MEHANIKA FLUIDA Zakon o količini kretanja zadatak Odrediti intenzitet sile kojom mlaz vode deluje na razdelnu račvu cevovoda hidroelektrane koja je učvršćena betonskim blokom (vsl) Prečnik dovodnog cevovoda je D3m prečnici grana koje dovode vodu u turbine iznose po dm a ugao nagiba prema osi glavnog cevovoda je α60 o Apsolutni pritisak na ulazu u račvu cevovoda je p 398kPa a ukupni protok kroz dovodni cevovod je Q 35 m 3 /s Masa vode u račvi iznosi m t Protok se deli ravnomerno na svaku turbinu Gubitke strujne energije zanemariti Projekcija račve je data u hidrauličkoj ravni aspored brzina u poprečnim presecima je ravnomeran Atmosferski pritisak je p a 03 kpa Primenimo zakon o količini kretanja na fluidni prostor - - 3-3 ( Qv + Qv 3 3 Qv ) F P+ P + P3 + G+ () gde su: PPP 3- sile pritiska u presecima - - 3-3 G - spoljašnja (gravitaciona) sila koja deluje na masu vode u razdelnoj račvi - sila kojom razdelna račva deluje na vodu; QQQ 3- odgovarajući protoci vode u presecima Kako voda deluje na zidove račve između preseka - - 3-3 silom N suprotnog smera a istog pravca i intenziteta sa silom (zakon akcije i reakcije) to je: N P + P + P + G+Q v Q v Q v () 3 3 3 Bernulijeve jednačine za preseke - i - kao i - i 3-3 glase: v p + p v p + p + + a m a m v pa + pm v3 pa + pm3 + + (3) () Jednačina kontinuiteta je: Q Q+ Q3 (5)
Kako je Q Q3 (protok se ravnomerno deli prema turbinama prema uslovu zadatka) sleduje da je: v v3 a iz jednačina (3) i () dobija se da je: p p m 3 Q Q3 Q 75 m / s Na osnovu Q i Q sračunavamo srednje brzine strujanja vode kroz preseke - - 3-3 i one su: Q Q v 95 m/s; v v3 557 m/s; d π Natpritisak u preseku - iznosi: pm p pa 398 03 95 kpa95000 Pa p p p + v v 9738 Pa Onda su sledeće sile pritiska u presecima - - 3-3 sledeće: P pm 0853 N d π P P3 pm 965 N Sada da ove veličine napišemo u vektorskom obliku: P Pi P Pcosα i + Psinαj P3 P3cosα i + P3sinαj G Gk N Nxi + Nyj+ Nzk v v i v v cosαi v sinαj v v cosαi v sinαj Iz jednačine (3) m m3 m ( ) m3 3 3 3 Zamenom ovih zapisa u jednačini () dobija se da su projekcije sile N date izrazima: N P P + P cosα+q v Q v cosα Q v cosα 83 N x 3 3 3 N P + P + Q v +Q v sin α 75698 N y 3 3 3 Nz G mg 08890 N Intenzitet sile N kojom mlaz vode deluje na račvu je: N N + N + N 70 N x y z
zadatak Horizontalna cev prolazi jednim delom na kome je prečnik smanjen sa vrednosti D 5m na D m kroz betonski blok kao što je prikazano na slici Odrediti natpritisak u preseku cevi kroz koju protiče voda protokom Q8 m 3 /s pod uslovom da horizontalna sila koju prima blok ne bude veća od 5 0 5 N - Napišimo zakon o količini kretanja za preseke i : Qv Qv P+ P+ G+ Gravitaciona sila se zanemaruje a Q Q Q Sila kojom tečnost deluje na blok je: P+ P +Q( v v) gde su: P Pi P P i v v i v vi P pma P pma p A p A +Q v v - Jednačina kontinuiteta je Q va va - Bernulijeva jednačina za preseke - i - je: v pa + pm v pa + pm + + Sada je sila : m m v p v p + + Q pm pm + ( v v) pm + A A m m Q Q pma pma Q A Q + A A A A A Q + pm ( A A ) A A A A Q A A A pm A A Površine poprečnih preseka cevi su: D π Dπ A 765 m i A 0785 m Unošenjem ovih vrednosti u izraz z p m dobija se da je: pm 5 bar
3 zadatak Kroz difuzor prikazan na slici sa manjim poprečnim presekom A 005m i većim A 0m struji voda protokom Q 0 m 3 /s u otvoreni rezervoar sa stalnim nivoom na visini hm a) Odrediti silu koja isteže zakivke koji spajaju difuzor sa rezervoarom b) Za slučaj da se rezervoar zatvori a iznad slobodne površine održava vakuum sila u zakivcima se smanjuje Odrediti pri kolikom vakuumu sila iščezava a) - Napišimo zakon o količini kretanja za preseke i pri čemu je Q Q Q: Qv Qv P+ P+ Q v v P + P + Sila kojom tečnost deluje na difuzor je: P+ P +Q( v v) gde su: P Pi pmai P Pi pmai v v i v v i pma + pma +Q( v v ) i Q v v p A + p A m m - Bernulijeva jednačina za preseke i : v p v p + + () - Bernulijeva jednačina za preseke i 0: p + v pa v gh + + () Iz () i () p pa + gh pm gh (3) p p v v p v Q Q - Jednačina kontinuiteta glasi: Q va va v i v A A Zamenom u izrazu za silu kojom tečnost deluje na difuzor doboja se: Q Q Q + pma pm + Q A A A A A m m + m + v Iz () p ( p + v v) v
Q + p ( A A ) Q A A Q + pm ( A A) A A A A Q +gh( A A) A A A Zamenom brojnih vrednosti dobija se da je: 67885 N m A A A A b) Stavljajući u poslednjem izrazu da je 0 dobija se da je: A Q A A A pm 3 Pa A A A kako je pv gh pm pv gh pm 09 bar Zadatak Slobodan mlaz idealne tečnosti protoka Q o udara u ravnu ploču pod uglom α60 o (vsl) Odrediti odnos protoka Q /Q delova mlaza tečnosti na koje se on podeli posle udara razdvaja Napišimo zakon o količini kretanja za fluidni prostor 0--: Qv +Qv Qv 0 0 P0 + P+ P + Q0v0 Qv Qv gde je: v v i v vi v v0cosαi v0sinαj Zamenom u poslednjoj jednačini dobija se: Q0v0cosαi Q0v0sinαj Qvi +Qvi Q v cosα+q v Q v i Q v sinαj 0 0 0 0 Pošto je fluid idealan x 0 tj Qv cosα+qv Qv 0 () 0 0 Iz Bernulijeve jednačine za 0 i v v 0 Iz Bernulijeve jednačine za 0 i v v 0
Dobija se da je: v v v 0 () - Iz jednačine kontinuiteta dobija se: Q0 Q+ Q (3) Zamenom () (3) u () dobijamo: 3 Q ( Q + Q ) + Q Q 0 Q Q 0 3 Q Sila kojom tečnost deluje na ploču je: Q v sinα y 0 0 5 zadatak Iz rezervoara u kome vlada konstantan natpritisak p m 8bar ističe voda kroz vertikalnu zakrivljenu cev na koju se nadovezuje mlaznik dužine l00 mm Ostali podaci su prema slici a500mm D50mm d50mm a) Zanemarujući masu vode u cevi mlazniku i rezervoaru odrediti silu i moment prouzrokovane isticanjem tečnosti koji opterećuju zakivke A i B b) Koliko će iznositi opterećenje zakivka B ako se mlaznik ukloni? Opterećenje zakivka A dobija se iz zakona o količini kretanja za zapreminu () i (): Q v v + P + P P 0 A Skalarni oblik ove jednačine je: A Q( v v) + pm Primenom Bernulijeve jednačine i jednačine kontinuiteta za odgovarajuće preseke: v pm v d π + + gl i v v dobija se: D A Qv Qv g l + d Sa druge strane Bernulijeva jednačina za neki presek u rezervoaru u kome voda miruje (3) i mlazni presek (): pm v + g(a + l) dobija se da je: p m v g(a + l) 39 m/s
d d π Onda je: v v 38 m/s; Q v 773 l/s D Onda je sila koja opterećuje (na istezanje) zakivke A: A 08989 N Pišući jednačinu za zakon o količini kretanja za zapreminu 3 3 imamo: B Q( v3 v) + P3 + P P 0 pa su projekcije ove sile na ose x i y: Bx Qv3 + pm3 By Qv Iz jednačine kontinuiteta je v3 v 38 m/s a iz Bernulijeve jednačine je: p m pm3 v3 + pm3 790 bar Onda je: Bx 785 N By 30509 N Pored sile B zakivci su opterećeni i momentom koji se izračunava iz zakona o momentu količine kretanja: ( r v)( vda) ( r P3 ) M A M - traženi moment; r - radijus vektor u odnosu na težište preseka (3) Poslednja jednačina s obzirom da vrzina v 3 i sile P 3 prolaze kroz težište preseka (3) svodi se na jednačinu: Qva M M 5555 Nm Smerovi ovog momenta je kao i smer kazaljke na satu b) Ako se mlaznik ukloni biće: Bx Qv3 + pm3 By Qv Iz jednačine kontinuiteta je v3 v a iz Bernulijeve jednačine je: pm v p + ga m pm3 v3 + dobija se: pm3 ga Q v pa se zamenom dobija da su: v v3 395 m/s pm3 905 Pa Q 700 l/s Dobija se da je: Bx 775 9 N By 766 N M a By 383 Nm