KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5
KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n, x y. Dokažite da je pravac kroz točke x i y. P = { (1 t)x + ty t R }
KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n, x y. Dokažite da je pravac kroz točke x i y. P = { (1 t)x + ty t R } 2. Dokažite: A R n je afini skup ako i samo ako za svake dvije točke x, y A sadrži pravac kroz x i y.
KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n, x y. Dokažite da je pravac kroz točke x i y. P = { (1 t)x + ty t R } 2. Dokažite: A R n je afini skup ako i samo ako za svake dvije točke x, y A sadrži pravac kroz x i y. 3. Dokažite: C R n je konveksan konus ako i samo ako za sve x, y C, t 0 vrijedi t(x + y) C.
4. Neka je H = {x R n a x = β} hiperravnina, a H + = {x R n a x β} i H = {x R n a x β} zatvoreni poluprostori odredeni s H. Dokažite da su skupovi H, H + i H konveksni. 2/5
4. Neka je H = {x R n a x = β} hiperravnina, a H + = {x R n a x β} i H = {x R n a x β} zatvoreni poluprostori odredeni s H. Dokažite da su skupovi H, H + i H konveksni. 2/5 5. Zadani su vektori z R n, b R m i matrica A R m n. Dokažite da je skup svih rješenja problema linearnog programiranja z x max, Ax b konveksan.
4. Neka je H = {x R n a x = β} hiperravnina, a H + = {x R n a x β} i H = {x R n a x β} zatvoreni poluprostori odredeni s H. Dokažite da su skupovi H, H + i H konveksni. 2/5 5. Zadani su vektori z R n, b R m i matrica A R m n. Dokažite da je skup svih rješenja problema linearnog programiranja z x max, Ax b konveksan. 6. Neka je. : R n R norma, a R n i r > 0. Dokažite da je zatvorena kugla B(a, r) = {x R n x a r} konveksan skup.
4. Neka je H = {x R n a x = β} hiperravnina, a H + = {x R n a x β} i H = {x R n a x β} zatvoreni poluprostori odredeni s H. Dokažite da su skupovi H, H + i H konveksni. 2/5 5. Zadani su vektori z R n, b R m i matrica A R m n. Dokažite da je skup svih rješenja problema linearnog programiranja z x max, Ax b konveksan. 6. Neka je. : R n R norma, a R n i r > 0. Dokažite da je zatvorena kugla B(a, r) = {x R n x a r} konveksan skup. 7. Dokažite da su skupovi P = {(x, y) R 2 y x 2 } i H = {(x, y) R 2 x > 0, y > 0, xy 1} konveksni.
8. Neka su K 1, K 2 R n konveksni skupovi, A 1, A 2 R n afini skupovi i C 1, C 2 R n konveksni konusi. Dokažite da je K 1 + K 2 konveksan, A 1 + A 2 afin i C 1 + C 2 konveksan konus. 3/5
8. Neka su K 1, K 2 R n konveksni skupovi, A 1, A 2 R n afini skupovi i C 1, C 2 R n konveksni konusi. Dokažite da je K 1 + K 2 konveksan, A 1 + A 2 afin i C 1 + C 2 konveksan konus. 3/5 9. Neka je f : R m R n linearni operator i K 1 R m, K 2 R n konveksni skupovi, A 1 R m, A 2 R n afini skupovi i C 1 R m, C 2 R n konveksni konusi. Dokažite da su slika f(k 1 ) i praslika f 1 (K 2 ) konveksni skupovi, f(a 1 ) i f 1 (A 2 ) afini skupovi, a f(c 1 ) i f 1 (C 2 ) konveksni konusi.
8. Neka su K 1, K 2 R n konveksni skupovi, A 1, A 2 R n afini skupovi i C 1, C 2 R n konveksni konusi. Dokažite da je K 1 + K 2 konveksan, A 1 + A 2 afin i C 1 + C 2 konveksan konus. 3/5 9. Neka je f : R m R n linearni operator i K 1 R m, K 2 R n konveksni skupovi, A 1 R m, A 2 R n afini skupovi i C 1 R m, C 2 R n konveksni konusi. Dokažite da su slika f(k 1 ) i praslika f 1 (K 2 ) konveksni skupovi, f(a 1 ) i f 1 (A 2 ) afini skupovi, a f(c 1 ) i f 1 (C 2 ) konveksni konusi. 10. Presjek afinih skupova je afini skup. Presjek konveksnih skupova je konveksan skup. Presjek konveksnih konusa je konveksan konus.
8. Neka su K 1, K 2 R n konveksni skupovi, A 1, A 2 R n afini skupovi i C 1, C 2 R n konveksni konusi. Dokažite da je K 1 + K 2 konveksan, A 1 + A 2 afin i C 1 + C 2 konveksan konus. 3/5 9. Neka je f : R m R n linearni operator i K 1 R m, K 2 R n konveksni skupovi, A 1 R m, A 2 R n afini skupovi i C 1 R m, C 2 R n konveksni konusi. Dokažite da su slika f(k 1 ) i praslika f 1 (K 2 ) konveksni skupovi, f(a 1 ) i f 1 (A 2 ) afini skupovi, a f(c 1 ) i f 1 (C 2 ) konveksni konusi. 10. Presjek afinih skupova je afini skup. Presjek konveksnih skupova je konveksan skup. Presjek konveksnih konusa je konveksan konus. Definicije: linearna ljuska, afina ljuska, konveksna ljuska, konveksan konus generiran skupom.
11. Dokažite: { k aff S = t i x i x i S, t i R, conv S = { k t i x i x i S, t i 0, C(S) = { k t i x i } k t i = 1, k N } k t i = 1, k N } x i S, t i 0, k N 4/5
11. Dokažite: { k aff S = t i x i x i S, t i R, conv S = { k t i x i x i S, t i 0, C(S) = { k t i x i } k t i = 1, k N } k t i = 1, k N } x i S, t i 0, k N 4/5 12. Dokažite da za svaki skup S R m i linearni operator f : R m R n vrijedi f(conv S) = conv f(s).
11. Dokažite: { k aff S = t i x i x i S, t i R, conv S = { k t i x i x i S, t i 0, C(S) = { k t i x i } k t i = 1, k N } k t i = 1, k N } x i S, t i 0, k N 4/5 12. Dokažite da za svaki skup S R m i linearni operator f : R m R n vrijedi f(conv S) = conv f(s). 13. Neka je f : R m R n linearni operator i S R n. Dokažite da je conv f 1 (S) f 1 (conv S). Primjerom pokažite da obratna inkluzija ne vrijedi.
14. Dokažite da za A, B R n vrijedi conv(a + B) = conv A + conv B. 5/5
14. Dokažite da za A, B R n vrijedi conv(a + B) = conv A + conv B. 15. Neka je K R n konveksan skup i r > 0. Zatvorena kugla polumjera r oko K je skup B(K, r) = {x R n d(x, K) r}, gdje je je d(x, K) = inf x a. Dokažite da je B(K, r) konveksan skup. a K 5/5
14. Dokažite da za A, B R n vrijedi conv(a + B) = conv A + conv B. 15. Neka je K R n konveksan skup i r > 0. Zatvorena kugla polumjera r oko K je skup B(K, r) = {x R n d(x, K) r}, gdje je je d(x, K) = inf x a. Dokažite da je B(K, r) konveksan skup. a K 5/5 16. Za proizvoljan skup S R n definiramo njegovu jezgru kao skup svih točaka obzirom na koje je S zvjezdast, tj. ker S = {x S [x, y] S, y S} Dokažite da je ker S konveksan.
14. Dokažite da za A, B R n vrijedi conv(a + B) = conv A + conv B. 15. Neka je K R n konveksan skup i r > 0. Zatvorena kugla polumjera r oko K je skup B(K, r) = {x R n d(x, K) r}, gdje je je d(x, K) = inf x a. Dokažite da je B(K, r) konveksan skup. a K 5/5 16. Za proizvoljan skup S R n definiramo njegovu jezgru kao skup svih točaka obzirom na koje je S zvjezdast, tj. ker S = {x S [x, y] S, y S} Dokažite da je ker S konveksan. Konveksna analiza s primjenama www.math.hr/nastava/konv