzličit od očevidih (x 0, x 0,,x 0) smo u slučju, kd je determit sustv 0, i td ih im eskočo mogo Svojstv determit Njvžij svojstv determiti su: ) etermitu uvijek možemo rzviti po elemetim ilo kojeg retk i ilo kojeg stupc, te ćemo uvijek doiti istu vrijedost determite
7 ) etermit e mijej vrijedost, ko zmijeimo retke determite u redoslijedu ili stupce determite u redoslijedu, tj ko determitu zokreemo z 80 oko jee glve dijgole koj ide slijev deso (odoso preklopimo je preko jee glve dijgole) To slijedi iz svojstv 3) etermit, u kojoj su svi elemeti jedog retk ili jedog stupc ule, im vrijedost jedku uli Rzvijemo li tkvu determitu po elemetim oog retk ili oog stupc, u kojem su ule, doit ćemo ulu jer će se svk sudetermit možiti s ulom 4) Ako u determiti dv stupc ili dv retk međusoo zmijee položj, determit mijej predzk To svojstvo slijedi iz sheme predzk z rčuje determit, jer elemeti susjedih redk ili susjedih stupc imju suprote predzke 5) Vrijedost determite s dv jedk retk ili dv jedk stupc je jedk uli To slijedi iz svojstv 4: kd i t dv stupc ili retk zmijeil položje, determit i morl mijejti predzk (svojstvo 4), o izmjeom položj determit se e mijej tj ostje ist jer su t dv retk (stupc) jedki To zči d je, to je moguće smo z 0 6) Imju li svi elemeti jedog retk ili jedog stupc isti fktor, tj fktor pripd čitvoj determiti p g možemo izlučiti tj postviti ispred determite; rzvijemo li tkvu determitu po elemetim oog retk ili oog stupc koji sdrži tu kosttu tj stli fktor, svki mior će iti pomože tim fktorom p je jso d g možemo izlučiti ispred cijelog rzvoj determite Alogo, to zči d determitu možimo ekim rojem k 0 tko d elemete jedog retk ili jedog stupc pomožimo tim rojem 7) etermit e mijej svoje vrijedosti ko elemetim jedog retk (jedog stupc) prirojimo pripde elemete kojeg drugog retk (stupc) evetulo pomožee ilo kojom kosttom Npr pomožimo elemete drugog retk determite 3 3 3 3 33 s ekom kosttom k 0, p ih prirojimo pripdim elemetim prvog retk: + k + k + k 3 3 3 3 3 33 Rzvijemo li tko doiveu determitu po elemetim prvog retk, po svojstvu 6 možemo izlučiti kosttu k p doivmo: 3 3 3 3 33 3 + k 3 3 3 33 Vidimo d je drug determit po svojstvu 5 jedk 0 jer im dv jedk retk, p doivmo zdu determitu 8) Vrijedost determite je jedk uli, ko su joj dv retk ili dv stupc međusoo proporciol To slijedi iz svojstv i 6 Iz jedog od tih stupc možemo izlučiti fktor pred cijelu determitu (svojstvo 6), te u determiti doijemo o stupc (retk) jedk, to (svojstvo ) zči d je vrijedost determite jedk uli
8 Rčuske opercije s determitm Opercije zrjj, odijj i možej izvode se d dvije determite smo ko su oje istog red ) Zrjje: Ako se dvije determite rzlikuju jviše u jedom retku (stupcu), jihov je sum jedk determiti u kojoj je oj redk (stupc) u kojem se sumdi rzlikuju jedk zroju dotičih redk (stupc) u sumdim, dok su ostli reci (stupci) isti ko kod o sumd: 3 3 + 3 3 + 3 + 3 3 3 33 3 3 33 3 + 3 3 33 ) Odijje: Vrši se logo zrjju, tj jedu determitu odijmo od druge ko se rzlikuje jviše u jedom stupcu ili retku U determiti, koj je rezultt odijj, rzličitim će stupcim (recim) zdih determiti odgovrti stupc (redk) koji je jedk rzlici tih stupc (redk), dok će ostli stupci (reci) iti u sve tri determite jedki (iz ovog slijedi svojstvo 7) 3) Možeje dviju determit: Produkt dviju determit je determit kojoj je c rs -ti elemet jedk k rk ks, r,,,, s,,, gdje su rk elemeti prvog, ks elemeti drugog fktor produkt Jedostvije rečeo, c rs -ti elemet doijemo tko d elemete r-tog retk prve determite pomožimo s pripdim elemetim s-tog stupc druge i to zrojimo: 3 3 3 3 33 3 3 3 3 33 + + + + + + + + + + + + + + + + + + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 33 3 3 3 33 3 3 3 33 3 4) ijeljeje: Z prikz kvocijet dviju determiti u oliku determiti e postoji prvilo Ako želimo podijeliti dvije determite, mormo jprije izrčuti jihove vrijedosti, tek od te vrijedosti podijeliti 5) Kvdrirje: o izrz z kvdrirje dolzimo ko primjeimo možeje dvije potpuo idetiče determite, p se doije:
9 + + + + i to je tzv simetrič determit u kojoj su jedki elemeti što leže simetričo sprm glve dijgole To vrijedi z determite -tog red tj z sve determite Primje determiti kod rješvj sustv lierih jeddži Ako se prisjetimo rješvj jeddži ojšjeog u poglvlju: etermite -og red: iz čeg je slijedilo: x + y c x + y c x c c c, te y c Vidjeli smo d se tj rezultt može zpisti i ko: x, i y Tkođer je vrijedilo d je:, c c x i c c y Ovkv či rješvj sustv lierih jeddži pomoću determiti je prvi primijeio Crmer, te se prvilo z izrčuvje epozic formulom x x i y y zove Crmerovo prvilo Z sustv od lierih jeddži s epozic (koje su x, x,, x ) rješej su: x, x,, x, gdje je i z i,,, x i III MATRICE Pojm i vrste mtric
0 Ako svrstmo m elemet u prvokutu shemu koj im m redk i stupc, doit ćemo prvokutu tlicu koj služi ko izvor z doivje rzličitih determit i zove se prvokut mtric Ko što sm već ojsio u uvodu, mtric se stvlj između dv prlel prvc ili između zgrde z rzliku od determite Mtric sm em umeričke vrijedosti, jer je smo sustv izrčutih veliči, jčešće koeficijet jeddži etermite doivee iz mtrice zovu se miori mtrice ili sudetermite mtrice i ko je mtric ozče s E od se je mior ozčv s E Npr iz mtrice c c tj c c možemo doiti tri determite drugog red tko d uzstopo izostvljmo jed od stupc, pri čemu svki put stvimo prvo mjesto oj stupc koji slijedi odmh ko izostvljeog: c c, c c, te 3 Rgom mtrice zovemo roj koji je jedk jvišem redu determite (te mtrice) koj se e pretvr u ulu Zči ko je rg mtrice jedk l, td se sve determite red (l+) te mtrice pretvrju u ulu, li postoji rem jed determit red l koj je rzličit od ule Rg mtrice pokzuje roj liero ezvisih jeddži zdog sustv Ako immo pr sustv od tri liere homogee jeddže s četiri epozice: x + y + cz + dt 0 x + y + cz + dt 0 x+ y+ cz+ dt 0 3 3 3 3 od mtric sstvlje od svih koeficijet tog sustv glsi: c d A c d c d 3 3 3 3 p iz te mtrice doivmo slijedeće determite: c d c d c d 3 3 3, c d c d c d 3 3 3, 3 d d d 3 3 3, 4 c c c 3 3 3 Ako je rg r mtrice A jedk 3, tj ko su sve determite,, 3 i 4 rzličite od ule, ili r jed od jih rzličit od ule, od gore vedei sustv jeddži im tri liero ezvise jeddže, koje dju jedo određeo rješeje sustv Mtric A je drugog rg ko je r jed od triju determit koje stju izostvljjem jedog retk i jedog stupc, rzličit od ule O je prvog rg ko je determit koj stje izostvljjem jedog retk i dv stupc rzličit od ule
kle, tre glsiti d je mtric tlic rojev, determit roj prikz u oliku tlice Ko što smo već mogli primjetiti, mtric z rzliku od determite e mor imti jedk roj redk i stupc Mtrice od jedog stupc se zivju vektori, jihovi elemeti kompoete (u dojem slučju x, x i x 3 ): Mtric se može prikzti ovko: x X x x 3 A m m m m [ ij ] pri čemu su i,,, m redi rojevi redk mtrice, j,,, redi rojevi stupc mtrice Mtric koj im m redk i stupc zove se m mtric ili (m,)-mtric Ako se želi z mtricu A [ ij ] zčiti roj redk i roj stupc, od možemo zpisti i ko A [ ij ] m kle, (m,)-mtric ili (,)-mtric je m-redi vektor (mtric-redk) odoso -stupči vektor (mtric-stupc) Vektor možemo zpisti i ko: m odoso [ ] pri čemu je (m,)-redi vektor, (,)-stupči vektor Ako je roj redk mtrice jedk roju stupc, tj ko je (m) immo kvdrtu mtricu red ili krće ()-mtricu Kod kvdrtih mtric postoje dijgole mtrice u kojim su svi elemeti rzličitih ideks (i j) jedki uli (tj svi elemeti izv glve dijgole su jedki uli): 0 0 0 0 0 0 0 0 0 0 0 0 Kod jih vrijedi d elemeti rzličiti od ule leže glvoj dijgoli mtrice Sklre mtrice su vrst dijgolih mtric z koje vrijedi d su im svi elemeti glvoj dijgoli jedki ( ) Sklr mtric kojoj su svi dijgoli elemeti jediice, svi ostli ule ziv se jediič mtric i ozčv se s E:
0 0 0 0 0 E 0 0 0 0 Lko je zključiti d z svki postoji jed jediič mtric Tkođer, još postoji i doj trokut mtric: i gorj trokut mtric: 0 0 0 0 0 3 3 33 0 0, 0 3 3 0 3 0 0 33 3, 0 0 0 0 0 0 0 koje su isto tko podvrst dijgolih mtric kle, z mtrice vrijedi: ) etermit dijgole mtrice jedk je umošku jeih elemet glvoj dijgoli: det AA 33, p stog izlzi d je determit mtrice E (jediič mtric) jedk (vidjeti determite), što se zpisuje ko: det EE ) etermit mtrice koj se sstoji od jedog roj jedk je tom roju 3) Mtric čiji su svi elemeti ul zove se ult mtric i ozčv se s 0 4) vije (m,)-mtrice su jedke ko i smo ko imju iste elemete u istom položju, dkle: A[ ik ] m, B[ ik ] m, p možemo pisti AB od i smo od, kd vrijedi: ik ik (i,, m; k,, ) Može se vidjeti d je relcij jedkosti defiir smo među mtricm koje imju isti roj redk i isti roj stupc
3 Tkođer, iz defiicije slijedi d relcij jedkosti im svojstvo refleksivosti, tj svk je mtric sm sei jedk,tj (AA) Ztim im svojstvo simetrije tj (AB) (BA) Im još i svojstvo trzitivosti, tj (AB) & (BC) (AC) Trokut mtric im slijedeć svojstv: ) etermit ilo kkve trokute mtrice jedk je produktu jeih elemet koji su glvoj dijgoli ) Produkt dviju gorjih ili dviju dojih trokutih mtric istog red dje gorju, odoso doju trokutu mtricu 3) Produkt gorje i doje, odoso doje i gorje trokute mtrice istog red, dje kvdrtu mtricu istog red Rčuske opercije s mtricm ) Zrjje: Pod zrojem dviju (m,)-mtric A i B podrzumijev se (m,)-mtric C Vžo je primjetiti d je moguće zrojiti smo mtrice koje imju isti roj redk i isti roj stupc Mtric doive zrjjem, i to tko d se poseo zroje svi pripdi elemeti tih mtric, im isti roj redk i isti roj stupc ko i polze mtrice kle ko: A[ ik ] m, B[ ik ] m i C[ ] ik m, od: Npr C(A+B), c ik ik + ik (i,, m; k,, ) 3 3 + 3 3 + + + + + + 3 3 3 3 Vžo je primjetiti d prvilo zrjj vrijedi z ilo koji (koči) roj prirojik Z zrjje mtric vrijede zkoi komutcije i socijcije ko i z oiče rojeve: (A+B)(B+A) (komutcij), A+(B+C)(A+B)+C (socijcij) okz d ovi zkoi vrijede proizlzi eposredo iz tog d ti zkoi vrijede z zrjje smih elemet ) Oduzimje: Rzlik dviju mtric je defiir logo ko zroj kle, umjesto d se elemeti zrjju oi se oduzimju, odoso elemeti suprhed se oduzimju od odgovrjućih elemet miued: C(A B), zči: c ik ik ik (i,, m; k,, )
4 Vrijede isti zkoi z oduzimje ko i z zrjje Vžo je još jedom glsiti d su opercije zrjj i oduzimj defiire smo među mtricm istog roj stupc i redk tj među mtricm istog olik 3) Produkt mtrice A i roj tj sklr λ: Produkt roj λ s mtricom A doiv se tko d se svi elemeti od A pomože s λ, tj: zči: BλAAλ ik λ ik (i,, m; k,, ) Z ovo možeje vrijede zkoi (λ i µ su sklri, A je mtric): λaaλ (komutcij), (λµ)aλ(µa) (socijcij) z komiciju zrjj i možej vrijede dv zko distriucije: (λ+µ)aλa+µa, λ(a+b) λa+λb 4) Možeje mtrice s mtricom: Produkt mtrice A s mtricom B defiir se smo z slučj d je roj stupc prve mtrice ik (q,)- jedk roju redk druge mtrice Nek je A[ ik ] (m,q)-mtric, B[ ] mtric Od je jihov produkt C[ c ik ] (m,)-mtric z koju vrijedi d su joj elemeti c ik određei s: c p ik is sk s (i,, m; k,, ) To zči d (i,k)-ti elemet produkt doiv možejem i-tog retk prvog fktor s k-tim stupcem drugog fktor Postupk je log možeju determiti smo što se ovdje može smo možiti retke s stupcim Z tko defiiro možeje vrijedit će zkoi: A(BC)(AB)C (socijcij), λ(ab)(λa)b, (AB)λA(Bλ) (socijcij), (Aλ)BA(λB) (socijcij), A(B+C)AB+AC, (B+C)ABA+CA (distriucij) Vžo je primjetiti d zko komutcije kod mtric općeito e vrijedi Ako je A (m,)- mtric, B (p,q)-mtric, od produkt AB im smisl smo ko je (p), produkt BA im smisl smo ko je (mq) kle, zko komutcije i vrijedio smo z kvdrte mtrice, o i td e uvijek Mtrice A i jediič mtric E su uvijek komuttive Mtrice A i B su tikomuttive ko je (AB BA) Zimljivo je i d produkt dviju mtric može iti ulmtric, d ijed fktor ije ul (vidjeti o sigulrim mtricm), pr:
5 4 4 0 0 3 6 3 5 0 0 Mtrice se mogu možiti s lijev, pr možemo jedoelemetu mtricu [ ] pomožiti zdes s jedim vektorom: ili slijev s stupčim vektorom: [ ] [ ] [ ], [ ] Još možemo primjetiti d je determit produkt dviju kvdrtih mtric jedk produktu determit tih mtric (Cuchyjev teorem) 5) Sklri produkt dvju vektor: Pod sklrim ili utrjim produktom (,) dvju vektor i (ez ozir jesu li stupči ili redi vektori) podrzumijevmo: (, ) + + + kle, sklri produkt (,) je roj (sklr), z rzliku od produkt ~ koji je mtric 6) Potecirje mtrice: k-t potecij -mtrice A je produkt od k jedkih fktor A Tkođer, defiirmo ultu poteciju s: A 0 E, tj pod ultom potecijom -mtrice podrzumijevmo jediiču -mtricu Očito je iz defiicije možej mtric d se smo kvdrte mtrice mogu međusoo možiti s smim soom, jer iče isu ispujei uvjeti z rojeve redk i stupc Stog se i potecirje defiir smo z kvdrte mtrice Tkođer je očito d z potecirje vrijedi: p q p+ q A A A Trspoirje mtric Ako se (m,)-mtric A[ ik ] preklopi oko jee glve dijgole, jei će stupci postti recim, reci stupcim oit ćemo ovu mtricu koj je trspoir mtric s ozirom mtricu A i ozčvmo ju s A ~ N tj či se mtric A pretvr u mtricu A ~ Njee elemete ćemo ozčiti s ~ ik, tko d vrijedi: ~ ik ~ ~ ki, tj A [ ik ] [ ki ] T mtric je (,m)-mtric tj roj jeih redk je jedk roju stupc prvote mtrice, roj jeih stupc je jedk roju redk prvote mtrice
6 Vrijedi: ) Ako d mtricom A izvršimo dvput operciju trspoirj, mtric A ostje epromijeje ) Trspoir mtric zroj dviju mtric jedk je zroju trspoirih mtric: ~ ~ ~ A+ B A+ B ( ) 3) etermit mtrice A jedk je determiti mtrice ~ A : det AAdet ~ A A 4) Trspoir mtric produkt dviju ili više mtric jedk je produktu trspoirih mtric uzetih u ortom poretku: ~ ~ ~ AB BA, Posee vrste kvdrtih mtric ( ) ~ ~~~ ABC CBA ) Simetriče i kososimetriče mtrice: Kvdrt mtric se ziv simetrič mtric ko su jei elemeti, koji leže simetričo s ozirom glvu dijgolu, međusoo jedki (tj ij ji ) Kososimetrič mtric ili tisimetrič mtric je mtric kod koje su elemeti, simetričo rspoređei ozirom glvu dijgolu, jedki po veličii i protivi po predzku (tj ij ji ) Iz defiicije trspoirj mtric i defiicije ovih dviju vrst mtric slijedi d vrijedi: z simetriču mtricu A A ~, z kososimetriču mtricu A A ~ Produkt mtrice A i trspoire mtrice ~ A dje simetriču mtricu B: jer je: ~ AA B, ~ ( ~~ ~ ~ ~ B A A ) ( A ) A AA B Z simetriče i tisimetriče mtrice vrijedi slijedeći teorem: Svk kvdrt mtric A se može jedozčo rstviti u zroj jede simetriče mtrice A s i jede tisimetriče mtrice A, tj: A s A + A ~ i A A A ~ ) Regulre kvdrte mtrice:
7 Kvdrt mtric ziv se sigulrom mtricom ko je je determit jedk uli, tj det A0, esigulrom ili regulrom mtricom ko joj je determit rzličit od ule, tj det A 0 Npr trokut mtric je sigulr ko je mkr jed je elemet jedk uli 3) Ortogol mtric: Z eku kvdrtu mtricu A ćemo reći d je ortogol mtric ko je produkt te mtrice i joj trspoire mtrice ~ A jedk jediičoj mtrici E, tj ko je: ~ A A E Z ortogolu mtricu vrijedi: ) etermit ortogole mtrice jedk je (+) ili ( ) Zog svojstv determiti vrijedi: A A ~ lje, zog defiicije ortogole mtrice i zog Cuchyjevog teorem vrijedi: p je uvijek ~ ~ AA A A A A ±, ) Produkt dviju ortogolih mtric uvijek je ortogol mtric Ako su A i B dvije ortogole mtrice, vrijedi po defiiciji: ~ ~ A A E, i B B E Td dlje vrijedi: ( AB) ( AB ~ ~ ~ ~ ~ ~ ~ ) ( AB) ( BA) A( BB) A ( AE) A AA E P je prem defiiciji produkt AB siguro ortogol mtric c) Algerski kofktor ekog elemet ortogole mtrice je jedk tom elemetu ili mu je protiv, prem tom d li je determit mtrice pozitiv ili egtiv, tj vrijedi relcij: A A (i,j,,, ) ij ij d) Ortogol mtric je komuttiv s svojom trspoirom mtricom, tj z svku ortogolu mtricu A uvijek vrijedi: ~ ~ A A A A, ~ zog tog što vrijedi d A A E i A ~ A E 4) Iverz kvdrt mtric: Ako se podsjetimo d reciproč vrijedost ekog roj im svojstvo d pomože s dje, logo slijedi d je iverz mtric A eke kvdrte mtrice A defiir svojstvom d pomože s A (ilo slijev, ilo zdes) dje jediiču mtricu E, tj: AA A A E
Iverz mtric im slijedeć svojstv: ) Sigulr mtric em iverze mtrice Regulr mtric A[ ] određeu iverzu mtricu A [ α ik ] kojoj su elemeti α ik određei s: 8 α ik A A ki, ik im jedozčo pri čemu je općeito A ik kofktor elemet ik zde mtrice A, dok je A determit mtrice A Kofktor je defiir ko i kod determit, A ik ( ) i+k ik gdje je ik sudetermit elemet ik ) etermit iverze mtrice A reciproč je vrijedost determite A mtrice A E AA A A A A, dkle: A A c) Pod potecijom A regulre mtrice A ( je prirod roj) rzumijevmo -tu poteciju iverze mtrice A : A ( A ) d) Iverz mtric produkt dviju ili više regulrih mtric jedk je produktu iverzih mtric pojediih fktor, o u orutom redoslijedu: ( ) ABC C B A e) vije -mtrice A i B se zivju djelitelji ule ko su rzličite od ulmtrice, produkt AB im je ulmtric, tj: A 0, B 0, AB0 jelitelji ule su uvijek sigulre mtrice, dokz tog teorem se provodi pomoću iverzih mtric Postupk z rčuje iverzih mtric kork Rčumo z zdu mtricu A vrijedost determite, tj det AA kork Zdu mtricu A trspoirmo d doijemo mtricu A ~ 3 kork Z svki elemet mtrice A ~ rčumo (redk po redk) pripde kofktore ili lgerske komplemete, tj sudetermite, koje doivmo tko d precrtmo stupc i redk u kojem leži dotiči elemet pri čemu uzimmo predzke plus i mius izmjeice ez ozir predzk elemet z koji rčumo kofktor
9 4 kork U mtrici A zmijeimo svki elemet pripdim kofktorom 5 kork Podijelimo li svki čl tko doivee mtrice s det A, doit ćemo tržeu mtricu A iverzu s ozirom polzu mtricu A 6 kork Provjerimo vrijedi li: A A A A E Reciproč mtric i trspoir reciproč mtric ) Reciproč mtric A * kvdrte mtrice A[ ik ] je mtric kofktor A ik elemet ik zde mtrice, tj: [ A ik ] A * ) Trspoir reciproč mtric ili djugir mtric ~ * A se doiv preklpjem reciproče mtrice oko glve dijgole, p vrijedi: A ~ * A, det A odoso iverz mtric kvdrte regulre mtrice A je jedk trspoiroj recipročoj mtrici ~ * A podijeljeoj s determitom A mtrice A etljije o rgu mtrice Sudetermitom red k (m,)-mtrice A, pri čemu vrijedi d (k m), (k ), ziv se determit, koj se sstoji od k elemet kojim je poredk sčuv i leže u sjecištu ekih k redk i ekih k stupc Ko što sm već reko, rgom mtrice A se ziv jveći red što g mogu imti sudetermite mtrice koje su rzličite od ule Očito je d zog kvdrtog olik determiti jveći red l sudetermite je uvijek jedk mjem roju od rojev redk m i stupc (zmo d kod kvdrte mtrice m, p je od lm) Mtric A im rg l ko je r jed od tih sudetermiti rzličit od ule No, poištvju li se sve te determite red l, tre promtrti sudetermite red (l ) Rzlik između mjeg od rojev m i, te rg mtrice r se zove defekt mtrice lje, ko mtric im rg r, td se r-red sudetermit rzličit od ule ziv temelj sudetermit Slijedeći teoremi su vezi uz rg produkt i zroj mtric: ) Rg produkt dviju ili više (općeito prvokutih) mtric e može iti veći od rg pojediih fktor ) Možejem prvokute mtrice s regulrom (kvdrtom) mtricom (ilo slijev, ilo zdes) e mijej se je rg 3) vije (m,)-mtrice su ekvivlete od i smo od ko im je isti rg vije prvokute mtrice A i B se zivju ekivletim ko se jed u drugu mogu prevesti elemetrim opercijm, tj izmjeom dvju redk ili stupc, ztim možejem redk ili stupc s ekim fktorom rzličitim od ule, te poslijetku prirjjem pomožeog retk ili stupc s ekim fktorom, ekom drugom retku ili stupcu Od pišemo A B, odoso A je ekvivleto B 4) vije (m,)-mtrice A i B ekvivlete su od i smo od, ko postoji kvdrt regulr m-mtric C i kvdrt regulr -mtric, tko d vrijedi:
0 CAB 5) vije (m,)-mtrice A i B imju isti rg od i smo od, ko postoje kvdrt regulr m-mtric C i kvdrt regulr -mtric tko d vrijedi: CAB 6) Ako (m,p)-mtric A im rg r, (p,)-mtric B im rg s, od z rg t jihov produkt CAB koji je (m,) mtric vrijedi: t r+s p 7) Nulitet ν kvdrte -mtrice rg r je rzlik jezi red i rg, odoso: ν r Sylvesterov zko ulitet glsi: Nulitet produkt dviju ili više kvdrtih mtric je veći ili jedk ulitetu ilo kojeg drugog fktor, mji je ili jedk zroju ulitet svih fktor okz teče idukcijom 8) Rg zroj dviju ili više mtric istog olik j jviše jedk zroj rgov pojediih sumd Rješvje lierih mtričih jeddži Pomoću do sd vedeog grdiv u stju smo riješiti mtriče jeddže olik: AXB odoso YAC, () i () logo rješvjući jeddže ko što ismo rješvli i sklre jeddže olik x i yc, dok su ovdje: A zd regulr (m,p)-mtric, B i C zde prvokute (m,) i (,p)-mtrice, te su X i Y tržee (p,) i (,m)-mtrice x postoji, ko vrijedi d je 0 od možimo slijev s (odoso - ): ( ) x x AXB možimo slijev s A - : ( A AX A B) ( X A B) YAC možimo slijev s A : ( YAA CA ) ( Y CA ) kle, postupk je formlo jedk Može se promtrti i još općeitij jeddž od ovih:
ili još općeitije: AXC B, (3) AXC + AXC + + A XC B (4) k k Jeddže tkvog olik se zivju liere mtriče jeddže Ako je u jeddži (), odoso B i X su jedostupči vektori, i to je B m-kompoeti, X je p-kompoeti vektor Od se jeddž () može zpisti ovko: p x p x (5) m m mp x p m Ili ko zpišemo vektore kko se iče pišu, tj mlim slovim: Ax Ako se produkt lijevoj stri jeddže (5) izmoži, doiv se: x + x + + pxp x + x + + px p x + x+ + x m m mp p m (6) Jedkost mtric u izrzu (6) zči d elemeti u istim položjim morju iti jedki, tj: x + x + + pxp x + x + + pxp x + x + + x m m mp p m (7) kle, mtrič jeddž () s ekvivlet je sustvu od m lierih jeddži s p epozic x, x,, x p Prolem rješvj tkvih jeddži ću orditi u dijelu: Rješvje sustv lierih jeddži pomoću mtričog rčuj Ako se sheme mtric A i B u jeddži () spoje u jedu mtricu tko d slijev stoje elemeti mtrice A, s des elemeti mtrice B, doivmo poveću mtricu C mtriče jeddže (): T je mtric (m,p+)-mtric Z slučj, it će: p p C (8) m m mp m m m
p p C (9) m m mp m Kod mtričih jeddži postoje slijedeći teoremi: ) Nek rg (m,p)-mtrice A izosi r, rg poveće mtrice C prem izrzu (9) je jedk s Od jeddž (5) (odoso Ax) im rješeje od i smo od, ko je rs No, ko je r<s ( td je užo rs ) jeddž Ax em rješej Rješeje je jedozčo određeo ko je rsp, što je moguće smo ko je m p, tj ko mtric A im rem toliko redk koliko im stupc Ako je rs<p, od postoji ( r) prmetrsko rješeje ) Jeddž Ax0, gdje je A (m,p)-mtric, 0 je m-kompoeti ulvektor, x je p-kompoeti vektor, im uvijek tzv trivijlo rješeje x0 To je rješeje jedio ko je rp, što je moguće smo ko je m p Ako je r<p, od postoji ( r)-prmetrsko rješeje koje trivijlo x0 sdržv ko specijl slučj rugi specijl slučj odgovr jeddži () kd je mp, tj kd su A, B i X kvdrte mtrice, i A je regulr mtric Rješeje se odmh doiv možeći slijev s A : A AX EX X A B 3) Nek je rg (m,p)-mtrice A jedk r, rg (m,)-mtrice B jedk t, rg poveće mtrice C prem izrzu (8) jedk s Od jeddž () im rješeje od i smo od, ko je rs Ako je r<s, jeddž () em rješej Rješeje je jedozčo određeo (im smo jedo rješeje) ko je rsp, što je moguće smo ko A im rem redk koliko im stupc Ako je rs<p, od postoji ( r)-prmetrsko rješeje 4) Jeddž: AX 0 kod koje je A (m,p)-mtric rg r, X je (p,)-mtric, 0 je (m,)-ulmtric, im uvijek trivijlo rješeje X0, tj (p,)-ulmtricu To je jedio rješeje ko je rp Ako je r<p, od postoji ( r)-prmetrsko rješeje, koje sdržv X0 ko specijl slučj 5) Ako su -mtrice A i B djelitelji ule tko d vrijedi: AB0, i ko A im rg r i ulitet µ, B im rg s i ulitet ν, od vrijedi: 0<r<, 0<s< i r+s, 0<µ<, 0<ν< i µ+ν Rješvje sustv lierih jeddži pomoću mtričog rčuj Rčuje pomoću mtric omogućv prikzivje sustv lierih jeddži u zijeom i pregledijem oliku i time zto olkšv rčuje, omogućv i određivje skupi epozic ) Sustv ehomogeih lierih jeddži Nek immo zd sustv od m ehomogeih lierih jeddži s epozic:
3 x + x + + x x + x + + x x + x + + x m m m m (0) Sustv ehomogeih jeddži (0) je komptiil ko postoji rem jedo rješeje {,,, } koje pretvr sve jeddže u idetitete, odoso je ikomptiil ili protivrječ ko e postoji iti jedo tkvo rješeje Komptiil sustv jeddži je određe ko postoji jedo rješeje, odoso eodređe ko postoji eskočo mogo rješej Možemo koeficijete sustv jeddži zpisti ko mtricu koeficijet sustv jeddži: A m m m Ako mtrici A dodmo stupc sloodih člov,,,, doit ćemo prošireu mtricu koeficijet sustv jeddži: B m m m m Ako se prisjetimo mtričih lierih jeddži, možemo vidjeti d jeddže sustv (0) imju rješej od i smo od, ko je rg r mtrice A jedk rgu s proširee mtrice B Ako je r<s jeddže su protivrječe p em rješej Ako je rs, što je moguće ko vrijedi d je roj jeddži m roju epozic, rješeje je jedozčo određeo ) Sustv homogeih lierih jeddži Sustv homogeih lierih jeddži im općeito olik: x + x + + x 0 x + x + + x 0 () x + x + + x 0 m m m Rg mtrice A koeficijt sustv jeddži () i rg proširee mtrice B su jedki (po svojstvim mtric), p je homogei sustv uvijek komptiil Očito je d tj sustv uvijek im ulto, tzv trivijlo rješeje x x x 0 i homogei sustv jeddži imo još rješej rzličitih od trivijlog, užo i dovoljo je d rg mtrice A koeficijet sustv jeddži ude mji od roj epozic (r<) i sustv jeddži im td eskočo mogo rješej koj se mogu zpisti ko: { } k, k,, k,
4 gdje je k ilo koji roj Ako sustv () im t rješej koj su rzličit od ule: { α, α,, α }, { β, β,, β },, { ω, ω,, ω }, () od im i eskočo rješej koj se mogu ovko zpisti: { k α + k β + + k ω k α + k β + + k ω },,, (3) t t gdje su k, k,, k t ilo koji rojevi rzličiti od ule Rješej (3) se zivju liere komicije rješej () Rješej () sustv jeddži () su liero ezvis ko iti jedo od jih ije lier komicij ostlih rješej Temelji sustv rješej čii t tih rješej, ko je ilo koje rješeje sustv jeddži () lier koicij ostlih rješej Uvjet postojj temeljog sustv jeddži je d rg r mtrice A koeficijet jeddži ude mji od roj epozic (r<), dok z r temelji sustv e postoji i jeddže imju smo trivijlo rješeje Ako je r<, temelji sustv se sstoji od ( r) liero ezvisih rješej Rstvljje mtric u lokove Ako immo zd sustv od pr lierih jeddži s epozic, tremo odrediti smo p epozic, mtrice možemo rstviti prvcim prlelim s stupcim i recim mtric u lokove ko mtriče elemete te zde mtrice Immo zd sustv: x + x + + x y x + x + + x y (4) x + x + + x y m m m m Tj sustv možemo zpisti ko YAX, ko ozčimo s Y mtricu y y, s X mtricu y x x, x s A mtricu koeficijet zdog sustv (4) ismo riješili zdi sistem tržeći smo prvih p epozic, možemo zpisti mtricu A u oliku:,, p, p+, p, p, p p, p+ p, A p+, p+, p p+, p+ p+,,, p, p+, A A 3 4 A A
5 Možemo smtrti d se mtric A sstoji od četiri mtrice A, A, A 3 i A 4 Alogo se i doiv: y x yp Y x p X Y i X y p Y + x p X + y x Sustv (4) se može prikzti ko: Y A Y A 3 4 A X A X Može se smtrti d su mtrice uutr mtric elemeti sustv p možemo pisti: lje isključujemo X iz druge jeddže: p doivmo: Y AX + AX Y A X + A X 3 4 AX Y AX A 4 3 4, ( ) X A Y A X 4 3 Ako to uvrstimo u prvu jeddžu, doivmo ko koči olik: 4 ( ) Y A A Y A A A A X, 4 3 što je sustv od p jeddži olik YAX koje e sdržvju x p+,, x IV LITERATURA r ig ANILO BLANUŠA: Viš mtemtik, I dio, prvi svezk, Tehičk kjig, Zgre 965, str 33-363 ZORA BAKARIĆ: Komitorik, determit, vektorski rču, litičk geometrij prostor, Sveučilište u Zgreu, Zgre 963, str 4-3
6 r STANKO BILINSKI: Alitičk geometrij (s uvodom u lieru lgeru), Sveučilište u Zgreu, Zgre 963, str 5-8 Prof dr ig BORIS APSEN: Repetitorij više mtemtike, treći dio, Tehičk kjig, Zgre 994, str - Prof dr ig BORIS APSEN: Repetitorij više mtemtike, četvrti dio, Tehičk kjig, Zgre 994, str 33-80 I I PRIVALOV: Alitičk geometrij, Zvod z izdvje udžeik, Srjevo 968, str 33-80 Eciklopedij leksikogfskog zvod, Leksikogrfski zvod, Zgre 967, općeite defiicije mtrice i determite