Obi ne diferencijalne jednadºbe

Σχετικά έγγραφα
VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1

1.4 Tangenta i normala

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Lokalni ekstremi funkcije vi²e varijabla

Matematika 4. t x(u)du + 4. e t u y(u)du, t e u t x(u)du + Pismeni ispit, 26. septembar e x2. 2 cos ax dx, a R.

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

FUNKCIJE DVIJU VARIJABLI (ZADACI)

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

VJEŽBE IZ MATEMATIKE 1

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Funkcije dviju varjabli (zadaci za vježbu)

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Osnovne teoreme diferencijalnog računa

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Matematika 1 - vježbe. 11. prosinca 2015.

Obične diferencijalne jednadžbe 2. reda

Riješeni zadaci: Limes funkcije. Neprekidnost

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

Matematička analiza 1 dodatni zadaci

( , 2. kolokvij)

Linearna algebra 2 prvi kolokvij,

ELEKTROTEHNIČKI ODJEL

2. KOLOKVIJ IZ MATEMATIKE 1

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IZVODI ZADACI (I deo)

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

2.7 Primjene odredenih integrala

Teorem 1.8 Svaki prirodan broj n > 1 moºe se prikazati kao umnoºak prostih brojeva (s jednim ili vi²e faktora).

3.1 Granična vrednost funkcije u tački

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

DIFERENCIJALNE JEDNADŽBE

Matematika 2. Vježbe 2017/ lipnja 2018.

1 Promjena baze vektora

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

ELEMENTARNA MATEMATIKA 1

41. Jednačine koje se svode na kvadratne

Riješeni zadaci: Nizovi realnih brojeva

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

1 Obične diferencijalne jednadžbe

Integrali Materijali za nastavu iz Matematike 1

Elementi spektralne teorije matrica

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

Linearna algebra 2 prvi kolokvij,

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

7 Algebarske jednadžbe

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

LEKCIJE IZ MATEMATIKE 2

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

Sadrºaj. 1 Vektorska algebra 1. 2 Analiti ka geometrija 2. 3 Analiti ka geometrija u ravni 3. 4 Analiti ka geometrija u prostoru 4

Numerička matematika 2. kolokvij (1. srpnja 2009.)

TRIGONOMETRIJSKE FUNKCIJE I I.1.

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

18. listopada listopada / 13

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

Obične diferencijalne jednadžbe

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

y f x y g x Bernouli diferencijalna jed.: y' f x y g x y n realni broj; Svodi se na linernu dif.jed. Homogena diferencijalna jed.

Kaskadna kompenzacija SAU

MATERIJAL ZA VEŽBE. Nastavnik: prof. dr Nataša Sladoje-Matić. Asistent: dr Tibor Lukić. Godina: 2012

SISTEMI NELINEARNIH JEDNAČINA

Uvod Kako naći ortogonalne trajektorije. 1 Polje smjerova. 2 Eulerova metoda za rješavanje dif. jednadžbi prvog reda. 3 Ortogonalne trajektorije

5. PARCIJALNE DERIVACIJE

RIJEŠENI ZADACI I TEORIJA IZ

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

VJEŽBE IZ MATEMATIKE 2. Ivana Baranović Miroslav Jerković

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Uvod u teoriju brojeva

TEHNIƒKA MEHANIKA 2 Osnovne akademske studije, III semestar

Zavrxni ispit iz Matematiqke analize 1

Ispitivanje toka i skiciranje grafika funkcija

IZVODI ZADACI (I deo)

Iterativne metode - vježbe

MATEMATIKA 2. Ivan Slapničar Nevena Jakovčević Stor Josipa Barić. Zbirka zadataka.

( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( )

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Operacije s matricama

5. poglavlje (korigirano) DERIVACIJA FUNKCIJA

ZI. NEODREðENI INTEGRALI

PRIMJER 3. MATLAB filtdemo

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje 6 1 / 60

4.1 Elementarne funkcije

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

2.6 Nepravi integrali

Prikaz sustava u prostoru stanja

I N Ž E N J E R S K A M A T E M A T I K A 2. Glava IV : DIFERENCIJALNE JEDNAČINE PRVOG REDA

Transcript:

VJEŽBE IZ MATEMATIKE Ivana Baranović Miroslav Jerković Lekcija 1 Obične diferencijalne jednadžbe 1. reda

Obi ne diferencijalne jednadºbe Uvodni pojmovi Diferencijalne jednadºbe su jednadºbe oblika: f(, y, y, y,..., y (n) ) = 0 (1) (ovdje je y = y()), dakle one koje sadrºe osim same funkcije y() i njezine derivacije. Primjer 1 Dane su diferencijalne jednadºbe prvog, drugog i etvrtog reda: a) y + y y 3 = 0, b) y + ln y sin = 0, c) y (4) y + y + 3 = 0. Iz primjera je jasno da je red diferencijalne jednadºbe jednak najve em stupnju derivacije koja se u jednadºbi pojavljuje. Neka funkcija predstavlja rje²enje diferencijalne jednadºbe ako ju zadovoljava, tj. ako kad uvrstimo odgvaraju e parametre s lijeve strane (1) s desne zaista dobijemo nulu. Primjer Provjerite da je funkcija y() = 5 rje²enje sljede e diferencijalne jednadºbe: y = y. Rje²enje: Imamo y y = 0. U na²em primjeru je y () = 10. Sada uvr²tavamo na²e funkcije u jednadºbu: y y = 10 5 = 10 10 = 0 pa je y = 5 zaista rje²enje dane dif. jednadºbe. Zadatak 1 Provjerite da li su navedene funkcije rje²enja zadanih dif. jednadºbi: a) y = y +, y() = 1, b) y + y = 0, y() = 3 sin 4 cos, c) y y + y = 0, y 1 () = e, y () = e d) ( + y)d + dy = 0, y() = C Napomena: Kao i uvijek, vrijedi y = dy d y + = y isto ²to i dy + d = yd. i to tako shva amo pa je npr Ako je zadana neka diferencijalna jednadºba, grafove njenih rje²enja nazivamo integralnim krivuljama. Ponekad su zadane porodice krivulja i zanima nas koja je njihova pripadna dif. jednadºba. Nju nalazimo tako da jednadºbu zadane porodice deriviramo dok ne dožemo u mogu nost konstante izrazimo preko, y, y, y,... i time jednadºba familije krivulja postane oblika (1). Dakle, moramo derivirati onoliko puta koliko imamo nezavisnih konstanti. Primjer 3 Nažite diferencijalnu jednadºbu porodice parabola zadane s y() = C. Skicirajte tu porodicu. 1

Rje²enje: Traºimo prvo dif. jednadºbu, deriviramo jedanput (jer je jedna konstanta) pa imamo: y () = C C = y Sada to uvr²tavamo u po etnu jednadºbu na²ih krivulja da se rije²imo konstante i dobivamo izraz: y = y y = y ²to je traºena diferencijalna jednadºba te familije krivulja. Rije je o ito o svim parabolama s tjemenom u ishodi²tu: Zadatak Odredite diferencijalne jednadºbe sljede ih familija krivulja i skicirajte te familije: a) y() = C, b) y() = C 1 ( C ), c) y() = Ce, d) + y = C. Separacija varijabli, homogene jednadºbe Diferencijalne jednadºbe rje²avaju se razli itim metodama. Mi emo raditi samo one najjednostavnije. Ve ini tih metoda cilj je diferencijalnu jednadºbu na ovaj ili onaj na in (npr supstitucijom) svesti na oblik koji zovemo: diferencijalna jednadºba sa separiranim varijablama. Taj oblik znamo direktno rije²iti. Naime, kod separiranih varijabli imamo situaciju da se jednadºba moºe zapisati ovako: y = g(y)f() gdje funkcija g ima za varijablu samo y, a funckija f samo (otuda i naziv "separirane varijable"). Sada g(y) prebacujemo na suprotnu stranu a y zapi²emo kao dy d i dobivamo: 1 dy g(y) d = f() dy g(y) = f()d. Zadnju jednakost moºemo sada integrirati i dobiti rje²enje.

Primjer 4 Rije²ite diferencijalnu jednadºbu: yy = 1. Rje²enje: To je o ito slu aj separiranih varijabli, imamo: yy = 1 y = 1 y 1 pa je g(y) = 1 y 1 a f() =. Prebacujemo g na suprotnu stranu i integriramo: ydy = 1 d 1 ydy = d. Rije²imo integrale i dobivamo: y = ln + C. Obi no rje²enja i ostavljamo u ovakvom implicitnom obliku jer je eksplicitni oblik ponekad nemogu e dobiti. Rje²enje koje je u implicitnom obliku nazivamo jo² i integralom jednadºbe. Gornja konstanta C upu uje na to da imamo itavu familiju rje²enja ustvari. Njihovi grafovi daju gore spomenute familije integralnih krivulja. Zadatak 3 Rije²ite sljede e diferencijalne jednadºbe sa separiranim varijablama: a) y y = y 3, b) y = y, c) y sin = y ln y, d) (tan )dy yd = 0. Kao ²to vidimo, rje²enja diferencijalnih jednadºbi prvog reda nisu jedinstvena ve imamo jednu proizvoljnu konstantu (vidi i kod integralnih krivulja, dobijemo itavu porodicu njih). Ako uzmemo jednadºbu drugog reda, dobit emo dvije proizvoljne konstante, za onu tre eg reda tri itd. Stoga rje²enja dif. jednadºbe zovemo i op im rje²enjem. Ako ºelimo jedinstveno rje²enje, moramo dodati neke zahtjeve kao ²to su vrijednosti rje²enja y = y() (ili neke njegove derivacije) u nekoj specijalnoj to ki. Da bi imali jedinstveno rje²enje, tih uvjeta mora biti koliki je stupanj jednadºbe i oni se zovu po etni uvjeti. Rje²enje koje njih zadovoljava zove se partikularno rje²enje. Primjer 5 Nažite partikularno rje²enje koje zadovoljava sljede e po etne uvjete: (1 + e ) y y = e, y(0) = 1. Rje²enje: Rje²avamo prvo zadanu diferencijalnu jednadºbu: (1 + e ) y y = e dy d = 1 y e 1 + e pa slijedi: ydy = e y d 1 + e = ln(1 + e ) + C. 3

Koristimo po etni uvjet da odredimo konstantu C: 1 = y (0) = ln(1 + e 0 ) + C = ln + C C = 1 ln i traºeno partikularno rje²enje je: y = ln(1 + e ) + 1 ln. Zadatak 4 uvjete: Nažite partikularno rje²enje koje zadovoljava sljede e po etne a) (y + )d + ( y y)dy = 0, y(0) = 1, b) y sin = y ln y, y( π ) = 1, c) y = y, y(1) =. Priježimo sada na novu grupu jednadºbi kao primjer jednadºbi koje se jednostavnom supstitucijom svode na jednandºbe sa separiranim varijablama: homogene diferencijalne jednadºbe. To su one jednadºbe koje moºemo zapisati u sljede em obliku: y = f ( y ). () Supstitucija je y = u gdje je u = u() nova nepoznata funkcija i onda imamo y = u + u. Primjer 6 Nažite op e rje²enje jednadºbe y = y 1. Rje²enje: O ito je rije o homogenoj jednadºbi () gdje je f(t) = t 1. Uvodimo supstituciju y = u i dobivamo: odnosno u + u = u 1 u = 1 du = 1 d u = ln + ln C. Sada je y = u = ( ln + ln C) = ln C. Primjer 7 Za jednadºbu ( + y )d = ydy nažite porodicu integralnih krivulja i izdvojite one krivulje koje prolaze kroz to ku (4, 0) odnosno (1, 1). Rje²enje: Imamo: ( + y )d = ydy y = 1 ( ) y + y y = 1 ( y + y ). To je homogena jednadºba () za f(t) = 1 (t 1 + t). Supstitucija y = u nam daje: u + u = 1 ( ) 1 u + u u = 1 u 1 u u = 1 1 u. u 4

Stoga imamo: u 1 u du = 1 d 1 ln(1 u ) = 1 ln ln C ln(1 u ) = ln()+ln C pa je 1 C = u y ²to daje: = 1 C y = C. Jer je C proizvoljna konstanta, moºemo to zapisati i ovako: y = C ( C) y = C. Integralne krivulje su o ito hiperbole: Nažimo sada integralnu krivulju koja prolazi to kom (4, 0). To je ustvari graf rje²enjak koje zadovoljava po etni uvjet y(4) = 0. Kad to uvrstimo u op e rje²enje dobivamo: (4 C) y (4) = C (4 C) = C 16 8C = 0 ²to zna i da je C =, odnosno rije je o hiperboli ( ) y = 4: Drugi po etni uvjet nam daje y(1) = 1 pa za konstantu C dobivamo: (1 C) y (1) = C (1 C) 1 = C iz ega slijedi C = 0. Ovaj put dobivamo y = 0 degeneriranu hiperbolu, ²to su ustvari pravci y = ±: 5

Zadatak 5 Integrirajte diferencijalne jednadºbe: a) y = +y, b) ( y)yd dy = 0, c) yd + ( y )dy = 0, d) dy yd = + y d. Linearne diferencijalne jednadºbe prvog reda Diferencijalnu jednadºbu oblika: y + P ()y = Q() (3) nazivamo linearnom (jer sadrºi samo y i y a ne i neke druge lanove kao npr y ili sin y). Da bi njih rije²ili koristit emo novu metodu koju nazivamo metoda varijacije konstanti. Ona se bazira na sljede em: 1) rije²imo prvo pripadnu homogenu jednadºbu odnosno y + P ()y = 0. Kao ²to vidimo, to je slu aj varijable sa separiranim varijablama pa dobivamo dy = P ()d ln y = P ()d + ln C. y Stoga je rje²enje homognene jednadºbe: y = C e P ()dy. (4) ) Rje²enju homogene jednadºbe moramo nekako dati slobodu mijenjanja da ga moºemo prilagoditi nehomogenoj jednadºbi. Po²to je jedino C u (4) proizvoljan, od njega napravimo funkciju C() pa emo rje²enje nehomogene traºiti u obliku y() = C()e P ()d. šelimo da ono zadovoljava (3) pa nam treba i njegova derivacija: y () = C ()e P ()d C()P ()e P ()d. 6

Uvrstimo dobiveno u (3) i imamo: C ()e P ()d C()P ()e P ()d + P ()C()e P ()d = Q() C ()e P ()d = Q(). i iz toga lako izra unamo integriranjem traºeni C() koji potom uvrstimo u y() = C()e P ()d i dobijemo rje²enje nehomogene jednadºbe. Primjer 8 Nažite op i integral jednadºbe y y =. Rje²enje: Ovdje je o ito P () = 1 a Q() =. Sprovodimo gornji postupak: 1) pripadna homogena jednadºba je: y y = 0 ²to daje dy y = d ln y = ln + ln C y = C. ) konstanta C postaje funkcija pa rje²enje nehomogene traºimo u obliku y = C(). Deriviranje daje y = C () + C() pa iz uvr²tavanja y i y u y y = dobivamo: C () + C() C() = C () = C () = 1 i o ito je C() = + D pa je kona no rje²enje y = ( + D). Primjer 9 Nažite partikularno rje²enje koje zadovoljava sljede e uvjete: y + y e = 0, y(a) = b. Rje²enje: Q(): Prvo jednadºbu prebacujemo u oblik (3) da prepoznamo P () i y + y = e P () = 1, Q() = e. Sada je pripadna homogena jednadºba y + y = 0 i njeno rje²enje je: dy y = d ln y = ln + ln C y = C. Prema tome, rje²enje nehomogene traºimo u obliku: y = C() i onda je y = C () C(). Uvr²tavamo to u po etnu jednadºbu i slijedi: C () C() + C() = e C () = e pa je kona no op e rje²enje y = e +D. Ostaje na i partikularno tj. odrediti konstantu D iz uvjeta y(a) = b. Imamo b = y(a) = ea + D a 7 D = ab e a

i partikularno rje²enje je y = e +ab e a. Zadatak 6 Nažite op a rje²enja jednadºbi: 1) dy d + y = 3, ) y y tan = cos, 3) y y 1 = 1 +. Zadatak 7 Nažite partikularna rje²enja jednadºbi koja zadovoljavaju navedeni uvjet: 1) y y 1 = 1 +, y(0) = 0, ) y y tan = 1 cos, y(0) = 0. 8