HIDRODINAMIKA JEDNADŽBA KONTINUITETA I BERNOULLIJEVA JEDNADŽBA JEDNADŽBA KONTINUITETA. s1 =

Σχετικά έγγραφα
( , 2. kolokvij)

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

Funkcije dviju varjabli (zadaci za vježbu)

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

Eliminacijski zadatak iz Matematike 1 za kemičare

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

INŽENJERSKA FIZIKA II Predavanja za 1. sedmicu nastave

Rad, energija i snaga

3.1 Granična vrednost funkcije u tački

Riješeni zadaci: Limes funkcije. Neprekidnost

TRIGONOMETRIJSKE FUNKCIJE I I.1.

Matematika 1 - vježbe. 11. prosinca 2015.

Repetitorij-Dinamika. F i Zakon očuvanja impulsa (ZOI): i p i = j p j. Zakon očuvanja energije (ZOE):

7 Algebarske jednadžbe

TRIGONOMETRIJA TROKUTA

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

1.4 Tangenta i normala

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Mehanika je temeljna i najstarija grana fizike koja proučava zakone gibanja i meñudjelovanja tijela. kinematika, dinamika i statika

Matematička analiza 1 dodatni zadaci

18. listopada listopada / 13

Riješeni zadaci: Nizovi realnih brojeva

šupanijsko natjecanje iz zike 2017/2018 Srednje ²kole 1. grupa Rje²enja i smjernice za bodovanje 1. zadatak (11 bodova)

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

Linearna algebra 2 prvi kolokvij,

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

Fakultet kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu Seminar 06 Plinski zakoni dr. sc. Biserka Tkalčec dr. sc.

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

konst. Električni otpor

ELEKTROTEHNIČKI ODJEL

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Elementi spektralne teorije matrica

BIPOLARNI TRANZISTOR Auditorne vježbe

Operacije s matricama

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

Ispitivanje toka i skiciranje grafika funkcija

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

PITANJA IZ MEHANIKE FLUIDA

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

numeričkih deskriptivnih mera.

6 Primjena trigonometrije u planimetriji

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

Fluidi. fluid je bilo koja tvar koja može teći. plinovi i tekućine razlika: plinovi su stlačivi, tekućine nisu (u većini slučajeva)

41. Jednačine koje se svode na kvadratne

m kg Mehanika fluida - hidrostatika Fluidi: plinovi i tekućine Gustoća: ρ 1 lit vode ~ masa od 1kg

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

A 2 A 1 Q=? p a. Rješenje:

MEHANIKA FLUIDA. Prosti cevovodi

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Dinamika tijela. a g A mg 1 3cos L 1 3cos 1

( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj

1 Promjena baze vektora

Rotacija krutog tijela

MEHANIKA FLUIDA II Što valja zapamtiti 59. Utjecaj gradijenta tlaka na izgled profila brzine i odvajanje strujanja u graničnom sloju

9. Vježbe. između fluida i remena za slučaj Q = 0.

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

RIJEŠENI ZADACI I TEORIJA IZ

Fizika 1. Auditorne vježbe 5. Dunja Polić. Dinamika: Newtonovi zakoni. Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva

Ampèreova i Lorentzova sila zadatci za vježbu

VOLUMEN ILI OBUJAM TIJELA

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

Otpornost R u kolu naizmjenične struje

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Teorijske osnove informatike 1

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Primjeri zadataka iz Osnova fizike

MEHANIKA FLUIDA dio 5

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

Izradio: Željan Kutleša, mag.educ.phys. Srednja tehnička prometna škola Split

7. Titranje, prigušeno titranje, harmonijsko titranje

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

( ) ρ = ρ. Zadatak 141 (Ron, gimnazija) Gustoća leda je 900 kg/m 3, a gustoća morske vode 1000 kg/m 3. Koliki dio ledene sante

MEHANIKA FLUIDA dio 2

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

ALFA List - 1. Festival matematike "Split 2013." Otvoreno ekipno natjecanje učenika osnovnih i srednjih škola Split, 10. svibnja 2013.

A MATEMATIKA Zadana je z = x 3 y + 1

13. и 14. novembar godine

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

SISTEMI NELINEARNIH JEDNAČINA

odvodi u okoliš? Rješenje 1. zadatka Zadano: q m =0,5 kg/s p 1 =1 bar =10 5 Pa zrak w 1 = 15 m/s z = z 2 -z 1 =100 m p 2 =7 bar = Pa

Osnovne teoreme diferencijalnog računa

Gauss, Stokes, Maxwell. Vektorski identiteti ( ),

4. Aerodinamički koeficijenti krila zbog rotacije

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A :

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

10. STABILNOST KOSINA

Transcript:

HIDRODINAMIKA JEDNADŽBA KONTINUITETA I BERNOULLIJEVA JEDNADŽBA Hidrodinamika proučava fluide (tekućine i plinove) u gibanju. Gibanje fluida naziva se strujanjem. Ovdje ćemo razmatrati strujanje tekućina. Strujanje tekućina može nastati zbog djelovanja sile teže (kada postoji visinska razlika, rijeke, npr.) i zbog razlike u tlakovima (s mjesta većeg na mjesto manjeg tlaka). Putanje duž kojih se čestice tekućine gibaju nazivaju se strujnicama. Ako sve čestice, prolaskom kroz neku točku, imaju istu brzinu u toj točki, onda takvo strujanje nazivamo stacionarnim. Kod stacionarnog strujanja, slika strujnica se ne mijenja tijekom vremena. kod turbulentnog strujanja, slika strujnica se stalno mijenja. Pri malim brzinama strujanje je stacionarno, iznad neke kritične brzine strujanje je turbulentno. stacionarno strujanje turbulentno strujanje Smjer brzine u svakoj se točki podudara sa smjerom strujnice kroz tu točku. Iznos brzine prikazuje se gustoćom strujnica; ondje gdje je brzina tekućine veća, veća je gustoća strujnica. rjeđe strujnice manja brzina čestica JEDNADŽBA KONTINUITETA gušće strujnice veća brzina čestica U našem proučavanju strujanja tekućina smatrat ćemo da su tekućine nestlačive (gustoća im je stalna). Dalje, smatrat ćemo da prilikom strujanja fluida ne postoji unutarnje trenje (čestice međusobno ne djeluju silama - idealni fluid). Na gornjoj slici strujnicama je prikazano strujanje tekućine kroz dva različita presjeka jedne cijevi. Većom gustoćom strujnica prikazana je veća brzina u užem dijelu cijevi. Izvedimo sada izraz koji pokazuje način strujanja idealne tekućine kroz cijev koja ima različite površine presjeka; veći, A i manji, A. Neka brzina čestica kroz presjek A iznosi v, a kroz presjek A iznosi v. Nakon vremena Δt, čestice koje su se nalazile na presjecima cijevi A i A, sada će se nalaziti na presjecima A' i A'. Zbog nestlačivosti tekućina, u vremenskom intervalu Δt kroz oba (sve) presjeka cijevi prođe jednaka masa tekućine: m = m () Kako su, prema definiciji gustoće, m = ρ V i m = ρ V, a iz geometrije znamo da su: V = A s = A v Δt, odn. V = A s = A v Δt, jednadžba () postaje: ρ A v Δt = ρ A v Δt /: ρ Δt A v = A v () Jednadžba () naziva se jednadžbom kontinuiteta. Za svaki presjek nepravilne cijevi, umnožak površine presjeka cijevi i brzine tekućine kroz taj presjek je konstantan. Koliko je puta površina presjeka šireg dijela cijevi veća od površine njezina užeg dijela, toliko je puta brzina strujanja tekućine kroz uži dio cijevi veća od one kroz širi dio cijevi. s = s s = v Δt - put jednolikog gibanja = visina cilindra volumena V

BERNOULLIJEVA JEDNADŽBA Uzroci gibanja fluida je njegova težina i razlika tlakova. Na gibanje fluida kroz horizontalnu cijev, težina nema utjecaja. Na gibanje tekućine kroz horizontalnu cijev utječe samo razlika tlakova. Promatrajmo gibanje fluida između dvaju presjeka horizontalne cijevi površina A i A. Na promatrani fluid djeluje okolni fluid, i to silom F na površinu A i silom F na površinu A. Sila F veća je od sile F, zbog čega se fluid giba s lijeva na desno. Nakon vremena Δt promatrani dio fluida nalazit će se između površina A' i A'. U tom vremenu dio fluida u širem dijelu cijevi prijeći će put Δs, a u užem put Δs. Za to vrijeme sila F obavi rad: W = F Δs = p A Δs = p ΔV a sila F obavi rad: W = -F Δs = -p A Δs = -p ΔV. Zbog nestlačivosti fluida, volumeni ΔV = A Δs i ΔV = A Δs jednaki su pa smo ih označili s ΔV. Rad sile F pozitivan je jer sila djeluje u smjeru gibanja. Kao sila F djeluje suprotno od smjera gibanja, rad te sile negativan je. Ukupan rad što ga obave obje sile (W = W + W ) jednak je promjeni kinetičke energije promatranog dijela fluida: W = ΔE k (zakon očuvanja energije promatranog dijela fluida) W + W = ΔE k (3) Kako se promatrani dio fluida u širem dijelu cijevi gibao brzinom v, a u užem brzinom v, promjena kinetičke energije iznosi: ΔE k = mv mv Uvrštavanjem izraza za W, W i ΔE k u izraz (3) dobije se: p ΔV p ΔV = mv mv /: ΔV p p = mv ΔV mv ΔV Kako je m = ρ gornja jednadžba, nakon prebacivanja sortiranja članova po indeksima i, postaje: ΔV p + ρv = p + ρv Posljednja jednadžba poznata je kao Bernoullijeva jednadžba ili Bernoullijev zakon. Članovi p i p, koji su posljedica kaotičnog gibanja čestica fluida nazivaju se statički tlakovi, a ρv i ρv, koji potječu od usmjerenog gibanja čestica fluida, nazivaju se dinamički tlakovi. Zbroj statičkog i dinamičkog tlaka naziva se hidrodinamički tlak i prema Bernoullijevoj jednadžbi ima konstantnu vrijednost za svaki presjek horizontalne cijevi. (4)

Bernoullijeva jednadžba nazvana je po švicarskom matematičaru, fizičaru, botaničaru, oceanografu i anatomu Danielu Bernoulliju (700. 78.), utemeljitelju hidrodinamike. Jednadžba koju je izveo za tekućine, približno vrijedi i za plinove, pa se kaže da Bernoullijeva jednadžba opisuje strujanje fluida. Bernoullijeva jednadžba objašnjava mnoge pojave i ima veliku primjenu u tehnici. Tako, npr., objašnjava let zrakoplova, koji je puno teži od zraka pa ga uzgon ne bi mogao držati u zraku. Oblik i položaj krila takvi su da, pri gibanju zrakoplova, zrak koji struji uz gornju stranu krila mora prijeći veći put (tj. većom brzinom) nego zrak koji struji uz donju stranu krila. Zbog veće brzine strujanja čestica zraka uz gornju stranu krila, veći je dinamički tlak, a prema Bernoullijevoj jednadžbi, manji je statički tlak iznad krila. Zbog manje brzine strujanja zraka, a to znači većeg statičkog tlaka s donje strane krila, rezultantna sila na zrakoplov usmjerena je prema gore. Kod jakog vjetra, brzina strujanja zraka iznad krova ima veliku vrijednost (v ), a ispod krova zrak gotovo miruje (v 0). Zato je, prema Bernoullijevoj jednadžbi, tlak (statički) s unutarnje strane krova puno veći od tlaka s vanjske strane. Kod kritične brzine v, razlika tlakova je dovoljno velika da digne krov. Raspršivač Objasni donju sliku! Suženje u kojem dolazi do povećanja brzine i smanjenja tlaka, zbog čega dolazi do podizanja parfema u horizontalnu cijev i njegovog raspršenja. p a p a

PITANJA I ZADATCI. Jednadžba kontinuiteta i Bernoullijeva jednadžba: a) vrijede za stlačive fluide b) vrijede za fluide u kojima postoji unutarnje trenje c) vrijede za sve fluide d) ne vrijede za sve fluide. Pustimo li slab mlaz vode iz slavine, opažamo da se on prema dolje stanjuje. Zašto? 3. Promjer strujne cijevi na mjestu A iznosi 3 cm, a na mjestu B 6 cm. Ako brzina strujanja tekućine na mjestu A iznosi 4 cm/s, koliki je njen iznos na mjestu B? d A = 3 cm, d B = 6 cm, v A = 4 cm/s, v B =? Prema jednadžbi kontinuiteta, veza površine nekog presjeka i brzine čestica kroz taj presjek dana je izrazom: A A v A = A B v B Uvrštavanjem izraza za površinu kružnog presjeka na mjestima A i B dobije se: π d A π 4 v A = d B 4 v B / 4 π v B = v A da d B = 4 cm s 3 cm 6 cm = 4 cm s 9 36 = cm s. v B = cm s. 4. Stacionarni tok vode prolazi presjekom cijevi od 50 cm brzinom 75 cm/s. Kolikom brzinom prolazi tok vode presjekom 0 cm? A = 50 cm, v = 75 cm/s, A = 0 cm, v =? A v = A v - jednadžba kontinuiteta v = v A A = 75 cm s 50cm 0cm = 375 cm s = 3,75 m s. v = 3, 75 m s 5. Koliki je unutarnji promjer cijevi kroz koju svake minute proteče 40 litara vode brzinom m/s? t = min = 0 s, V = 40 l = 40 dm 3 = 40 0-3 m 3 = 4 0 - m 3, v = m/s, d =? Umnožak površine presjeka (A) cijevi i puta (s) kojeg voda prijeđe jest volumen vode: V = A s Dijeljenjem ove jednadžbe s vremenom t u kojem voda prijeđe put s dobije se: V/t = A s/t pri čemu je s/t zapravo brzina strujanja vode v. Zato možemo pisati: V/t = A v () V/t naziva se protok vode q (ili fluida općenito), a A v nazivamo jakost struje (I) vode (fluida). Dakle, protok vode V/t (volumen koji kroz presjek cijevi prođe u sekundi) jednak je jakosti struje fluida. Površinu presjeka A = d π/4 uvrstimo u izraz (): V t = d π v d = 4 V 4 π v t = 4 4 0 3,4 0 =, 0 4 m d =, 0 4 m =,46 0 m =,46 cm. d =,46 cm.

6. Površina presjeka šireg dijela horizontalne strujne cijevi iznosi cm. Izmjereno je da presjekom užeg dijela cijevi protječe svake sekunde 0, l vode. Kolika je brzina strujanja vode u širem dijelu cijevi? A = cm = 0-4 m, t = s, V = 0, l = 0, dm 3 = 0, 0-3 m 3, v =? Za uži presjek cijevi možemo pisati: A v = V/t = 0-4 m 3 /s = 0-4 m 3 /s Za širi i uži presjek cijevi, jednadžba kontinuiteta glasi: A v = A v => v = v A /A = v A = V/t = 0-4 m 3 s - / 0-4 m = m/s. v = m/s. 7. Statički tlak idealnog fluida koji stacionarno protječe kroz horizontalnu cijev: a) veći je tamo gdje je brzina strujanja fluida veća b) veći je tamo gdje je brzina strujanja fluida manja c) ne ovisi o brzini strujanja fluida 8. Širim dijelom horizontalne cijevi struji voda brzinom 5 ms -. Kolika je brzina strujanja u užem dijelu cijevi ako razlika statičkih tlakova u širem i užem dijelu cijevi iznosi 0 kpa? v = 5 ms -, p p = 0 kpa = 0 4 Pa, v =? Bernoullijeva jednadžba za dva presjeka cijevi glasi: p + ρv = p + ρv ρv = ρv + p p v = v + ρ (p p ) v = 5 + 0 3 04 = 5 + 0 = 45 v = ξ45 = 6,7 m s. v = 6, 7 m s 9. U širokom dijelu horizontalne cijevi voda teče brzinom 8 cm/s pri statičkom tlaku 47 kpa. U uskom dijelu te cijevi statički tlak je 33 kpa. Koliko je puta površina presjeka šireg dijela cijevi veća od površine presjeka užeg dijela cijevi? v = 8 cms - = 0,08 ms -, p = 47 kpa, p = 33 kpa, A /A =? p + ρv = p + ρv v = ඨv + ρ (p p ) = ඨ0,08 + 0 3 (47 33) 03 = 5, 9 m/s Za dva presjeka cijevi vrijedi jednadžba kontinuiteta: A v = A v Traženi omjer površina presjeka jednak je: A / A = v /v = 5,9 ms - /0,08 ms - = 66 A / A = 66. 0. Širim dijelom horizontalno položene cijevi struji voda brzinom 4 m/s. Razlika tlakova šireg i suženog dijela iznosi 8 0 3 Pa. Kolika je brzina protjecanja u užem dijelu cijevi? (R: v = 5,66 m/s)