Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare de baza
Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară Fie Γ corpul numerelor reale Γ = R sau complexe Γ = C. Definiţie Se numeşte spaţiu liniar (vectorial) peste Γ o mulţime V înzestrată cu cu două legi de compoziţie: -o lege internă + : VxV V, (u, v) u + v, u, v V -o lege externă : ΓxV V, (λ, u) λ u, u V, λ Γ faţă de care sunt satisfacute axiomele:
Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară Definiţie 1 (u + v) + w = u + (u + w) u, v, w V 2 0 V V, astfel ca u + 0 V = 0 V + u = u, u V 3 u V, ( u) V astfel ca u + ( u) = ( u) + u = 0 V 4 u + v = v + u, u, v V 5 λ (u + v) = λ u + λ v λ Γ, u, v V 6 (λ + µ) u = λ u + µ u, λ, µ Γ, u V 7 λ (µ u) = (λµ) u, λ, µ Γ, u V 8 1 u = u
Observaţii Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară Elementele lui V se numesc vectori, iar cele din Γ scalari. 1. (V, +) formează grup abelian. 2. În axioma 6. in membrul I este + dintre scalari, iar in membrul II intre vectori. 3. În axioma 8. 1 este elementul neutru la înmulţirea din corpul Γ. 4. Notăm cu 0 elementul neutru faţă de adunarea din Γ.
Consecinţe Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 1 λ 0 V = 0 V, λ Γ 2 0 u = 0 V, u V 3 λ u = 0 V λ = 0 sau u = 0 V
Exemple Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 1 V = R n, n N faţă de R. 2 F = {f : R R, f funcţie}faţă de R. 3 Mulţimea vectorilor din spaţiu faţă de R. 4 Mulţimea polinoamelor cu coeficienţi reali R[X] faţă de R. 5 Mulţimea matricelor M mn (Γ) faţă de Γ.
Subspaţiu liniar Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară Definiţie Fie V un spaţiu liniar peste Γ. V 1 V se numeşte subspaţiu liniar dacă V 1 împreună cu restricţiile operaţiilor de adunare si înmulţire cu scalari formează o structură de spaţiu liniar.
Caracterizarea unui subspaţiu Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară Teoremă Fie V un spaţiu liniar peste Γ. V 1 V este subspaţiu liniar dacă şi numai dacă au loc 1 u, v V 1 rezultă u + v V 1 2 u V 1, λ Γ rezultă λ u V 1.
Exemple Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 1 V 1 = C[a, b] mulţimea funcţiilor continue pe [a, b] este subspaţiu in F 2 V 1 = {u = (x 1, x 2, x 3 ) x 1 x 2 + 2x 3 = 0} este subspaţiu in R 3. 3 Dacă V 1, V 2 V sunt două subspaţii liniare, atunci intersecţia lor este subspaţiu liniar
Acoperire (înfăşurătoare) liniară Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară Definiţie Fie V spaţiu liniar peste Γ. Numim combinaţie liniară a elementelor u 1, u 2,, u n V, n N elementul de forma n λ i u i = λ 1 u 1 + λ 2 u 2 + + λ n u n, λ i Γ, i = 1,, n. i=1 Definiţie Fie V spaţiu liniar peste Γ şi A V. Numim acoperire liniară a mulţimii A, mulţimea tuturor combinaţiilor liniare finite cu elemente din A.
Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară Notăm cu Sp A spaţiul generat. Deci { } n Sp A = u = λ i u i λ i Γ, i = 1,, n, u i A, n N. i=1
Proprietăţi Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară Teoremă Sp A este subspaţiu liniar peste Γ. Teoremă SpA coincide cu intersecţia tuturor subspaţiilor care conţin A.
Noţiunea de spaţiu liniar Mulţime infinită liniar independentă Definiţie Vectorii u 1, u 2,, u n V se numesc liniar dependenţi dacă există scalarii λ i, i = 1,, n, n N nu toţi nuli astfel ca Definiţie λ 1 u 1 + λ 2 u 2 + + λ n u n = 0 V Vectorii u 1, u 2,, u n V se numesc liniar independenţi dacă din λ 1 u 1 + λ 2 u 2 + + λ n u n = 0 V rezultă λ i = 0, i = 1,, n
Mulţime infinită liniar independentă Exemple.Caracterizare a dependenţei liniare 1. Vectorul {0 V } este liniar dependent. 2. Orice vector u 0 V este liniar independent. Teoremă Vectorii u 1, u 2,, u n sunt liniar dependenţi dacă şi numai dacă un vector este o combinaţie liniară a celorlalţi.
Demonstraţie. Noţiunea de spaţiu liniar Mulţime infinită liniar independentă Presupunem că u 1, u 2,, u n sunt liniar dependenţi. Există scalarii λ i, i = 1, n, nu toţi nuli astfel ca λ 1 u 1 + λ 2 u 2 + + λ n u n = 0 V Schimbând eventual ordinea presupunem că λ 1 0. Împărţim prin λ 1 avem u 1 = λ 2 λ 1 u 2 λ n λ 1 u n Presupunem că u 1 este o combinaţie liniară de ceilalţi; Există deci β 2,, β n astfel ca De unde obţinem u 1 = β 2 u 2 + + β n u n. 1 u 1 β 2 u 2 β n u n = 0 V.
Mulţime infinită liniar independentă Mulţime infinită liniar independentă Definiţie Mulţimea V 1 V, infinită, se numeşte liniar independentă dacă orice n elemente sunt linar independente, n N. Definiţie Spaţiul V se numeşte infinit dimensional dacă conţine o submulţime infinită liniar independentă. Spaţiul F este infinit dimensional, deoarece mulţimea 1, x, x 2, x 3,..., x n, este o submulţime infinit dimensională.
Notiunile de dimensiune şi bază Schimbarea coordonatelor unui vector la o schimbare de baza Definiţie Spaţiul V are dimensiunea n, n N dacă conţine n elemente liniar independente şi oricare n + 1 sunt liniar dependente. Definiţie Nimim bază a unui spaţiu n- dimensional oricare n vectori liniar independenţi. Dacă {u 1,, u n } formează o bază, notăm B = {u 1,, u n }.
Exemple Noţiunea de spaţiu liniar Schimbarea coordonatelor unui vector la o schimbare de baza În spaţul R n, spaţiu liniar peste R vectorii e 1 = (1, 0,, 0) e 2 = (0, 1, 0,, 0) e n = (0, 0,, 1) formează o bază numită baza canonica sau uzuală.
Caracterizare a unei baze Schimbarea coordonatelor unui vector la o schimbare de baza Teoremă Mulţimea B = {u 1,, u n } este o bază a spaţiului liniar n-dimensional V dacă şi numai dacă orice element u V poate fi scris unic ca o combinaţie liniară de vectorii bazei. Aceasta înseamnă că există scalarii λ 1,, λ n Γ unic determinaţi astfel ca u = λ 1 u 1 + λ 2 u 2 + + λ n u n. λ 1,, λ n se numesc coordonatele vectorului u în baza B. Vom mai nota (λ 1,, λ n ) B sau sub forma unei matrice: X = λ 1 λ 2 λ n.
Demonstraţie Noţiunea de spaţiu liniar Schimbarea coordonatelor unui vector la o schimbare de baza Deoarece V are dimensiunea n şi B = {u 1,, u n } este o bază, rezultă că mulţimea {u, u 1,, u n } este liniar dependentă. Există scalarii α 1, α 2,, α n+1 nu toţi nuli astfel ca α 1 u 1 + + α n u n + α n+1 u = 0 V. Observăm că α n+1 0, deoarece în caz contrar ar rezulta u 1,, u n sunt liniar dependenţi. Rezultă u = α 1 u 1 α 1 u n. α n+1 α n+1 Arătăm unicitatea scalarilor. Presupunem că u = β 1 u 1 + + β n u n = γ 1 u 1 + + γ n u n. Rezultă (β 1 γ 1 ) u 1 + + (β n γ n ) u n = 0 V, deci β i = γ i.
Schimbarea coordonatelor unui vector la o schimbare de baza Fie B = {u 1,, u n } cu proprietatea că orice vector se exprimă unic ca o combinaţie liniară. În particular pentru vectorul 0 V există scalarii α 1 = = α n = 0, unic determinaţi astfel ca 0 V = α 1 u 1 + + α n u n. Deci u 1,, u n sunt liniar independenţi. Cum orice u 0 V se exprimă ca o combinaţie liniară de u 1,, u n rezultă că {u, u 1,, u n } este liniar dependentă, deci spaţiul are dimensiunea n şi B este o bază.
Exemple Noţiunea de spaţiu liniar Schimbarea coordonatelor unui vector la o schimbare de baza 1. Mulţimea polinoamelor cu coeficienţi reali, de grad n, R n [X] este spaţiu liniar de dimensiune n + 1. 2. Mulţimea matricelor M mn (R) este spaţiu liniar de dimensiune m n.
Caracterizarea rangului unei matrice Teoremă Fie A M m,n (Γ). Atunci are loc Schimbarea coordonatelor unui vector la o schimbare de baza rang (A) = dim Sp{L 1,, L m } = dim Sp{C 1,, C n }, (1) unde L i, i = 1,, m sunt liniile, iar C i, i = 1,, n coloanele matricei A. Demonstraţie. Demonstrăm că rang (A) = dim Sp{C 1,, C n }. (2) Notăm r = rang (A) min{m, n}. Arătăm că r dim Sp{C 1,, C n }. (3) Pentru aceasta este suficient să arătăm că primele r coloane (schimbând eventual ordinea)sunt liniar independente.
Schimbarea coordonatelor unui vector la o schimbare de baza Fie combinaţia liniară λ 1 C 1 + + λ r C r = 0 R m, echivalentă cu λ 1 a 11 + λ 2 a 12 + + λ r a 1r = 0 λ 1 a r1 + λ 2 a r2 + + λ r a rr = 0 λ 1 a m1 + λ 2 a m2 + + λ r a mr = 0 Notăm B = (a ij ), i, j = 1,, r şi din definiţia rangului lui A, det (B) 0. Primele r linii devin B λ 1 λ r = 0 0 Amplificând la stânga cu B 1, rezultă λ i = 0, i = 1,, r, deci (3) este adevărată..
Reciproc Noţiunea de spaţiu liniar Schimbarea coordonatelor unui vector la o schimbare de baza Fie ik = a 11 a 1r a 1k a r1 a rr a rk a i1 a ir a ik Dacă i r sau k r, avem evident ik = 0. Fixăm k = 1,, n şi dezvoltăm ik după ultima linie. Avem. ik = A 1 a i1 + A 2 a i2 + + A r a ir + det(b)a ik = 0. a ik = A 1 det(b) a i1 A r det(b) a ir, i = 1, m.
Schimbarea coordonatelor unui vector la o schimbare de baza Deducem C k = A 1 det(b) C 1 A r det(b) C r. Deci pentru k = r + 1,, n coloanele C k sunt liniar dependente de primele r coloane. Rezultă dim Sp{C 1,, C r } r. (4) Din (3) şi (4) rezultă (2); teorema este demonstrată dacă observăm că rang A = rang A t.
Consecinţă. Noţiunea de spaţiu liniar Schimbarea coordonatelor unui vector la o schimbare de baza Mulţimea soluţiilor unui sistem liniar şi omogen este spaţiu liniar de dimensiune n r unde n este numărul de necunoscute r este rangul matricei.
Matricea de schimbare de bază Schimbarea coordonatelor unui vector la o schimbare de baza Fie V un spaţiu n dimensional şi bazele B = {e 1,, e n } şi B = {e 1,, e n}. Vectorii e i se exprimă în mod unic in funcţie de vectorii bazei B după formulele e i = n c ji e j. (5) j=1 Matricea C = (c ji ), i, j = 1,, n se numeşte matrice de schimbare de bază. Observaţie Matricea C are pe coloane coordonatele vectorilor e i în baza B şi evident det (C) 0.
Schimbarea coordonatelor unui vector la o schimbare de baza Schimbarea coordonatelor unui vector la o schimbare de baza Teoremă Fie V un spaţiu n dimensional în care avem bazele B = {e 1,, e n } şi B = {e 1,, e n}. Fie vectorul u V care are coordonatele (α 1,, α n ) B şi respectiv (α 1,, α n) B în cele două baze. Atunci are loc α 1 α 2 α n = C 1 α 1 α 2 α n (6)
Demonstraţie Noţiunea de spaţiu liniar Schimbarea coordonatelor unui vector la o schimbare de baza Vectorul u poate fi scris în cele două baze Înlocuim (5) şi avem u = n α i e i = i=1 n α j e j. j=1 u = n α i e i = i=1 n i=1 α i n c ji e j = j=1 = n n ( c ji α i ) e j j=1 i=1
Schimbarea coordonatelor unui vector la o schimbare de baza Din unicitatea exprimării unui vector avem α j = n i=1 c ji α i, j = 1,, n Matriceal devine α 1 α 2 α n = C α 1 α 2 α n Deoarece matricea C este nesingulară, afirmaţia este dovedită.
Schimbarea coordonatelor unui vector la o schimbare de baza Dacă notăm X = α 1 α 2 α n X = α 1 α 2 α n relaţia (6) devine X = C 1 X. (7)