Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice

Σχετικά έγγραφα
Integrale cu parametru

Seminariile 1 2 Capitolul I. Integrale improprii

Analiza matematică, clasa a XI-a probleme rezolvate Rolul derivatei întâi

Lucian Maticiuc SEMINAR 1 3. Capitolul I: Integrala definită. Primitive. 1. Să se arate că. f (x) dx = 0. Rezolvare:

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

CURS I II. Capitolul I: Integrala definită. Primitive. 1 Integrabilitate Riemann. Criterii de integrabilitate

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

π } R 4. ctg:r\{kπ} R FuncŃii trigonometrice 1. DefiniŃii în triunghiul dreptunghic 2. ProprietãŃile funcńiilor trigonometrice 1.

Sisteme diferenţiale liniare de ordinul 1

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

Integrale generalizate (improprii)

CAPITOLUL VII EXTINDERI ALE CONCEPTULUI DE INTEGRALĂ DEFINITĂ

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n.

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

ME.09 Transformate Fourier prin sinus şi cosinus

MULTIMEA NUMERELOR REALE

sin d = 8 2π 2 = 32 π

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn.

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Curs 4 Serii de numere reale

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Integrala nedefinită (primitive)

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

Metode iterative pentru probleme neliniare - contractii

Ecuatii trigonometrice

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Tema: şiruri de funcţii

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

SEMINAR TRANSFORMAREA FOURIER. 1. Probleme

Asupra unei inegalităţi date la barajul OBMJ 2006

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

Functii Breviar teoretic 8 ianuarie ianuarie 2011

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. = înălţimea triunghiului echilateral h =, R =, r = R = bh lh 2 A D ++ D. abc. abc =

Fourier Analysis of Waves

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

1. ŞIRURI ŞI SERII DE NUMERE REALE

Curs 1 Şiruri de numere reale

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite

Fie I R un interval deschis, G R n, n 1, un domeniu şi f : I G R n. Forma generala a unei ecuaţii diferenţiale de ordinul întâi este: = f(x, y).

Ion CRĂCIUN ANALIZĂ MATEMATICĂ CALCUL INTEGRAL EDITURA PIM

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15

CAPITOLUL 6 FORME LINIARE, BILINIARE ŞI PĂTRATICE. 6.1 Forme liniare

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Curs 2 Şiruri de numere reale

lim lim lim lim (criteriul cu şiruri); lim lim = lim ; Limite de funcńii NotaŃii: f :D R, D R, α - punct de acumulare a lui D;

Principiul Inductiei Matematice.

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l +

Teorema Rezidurilor şi Bucuria Integralelor Reale

Metode de interpolare bazate pe diferenţe divizate

z a + c 0 + c 1 (z a)

Geometria triunghiului

2 Ecuaţii diferenţiale Ecuaţia diferenţială de ordinul n... 55

ANALIZĂ MATEMATICĂ pentru examenul licenţă, manual valabil începând cu sesiunea iulie 2013 Specializarea Matematică informatică coordonator: Dorel I.

EcuaŃii de gradul al doilea ax 2 + bx + c = 0, a,b,c R, a 0 1. Formule de rezolvare: > 0 b x =, x =, = b 2 4ac; sau

VII.2. PROBLEME REZOLVATE

f(x) dx. f(x)dx = 0 Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 7: Ολοκλήρωµα Riemann Α Οµάδα

REZUMAT CURS 3. i=1. Teorema 2.2. Daca f este (R)-integrabila pe [a, b] atunci f este marginita

METODE ŞI ETAPE NECESARE PENTRU DETERMINAREA

cateta alaturata, cos B= ipotenuza BC cateta alaturata AB cateta opusa AC

Ioan ROŞCA CALCUL NUMERIC. Elemente de teoria aproximarii

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ

2 ELEMENTE DE CALCUL VARIAŢIONAL

ANALIZĂ MATEMATICĂ Noţiuni teoretice şi probleme rezolvate. Mircea Olteanu

riptografie şi Securitate

CONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii

Cursul 14 ) 1 2 ( fg dµ <. Deci fg L 2 ([ π, π]). Prin urmare,

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

7. INTEGRALA IMPROPRIE. arcsin x. cos xdx

4.7. Stabilitatea sistemelor liniare cu o intrare şi o ieşire

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.

J F (ρ, ϕ, θ) = cos ϕ ρ sin ϕ 0. Teoremă (a diferenţiabilităţii compuse) (legea lanţului) Fie F : D deschis

5.1. Noţiuni introductive

CONCURSUL NAŢIONAL DE MATEMATICĂ APLICATĂ "ADOLF HAIMOVICI" ETAPA FINALĂ - 22 mai 2010

TITULARIZARE 2002 Varianta 1

Lucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b.

Seminariile Capitolul IX. Integrale curbilinii

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

DRUMURI, ARCE ŞI LUNGIMILE LOR

MARCAREA REZISTOARELOR

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

Laborator 11. Mulţimi Julia. Temă

CAPITOLUL 1. ELEMENTE DE ALGEBRA


CURS VII-IX. Capitolul IV: Funcţii derivabile. Derivate şi diferenţiale. 1 Derivata unei funcţii. Interpretarea geometrică.

Profesor Blaga Mirela-Gabriela DREAPTA

f(x) dx. f(x)dx = 0. f(x) dx = 1 < 1 = f(x) dx. Θα είχαµε f(c) = 0, ενώ η f δεν µηδενίζεται πουθενά στο [0, 2].

Transcript:

Educţi Mtemtică Vol. 1, Nr. (5), 59 68 Asupr unei metode pentru clculul unor integrle definite din functii trigonometrice Ion Alemn Astrct In this pper is presented one method of clcultion for the trigonometricl integrls. Mthemticl Suject Clssifiction: 97D5 1 În clculul integrlei f(x)dx unde f : [,] R este o funcţie integrilă, este utilă schimre de vriilă + x = t deorece prin e se pstreză limitele de integrre, oţinând f( + t)dt 59

6 Ion Alemn Acestă metodă se foloseşte deseori şi l integrle definite ce conţin funcţii trigonometrice. Mi întâi vom enunţ câtev propoziţii, după cre cu jutorul lor, prin prticulrizări,vom clcul câtev integrle din funcţii trigonometrice. Propoziţi 1. ([1], []) Dcă, R, <,s = + şi f : [,] R este o functie integril pe [,], tunci: f(x)dx = f(s x)dx Demonstrţie. Fcem schimre de vriilă t = ρ(x) = s x cu ρ (x) = 1,ρ() =,ρ() = şi tunci : f(x)dx = f(s x)( 1)dx = f(s x)dx Propoziţi. ([1], []) Dcă, R, <,s = + şi funcţiile integrile f, g : [, ] R u proprietăţile: f(s x) = f(x),g(x) + g(s x) = c R, x [,] tunci: f(x)g(x)dx = c f(x)dx Demonstrţie. Comform propoziţiei 1, vem: f(x)g(x)dx = f(s x)g(s x)dx = f(x)g(s x)dx

Asupr unei metode pentru clculul unor integrle... 61 Prin urmre: f(x)g(x)dx + f(x)g(s x)dx = = f(x)[g(x) + g(s x)]dx = c f(x)dx Propoziţi 3. Dcă, R, <,s = + ir f : R R, g : R R + sunt funcţii integrile stfel încât: tunci: f(s x) = f(x),g(x) + g(s x) R +, x [,] f(x)g(x) g(x) + g(s x) dx = Demonstrţie. Conform propoziţiei 1, vem: f(x)g(x) g(x) + g(s x) dx = de unde oţinem că: f(x)dx f(s x)g(s x) g(x) + g(s x) dx = f(x)g(s x) g(x) + g(s x) dx f(x)g(x) + f(x)g(s x) dx = f(x)dx g(x) + g(s x) dică relţi din enunţ. 1.1 Aplicţii 1. Să se clculeze: ln(1 + tgx)dx

6 Ion Alemn Soluţie. ln(1 + tgx)dx = = 4 ln de unde rezultă 8 ln Generlizre plicţiei 1 r fi : Să se clculeze: ln(1 + tg( 4 x))dx = ln(1 + tgx)dx = 4 ln I ln[1 + tg( + )tgx]dx cu < Soluţie. Conform propoziţiei 1 vem : ln[1 + tg( + )tgx]dx = ln 1 + tg 4 1 + tgx dx = [Mihi Sndu G.M 9/] ln[1 + tg( + )tg( + x)dx = = = tg( + ) tgx ln[1 + tg( + ) 1 + tg( + )tgx ]dx = ln 1 + tg ( + ) 1 + tg( + )tgx dx = de unde 1 ( ) ln[1 + tg ( + )] I =. Să se clculeze: I 1 = (sin x) cos x (sin x) cos x +(cos x) sin x dx ln[1 + tg ( + )] I (tgx) ctgx (tgx) ctgx +(ctgx) tgx dx dcă, R, < < şi + =.

Asupr unei metode pentru clculul unor integrle... 63 Soluţie. Din propoziţi 1 rezultă că: I 1 = [sin( x)]cos( x) [sin( x)]cos( x) + [cos( x)]sin( x)dx = = (cos x) sin x (cos x) sin x + (sinx) cos xdx = I 1 dr I 1 + I 1 =, de unde I 1 =. Anlog I = (ctgx) tgx (ctgx) tgx + (tgx) ctgxdx = I1 dr I + I =, deci I = O generlizre cestei plicţii r fi: I = I 1 = (sin n x) cosn x (sin n x) cosn x +(cos n x) sinn ndx (tg n x) ctgn x (tg n x) ctgnx +(ctg n x) tgn xdx cu, R, < < şi + =,n N [D. M. Bătineţu Giurgiu, [3]] Vlore celor dou integrle este ceeşi, dică I 1 = I =. 3. Să se clculeze : Soluţie. I= = (cos 4 x + sin 4 x) ln(1 + tgx)dx [D. Acu G.M 8 /1985] [cos 4 ( x) + sin4 ( x)] ln[1 + tg( 4 x)]dx = (cos 4 x + sin 4 x) ln dx = = ln 1 + tgx (cos 4 x + sin 4 x)dx I

64 Ion Alemn Prin urmre, ln (sin 4 x + cos 4 x)dx = 3 3 ln 4. Dcă (, ] şi R, să se clculeze 4 (x x + ) ln(1 + tgtgx)dx [V.Gorgot-GM 4/1998] Soluţie. Fie f(x) = x x +,g(x) = ln(1 + tgtgx) Este evident că: f(-x)=f(x) si g(-x)=ln(1+tg )-g(x), x [,] tunci conform proprietăţii 3 f(x)g(x) = 1 ln(1 + tg ) f(x) = = 1 ln(1 + tg ) (x x + )dx = ln(1 + tg )( ) O generlizre prolemelor 4 şi 5 r fi: dcă, R + cu < şi f : [,] R este o funcţie integrilă stfel încât f(x) = f( + x) x [,], tunci: f(x) ln[1 + tg( + )tgx]dx = ln[1 + tg ( + )] 5. Să se clculeze f(x)dx (sin 4 x + cos 4 x) ln(1 + tg x )dx

Asupr unei metode pentru clculul unor integrle... 65 Soluţie. [sin 4 ( x) + cos4 ( x)] ln[1 + tg( 4 x )] = (sin 4 x + cos 4 x) ln 1 + tg x dx = = ln (sin 4 x + cos 4 x)dx I De unde Generlizre. ln (sin 4 x + cos 4 x)dx = 3 ln 16 Dintr-un clcul nlog se oţine: (sin n x + cos n x) ln(1 + tg x )dx, n N, ln (sin n x + cos n x)dx Dr folosind formulele de recurenţă pentru I n = sin n xdx şi J n = cos n xdx, dică I n = 1 n sinn 1 x cos x + n 1 n I n, n J n = 1 n cosn 1 x sin x + n 1 n J n, n.

66 Ion Alemn Oţinem: I n = J n = (n 1)!! (n)!! Prin urmre: 6. Să se clculeze: ln (n 1)!!. (n)!! 1 (x x + 1) ln(1 + tg x 4 )dx Soluţie. Fie f,g : [, 1] R cu f(x) = x x + 1, g(x) = ln(1 + tg x 4 ) Deorece f(1 x) = f(x) şi g(1 x) = ln(1+tg ) g(x) rezultă tunci 4 că vem, conform propoziţiei 3: 1 1 ln(1 + tg 4 ) (x x + 1)dx = ln 3 Generlizre. Dcă (, 1], R să se clculeze (x x + ) ln(1 + tg 4 tgx 4 )dx Soluţie. Fie f,g : [,] R cu f(x) = x x + 1, g(x) = ln(1 + tg x 4 tg 4 ) [D.Btinetu OCTOGON./] Deorece f( x) = f(x) şi g( x) = ln(1 + tg ) g(x) tunci : 4 1 ln(1 + tg 4 ) f(x)dx

Asupr unei metode pentru clculul unor integrle... 67 7. Să se clculeze 1 (x 4 x 3 + x x 1) ln(1 + tg x 4 )dx Soluţie. Procedând nlog c mi sus oţinem: 13 ln 3 Generlizre. Dcă (, 1], R şi f : [,] R cu Atunci f(x) = x 4 x 3 + x 3 x + [D.Acu G.M.7/198] f(x) ln(1 + tg 4 tgx 4 )dx = 1 ln(1 + tg 4 ) f(x)dx 8. Să se clculeze: Soluţie. Punem u(x) = cos3 x 1+e x şi notăm cos 3 x 1 + e xdx t = + x Atunci u( t) = et cos 3 t 1+e t, de unde u(x) + u( x) = cos 3 x. Se oţine: u(x)dx = u( x)dx = [cos 3 x u(x)]dx = [L.Niculescu G.M./1998] cos 3 xdx I de unde 3.

68 Ion Alemn Generlizre Să se clculeze: Se oţine: cos n+1 x 1 + e x dx,n N u( x)dx = [cos n+1 x u(x)]dx = cos n+1 xdx I De unde cos n+1 xdx = (n)!! (n + 1)!!, n N. Biliogrfie [1] D.M.Btineţu-Giurgiu, Anliză mtemtică proleme pentru cls XII-, MATRIXROM Bucureşti [] Colecti Gzet mtemtic [3] Colecti Revist Octogon Grupul Şcolr Energetic Siiu E-mil: mi l co@yhoo.com