Ασκήσεις Τριγωνοµετρικοί Αριθµοί
|
|
- Φώτιος Αθανασιάδης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Ασκήσεις Τριγωνοµετρικοί Αριθµοί. Σε ορθογώνιο τρίγωνο ΑΒΓ ( Â =90 ο ) φέρουµε το ύψος Α. Ν.δ.ο. Γ ηµβ σφγ =. ΑΒ. Να υολογίσετε τους τριγωνοµετρικούς αριθµούς της γωνίας 5 ο. 3. Να υολογίσετε τους τριγωνοµετρικούς αριθµούς της γωνίας 3 4. Αν ισχύει < x <, ν.δ.ο. i) σφx 3συνx > 0 ηµx συνx + εφx > 0 5. Σ ένα ορθογώνιο τρίγωνο ΑΒΓ ( Â = 90 ο ): 5. 3 i) Να ορίσετε τους τριγωνοµετρικούς αριθµούς της γωνίας Bˆ. α Ν.δ.ο. εφβ + εφγ =. βγ 6. Σε οξυγώνιο τρίγωνο ΑΒΓ φέρουµε το ύψος Α. Ν.δ.ο. ΒΓ = ΑΓ συνγ + ΑΒ συνβ. 7. Σε τρίγωνο ΑΒΓ δίνονται: Βˆ = 45 ο, Γˆ = 30 ο και ΒΓ = 0( + 3 ). Να βρείτε το ύψος Α. 8. Σε ορθογώνιο τρίγωνο ΑΒΓ ( Â = 90 ο ) είναι Γˆ = 60 ο και ΒΓ = 7cm. Να υολογίσετε τα µήκη των καθέτων λευρών του. 9. Σε τρίγωνο ΑΒΓ είναι Βˆ = 45 ο, Γˆ = 30 ο και το ύψος Α έχει µήκος 3cm. Να υολογίσετε τα µήκη των λευρών του. 0. Όταν βρισκόµαστε στην όχθη ενός οταµού βλέουµε στην αέναντι όχθη ένα δένδρο µε γωνία ύψους 60 ο. Αν όµως αοµακρυνθούµε κατά 0 µέτρα, τότε βλέουµε το δένδρο µε γωνία ύψους 30 ο. Να υολογίσετε: i) Το ύψος του δένδρου. Το λάτος του οταµού. (Α.: 0, 0 3 )
2 . Αν ηµω = Ασκήσεις Τριγωνοµετρικές Ταυτότητες 5 και 80 ο 3 τριγωνοµετρικούς αριθµούς της γωνίας ω.. Αν γνωρίζετε ότι συνω = τριγωνοµετρικούς αριθµούς της γωνίας ω. < ω < 70 ο, να υολογίσετε τους άλλους 4 και 90 ο < ω < 80 ο, να υολογίσετε τους άλλους Αν είναι εφω =, < ω <, να υολογιστούν οι υόλοιοι τριγωνοµετρικοί 3 αριθµοί. 4. Να εξετάσετε αν υάρχει γωνία ω, για την οοία ισχύει ηµω = και συνω =. 5. i) Αν γνωρίζετε ότι εφθ = 3 και αράσταση Α = σφ θ + ηµ θ + συνθ. 3 < θ <, να υολογίσετε την Να εξετάσετε αν υάρχει τόξο φ για το οοίο να ισχύει ηµφ = Α. 6. i) Αν γνωρίζετε ότι σφθ = 3 και < θ <, να υολογίσετε την 33 αράσταση Α = σφ θ + ηµ θ + συνθ + (εφθ σφθ) 00 + (συν θ + ηµ θ) 004. Να εξετάσετε αν υάρχει τόξο φ για το οοίο να ισχύει ηµφ = Α. 7. Αν ισχύει 3ηµ α = συν α και είναι τριγωνοµετρικοί αριθµοί. < α <, να υολογιστούν όλοι οι 8. Αν γνωρίζετε ότι ισχύει ηµx + 3 συνx =, να υολογίσετε τα ηµx, συνx. 9. Αν γνωρίζετε ότι ισχύει 4εφω + 4σφω = 7, να υολογίσετε τα εφω, σφω. 0. Ν.δ.ο. για τυχαία γωνία α ισχύει: i) ηµ 3 α συν 3 α = ( συνα)( + συνα) ηµ 4 α συν 4 α = ( συνα)( + συνα) i συν 4 α + ηµ α συν α + ηµ α = iv) συν α + = v) vi) συνα εφα = + + συνα + = + συνα
3 Ασκήσεις Αναγωγή στο ο Τεταρτηµόριο. Να υολογιστούν οι τριγωνοµετρικοί αριθµοί των γωνιών 0 ο, 35 ο, 50 ο, 0 ο, 5 ο, 40 ο, 300 ο, 35 ο, 330 ο, 750 ο, 840 ο, 960 ο και των αντιθέτων τους.. Ν.δ.ο.: i) ηµ (45 ο ω) + ηµ (45 ο + ω) = ηµ (360 ο κ + ω) + συν (360 ο κ ω) =, κ Ζ i εφ x εφ 3 3. Αν α + β = ν.δ.ο. i) ηµ α + ηµ β = 6 συν α + συν β = i εφα εφβ = iv) σφα σφβ = + x = 4. Αν Α, Β, Γ γωνίες τριγώνου ν.δ.ο. i) ηµβ = ηµ(α + Γ) Γ Α+ Β ηµ = συν i ηµα = ηµ(α + Β + Γ) iv) εφ(3α + 3Β) + εφ3γ = 0 5. ίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Â = 90 ο ). Αν ισχύει ηµb συνγ = 4, να υολογίσετε τις γωνίες Β και Γ. (Α.: 60 ο, 30 ο ) 6. ίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Â = 90 ο ). Αν ισχύει ηµβ συνγ =, ν.δ.ο. το τρίγωνο ΑΒΓ είναι ισοσκελές. 7. Ν.δ.ο.: i) εφ ο εφ ο εφ3 ο εφ87 ο εφ88 ο εφ89 ο = (ηµ ο συν ο ) + (ηµ ο συν ο ) + + (ηµ89 ο συν89 ο ) = 0 8. Ν.δ.ο. ηµ α ηµ β - συν 3 β συν ( α) = ηµ α ηµ β 9. Για οιες τιµές των x, y R η αράσταση: Α = x y 3 3 ηµ(5 + α) + xσυν α + συν α είναι ανεξάρτητη του α. (Α.: x =, y =0)
4 Ασκήσεις Τριγωνοµετρικές Συναρτήσεις. Ν.δ.ο.: i) H f(x) = ηµx + 5συν4x έχει ερίοδο 3. H f(x) = 4σφ3x + 5ηµ4x έχει ερίοδο 3. i H f(x) = ηµ(x ) έχει ερίοδο. 3 iv) H f(x) = αηµ(ωx + β) έχει ερίοδο, α 0 και ω > 0. ω v) H f(x) = αεφ(ωx + β) έχει ερίοδο ω, α 0 και ω > 0.. Αν η συνάρτηση f είναι εριοδική µε ερίοδο Τ ν.δ.ο. i) H g µε g(x) = f(x + α) έχει ερίοδο Τ. Η h µε h(x) = f(αx), α > 0 έχει ερίοδο α T. 3. Να γίνει η γραφική αράσταση των συναρτήσεων: i) f(x) = ηµx i f(x) = ηµx f(x) = ηµ4x x iv) f(x) = 3ηµ v) f(x) = συν(x + 4 ) vi) f(x) = συνx + 3 v f(x) = + εφx 4. Το διάγραµµα της f(x) = αηµx + β ερνάει αό τα σηµεία Α, 3 και Β, 0. i) Να βρεθούν οι αριθµοί α, β R. Να γίνει ο ίνακας µονοτονίας και να βρεθούν τα ακρότατα της f. i Να γίνει η γραφική αράσταση της f. 5. H συνάρτηση f(x) = x β αηµ +, α, β R, x R, έχει µέγιστο τον αριθµό 5 και 4 η γραφική της αράσταση ερνάει αό το σηµείο Α(, 3). Να γίνει η γραφική αράσταση της f.
5 Ασκήσεις - Τριγωνοµετρικές Εξισώσεις. Να αντιστοιχίσετε σε κάθε τριγωνοµετρική εξίσωση της στήλης Α τις κατάλληλες λύσεις αό τη στήλη Β. ηµx = Α Β x = κ + 6 ή x = κ 6, κ Ζ συνx = 3 x = κ +, κ Z 7 εφx = 3 x = κ ή x = κ +, κ Ζ 6 6 σφx = 0 x = κ + 3, κ Ζ x = κ 3, κ Ζ. Να λύσετε τις εξισώσεις: i) ηµ3x = 3 συν 3 x + = 0 i εφ(x 0 o 4x ) = 3 iv) 3 εφ 5 = v) ηµ(x 60 o ) = συν(x + 0 o ) vi) εφ(x 3 ) = σφ(x + 4 ) v ( ηµx + )(εφ x )(συνx + 3 ) = 0 vi 4συν 3 x = 3συνx ix) ηµx εφx + = ηµx + εφx x) ηµx + συνx = ηµx xi) εφ(x 4 ) σφ(x + 3 ) = x + συνx = ηµx xi ηµ x συνx = 0 xiv) συν(ηµx) = xv) ηµ 3 x + συν 3 x = συνx xvi) συν 3. Να λυθούν στο [0, ] οι εξισώσεις: x εφx = 4 i) ηµ x 7ηµx + 3 = 0 εφx = σφx 4. Ν.δ.ο. η εξίσωση x xσυνω + συν ω = 0 έχει µια διλή ρίζα. Να βρεθεί ο ω (0, ) ώστε η ρίζα αυτή να είναι ρ = /. 5. ίνονται οι συναρτήσεις f(x) = 3εφ x και g(x) = εφx. Να βρεθούν τα κοινά τους σηµεία.
1.0 Βασικές Έννοιες στην Τριγωνομετρία
0 Βασικές Έννοιες στην Τριγωνομετρία Ένας αρατηρητής βρίσκεται σε μια όχθη ενός οταμού και βλέει στην αέναντι όχθη ένα δέντρο υό γωνία ύψους 60 ο Αν αομακρυνθεί κατά 40m, βλέει το ίδιο δέντρο υό γωνία
Διαβάστε περισσότεραΟ μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:
Ο μαθητής ου έχει μελετήσει το κεφάλαιο αυτό θα ρέει: Να γνωρίζει την έννοια της εριοδικής συνάρτησης,και να μορεί να σχεδιάζει τις γραφικές αραστάσεις των συναρτήσεων y= αημ(ωx), y=ασυν(ωx). Να μορεί
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 3ο Κεφάλαιο - Τριγωνομετρία - Βασικές τριγωνομετρικές ταυτότητες. , να βρεθούν
ΠΑΝΤΕΛΗΣ ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΑΛΓΕΒΡΑ B Λυκείου Κ Ε Φ Α Λ Α Ι Ο 3ο - Φ Υ Λ Λ Ο Νο ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ ΑΣΚΗΣΕΙΣ. Αν 3 και < x < 3, να βρεθούν οι ΠΡΟΣΟΧΗ : Βασικές Τριγωνομετρικές Ταυτότητες
Διαβάστε περισσότεραΤριγωνομετρικός κύκλος Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜAΤΙΚΟΣ
Τριγωνομετρικός κύκλος Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜAΤΙΚΟΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΚΥΚΛΟΣ Β ημφ, εφφ σφφ Μ Δ συνφ Α www.commonmaths.weebly.com Σελίδα 1 N Β, 90 ο Α, ο H O 1ο 3ο E Σ Δ, 180 ο 360 ο Ν, 70 ο 4ο 1 ο Τεταρτημόριο
Διαβάστε περισσότεραΓ ΩΝΙΕΣ Π ΟΥ Σ ΥΝΔΕΟΝΤΑΙ Μ ΕΤΑΞΥ Τ ΟΥΣ
Γ ΩΝΙΕΣ Π ΟΥ Σ ΥΝΔΕΟΝΤΑΙ Μ ΕΤΑΞΥ Τ ΟΥΣ Γωνίες με την ίδια τελική λευρά Γωνίες με άθροισμα 180 - Γωνίες με διαφορά 180 - Γωνίες αντίθετες Γωνίες με άθροισμα 90 - Γωνίες με διαφορά 90 Γωνίες με την ίδια
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΑΘΡΟΙΣΜΑΤΟΣ ΚΑΙ ΔΙΑΦΟΡΑΣ ΓΩΝΙΩΝ
Υπολογισμός παραστάσεων ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΑΘΡΟΙΣΜΑΤΟΣ ΚΑΙ ΔΙΑΦΟΡΑΣ ΓΩΝΙΩΝ. Να υπολογίσετε τις τιμές των παραστάσεων : 4 6 6 4 δ) ε) 4 6 4. Να υπολογίσετε τις τιμές των
Διαβάστε περισσότερα3.1 Τριγωνομετρικοί αριθμοί γωνίας
. Τριγωνομετρικοί αριθμοί γωνίας Τριγωνομετρικοί αριθμοί οξείας γωνίας αέναντι κάθετη λευρά ημβ υοτείνουσα ημγ ΑB ροσκε ίμενη κάθετη λευρά συνβ υοτείνουσα συνγ αέναντι κάθετη λευρά εφβ ροσκε ίμενη κάθετη
Διαβάστε περισσότεραΟ μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:
Ο μαθητής ου έχει μελετήσει το κεφάλαιο αυτό θα ρέει: Να γνωρίζει την έννοια της εριοδικής συνάρτησης,και να μορεί να σχεδιάζει τις γραφικές αραστάσεις των συναρτήσεων y= αημ(ωx), y=ασυν(ωx). Να μορεί
Διαβάστε περισσότερα2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Β Λυκει ου. 2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ. 2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ. 2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ
ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Β Λυκει ου ογελ ΣΥΚΕΩΝ ο ΓΕΛ ογελ ΣΥΚΕΩΝ ΣΥΚΕΩΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Β Λυκει ου ΣΧΟΛΙΚΟ ΕΤΟΣ 3-4 ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ Ειμέλεια: ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
Διαβάστε περισσότεραΤριγωνομετρία. Αναγωγή στο 1ο τεταρτημόριο
Τριγωνομετρία Αναγωγή στο 1ο τεταρτημόριο Να προσέχεις: ημ(-x)= - ημx εφ(-x)= - εφx σφ(-x)= - σφx συν(-x)= συνx να θυμάμαι όταν έχω - συνx γράφω συν(π-x) δηλαδή συν(π-x)= - συν x ημ(π-x)=ημx δηλαδή ημ10=ημ60
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 3 ο ΘΕΩΡΙΑ. 3.1 Τριγωνομετρικοί Αριθμοί Γωνίας
ΚΕΦΑΛΑΙΟ 3 ο ΘΕΩΡΙΑ Τριγωνομετρικοί αριθμοί οξείας γωνίας Δίνεται ορθογώνιο τρίγωνο ΑΒΓ, με Α = 90 ο, κάθετες πλευρές β, γ και οξεία γωνία ω. απέναντι κάθετη Ορίζουμε, ημω = υποτείνουσα συνω = προσκείμενη
Διαβάστε περισσότεραΤΡΙΓΩΝΟΜΕΤΡΙΑ Α. Τριγωνοµ ετρικοί αριθµ οί οξείας γωνίας ορθογωνίου τριγώνου
ΤΡΙΓΩΝΟΜΕΤΡΙΑ Α Τριγωνοµ ετρικοί αριθµ οί οξείας γωνίας ορθογωνίου τριγώνου 18 Τριγωνοµετρικοί αριθµοί που συνδέονται µε τις οξείες γωνίες ενός ορθογωνίου τριγώνου 1. α) Με βάση το διπλανό σχήµα να χαρακτηρίσετε
Διαβάστε περισσότεραΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ
ΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ 1. Τι ονομάζουμε εριοδική συνάρτηση Μια συνάρτηση ƒ με εδίο ορισμού το Α λέγεται εριοδική όταν υάρχει ραγματικός αριθμός Τ, Τ > 0 τέτοιος ώστε για κάθε χ Α να ισχύει α) χ+τ Α, χ -
Διαβάστε περισσότεραΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑ. 1.Να βρείτε τους αριθμούς: i)ημ ii)συν( ) ΛΥΣΗ i)διαιρώντας το 1125 με το 360 βρίσκω.
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Να βρείτε τους αριθμούς: i)ημ5 0 ii)συν(-660 0 ) i)διαιρώντας το 5 με το 60 βρίσκω και εομένως 0 0 0 5 60 5 5 60 5 5 0 0 0 0 0 ii) ( 660 ) ( 70 60 ) ( 60 60 ) 0 (60 ) Να
Διαβάστε περισσότεραΤριγωνομετρικοί αριθμοί οξείας γωνίας. Τριγωνομετρικοί αριθμοί γωνίας. Τριγωνομετρικοί αριθμοί οποιασδήποτε γωνίας. . Τότε ορίζουμε: ί ά ά.
ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ Τριγωνομετρικοί αριθμοί οξείας γωνίας Αό το Γυμνάσιο ξέρουμε ότι σε κάθε ορθογώνιο τρίγωνο ΑΒΓ ισχύει: ημβ = = έάά ί Γ συνβ = = ίάά ί β α εφβ = = έάά ίάά Τριγωνομετρικοί
Διαβάστε περισσότεραΕ. ΛΙΑΤΣΟΣ Μαθηµατικός 4
Ε. ΛΙΑΤΣΟΣ Μθηµτικός ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΕΩΝ Μορφές: Α. ηµ x, συνx, εφx, σφx. Β. ηµ x συνx, εφx σφx. Ν λυθούν οι εξισώσεις: ηµ x ( συνx + ) (συν x 3)εφx ηµ 3 x ηµ x συν x 3 3 3 x σφ x εφx óõí çì x 3 3 3εφ x
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ - ΠΑΡΑΤΗΡΗΣΕΙΣ ΚΑΙ ΜΕΘΟΔΕΥΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ
ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ - ΠΑΡΑΤΗΡΗΣΕΙΣ ΚΑΙ ΜΕΘΟΔΕΥΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ Πρόσημο τριγωνομετρικών αριθμών Το ρόσημο των τριγωνομετρικών αριθμών μιας γωνίας (ή τόξου) καθ αό το τεταρτημόριο στο οοίο βρίσκεται
Διαβάστε περισσότεραΗμερομηνία: Πέμπτη 29 Δεκεμβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ 8//06 ΕΩΣ 0/0/06 ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Ημερομηνία: Πέμτη 9 Δεκεμβρίου 06 Διάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α A. Να αοδείξετε ότι ημ ω συν ω Α. Να δώσετε τον ορισμό της εριοδικής
Διαβάστε περισσότεραΤριγωνομετρία ΓΙΩΡΓΟΣ ΚΑΡΙΠΙΔΗΣ 2 ΑΝΘΟΥΛΑ ΣΟΦΙΑΝΟΠΟΥΛΟΥ
ΕΥΚΛΕΙΔΗΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ ΤΟ ΒΑΣΙΚΟ ΘΕΩΡΗΜΑ: ημ χ+συν χ= ημ χ=-συν χ συν χ=- ημ χ εφχ + σφ χ = εφχ ημχ συνχ = σφχ = ημ χ εφχσφχ σφχ = = συνχ ημχ + εφ χ = συν χ Γωνία χ Τριγωνομετρικοί Αριθμοί
Διαβάστε περισσότεραΕλευθέριος Πρωτοπαπάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΛΙΓΟ ΠΡΙΝ ΤΙΣ ΕΞΕΤΑΣΕΙΣ (ΘΕΜΑΤΑ ΤΕΛΕΥΤΑΙΑΣ ΕΠΑΝΑΛΗΨΗΣ)
Ελευθέρις Πρωταάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΛΙΓΟ ΠΡΙΝ ΤΙΣ ΕΞΕΤΑΣΕΙΣ (ΘΕΜΑΤΑ ΤΕΛΕΥΤΑΙΑΣ ΕΠΑΝΑΛΗΨΗΣ) Να βρείτε την τιµή των αραστάσεων: o o συν 90 + ηµ 0 -σφ75 α) A =, ηµ o o 0 + συν 80
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Β Λυκείου ΑΣΚΗΣΕΙΣ. 2. Να υπολογίσετε την τιµή των παραστάσεων : α) συν π 18 συνπ 9 - ηµ π. 18 ηµπ 9. β) συν18 ο συν27 ο - ηµ18 ο ηµ27 ο
ΠΑΝΤΕΛΗΣ ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΑΛΓΕΒΡΑ Β Λυκείου Γενικής Παιδείας Κ Ε Φ Α Λ Α Ι Ο ο - Φ Υ Λ Λ Ο Νο 6 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΑΘΡΟΙΣΜΑΤΟΣ ΓΩΝΙΩΝ ΑΣΚΗΣΕΙΣ 1. Να υπολογίσετε την τιµή των παραστάσεων : α) συν
Διαβάστε περισσότερα1. Τριγωνομετρικοί αριθμοί οξείας γωνίας
v.5 «Αυτό το ρόβλημα, τούτ η μεγάλη συμφορά για να λυθεί χρειάζεται, δίχως αμφιβολία, όως κοιτάζω α τη δική σου την λευρά, να δεις κι εσύ α τη δική μου τη γωνία».. Τριγωνομετρικοί αριθμοί οξείας γωνίας
Διαβάστε περισσότεραΒ Γενική Τριγωνομετρία
Β Γενική Τριγωνομετρία 40 Γενικευμένη γωνία - Γενικευμένα τόξα - Το ακτίνιο Τριγωνομετρικός κύκλος - Τριγωνομετρικοί αριθμοί γενικευμένης γωνίας 1. Η γωνία ω του παρακάτω σχήματος είναι θετική. α) Συνδέστε
Διαβάστε περισσότεραΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΚΥΚΛΟΣ
Περιοδικό ΕΥΚΛΕΙΔΗΣ Β E.M.E. (τεύχος 4) ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΚΥΚΛΟΣ Κώστα Βακαλόουλου ΕΙΣΑΓΩΓΗ Αν κάοιος θέλει να άψει να φοβάται το κεφάλαιο της Τριγωνομετρίας, ρέει ν αοφασίσει να διαβάσει ροσεκτικά τους
Διαβάστε περισσότερα1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η απόσταση του σώµατος
1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η αόσταση του σώµατος αό το έδαφος (σε cm), δίνεται αό την συνάρτηση f(t)=1ηµ t +13, όου t ο χρόνος σε ώρες. α) Να βρείτε την ερίοδο της ταλάντωσης.
Διαβάστε περισσότερα1.1 Τριγωνομετρικές Συναρτήσεις
11 Τριγωνομετρικές Συναρτήσεις Ποια συνάρτηση ονομάζουμε εριοδική; ΑΠΑΝΤΗΣΗ Μια συνάρτηση f με εδίο ορισμού το σύνολο Α λέγεται εριοδική, όταν υάρχει ραγματικός αριθμός Τ > 0 τέτοιος, ώστε για κάθε x A
Διαβάστε περισσότεραΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΑΛΓΕΒΡΑΣ... ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑ 1 Ο
Αµυραδάκη, Νίκαια (1-493576) ΙΑΝΟΥΑΡΙΟΣ 1 Α1. Έστω P(x) ένα πολυώνυµο του x και p ένας πραγµατικός αριθµός. Αν π(χ) είναι το πηλίκο και υ(x) το υπόλοιπο της διαίρεσης του πολυωνύµου P(x) µε το πολυώνυµο
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 Ο ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΤΥΠΟΛΟΓΙΟ - ΑΣΚΗΣΕΙΣ
ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΤΥΠΟΛΟΓΙΟ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΤΥΠΟΛΟΓΙΟ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ ΤΑΥΤΟΤΗΤΕΣ α ) η μ + συν = γ ) εφ + =, ¹ κπ+ sun hm β ) εφ =, ¹ κπ+ sun sun δ ) σφ =, ¹
Διαβάστε περισσότερα= συν. Μάθηµα 9. Κεφάλαιο: Τριγωνοµετρία. Θεµατικές Ενότητες: 1. Τριγωνοµετρικοί Αριθµοί Αθροίσµατος Γωνιών. Εισαγωγή
Μάθηµα 9 Κεφάλαιο: Τριγωνοµετρία Θεµατικές Ενότητες: 1 Τριγωνοµετρικοί Αριθµοί Αθροίσµατος Γωνιών Εισαγωγή Γνωρίζουµε τους τριγωνοµετρικούς αριθµούς των 30 0, όως και των 45 0 Είναι δυνατόν, µέσω αυτών,
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΙΣΑΓΩΓΗ ΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ. ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΗΣ 2ου ΒΑΘΜΟΥ ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ
ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΙΣΑΓΩΓΗ ΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΗΣ ου ΒΑΘΜΟΥ α + β + γ 0, α 0 β 4 αγ Αν >0, τότε η εξίσωση έχει δύο πραγµατικές ρίζες: 1, β ± α Αν 0, τότε η εξίσωση έχει µια ρίζα διπλή: β
Διαβάστε περισσότεραΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 3 ου ΚΕΦΑΛΑΙΟΥ (Γ ΟΜΑ ΑΣ) Ασκήσεις σχολικού βιβλίου σελίδας
1 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ου ΚΕΦΑΛΑΙΟΥ (Γ ΟΜΑ ΑΣ) Ασκήσεις σχολικού βιβλίου σελίδας 1 1 1. Σε τρίγωνο ΑΒΓ το ύψος του Α είναι ίσο µε το µισό της λευράς ΒΓ. να αοδείξετε ότι ισχύει εφβ + εφγ εφβ εφγ και σφβ +
Διαβάστε περισσότεραΤριγωνομετρικοί αριθμοί παραπληρωματικών γωνιών
ΜΕΡΟΣ Β. ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΠΑΡΑΠΛΗΡΩΜΑΤΙΚΩΝ ΓΩΝΙΩΝ 491. ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΠΑΡΑΠΛΗΡΩΜΑΤΙΚΩΝ ΓΩΝΙΩΝ Τριγωνομετρικοί αριθμοί παραπληρωματικών γωνιών 8 Μ(x,y) 6 ρ 4 180-ω -10-5 5 Ο ω - -4 Οι παραπληρωματικές
Διαβάστε περισσότερα1ο Κεφάλαιο. Συστήµατα. 1. Να λύσετε γραφικά τα παρακάτω συστήµατα: 2. Να λύσετε τα παρακάτω συστήµατα µε τη µέθοδο της αντικατάστασης:
Άλγεβρα Β Λυκείου 0-0.. Γραµµικά συστήµατα ο Κεφάλαιο Συστήµατα Α. Γραµµικό σύστηµα Χ. Να λύσετε γραφικά τα αρακάτω συστήµατα: α) ψ= + β) ψ= γ) -ψ= ψ= -ψ= + ψ=. Να λύσετε τα αρακάτω συστήµατα µε τη µέθοδο
Διαβάστε περισσότεραα) Αν ονομάσουμε x το πλάτος του Νείλου στην συγκεκριμένη θέση ΑΒ έχουμε: Από το ορθογώνιο τρίγωνο ΑΒΓ εφ45 o = 1 = ΒΓ = x
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΑΣΚΗΣΗ η Αιγύτιοι μηχανικοί, για να ροσδιορίσουν το λάτος του οταμού Νείλου μεταξύ δύο σημείων A και B, ροσδιόρισαν με το θεοδόλιχο μια διεύθυνση κάθετη ρος την
Διαβάστε περισσότεραΔ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ. Τριγωνομετρικοι αριθμοι οξειων γωνιων
Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ Τριγωνομετρικοι αριθμοι οξειων γωνιων 22 ΙΑΝΟΥΑΡΙΟΥ 2014 Κλίση ευθείας Όλοι έχουμε στο δρόμο τα παρακάτω σήματα, που από την εμπειρία μας καταλαβαίνουμε ότι πλησιάζουμε σε
Διαβάστε περισσότεραΤριγωνομετρικές συναρτήσεις Τριγωνομετρικές εξισώσεις
6 Τριγωνομετρικές συναρτήσεις Τριγωνομετρικές εξισώσεις 1. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Περιοδική συνάρτηση Μια συνάρτηση f με εδίο ορισμού Α λέγεται εριοδική, όταν υάρχει T τέτοιος ώστε για κάθε x A να
Διαβάστε περισσότεραΑναγωγή στο 1ο τεταρτημόριο
ΑΛΓΕΒΡΑ ΒΛ ΤΡΙΓΩΝΟΜΕΤΡΙΑ - ΑΣΚΗΣΕΙΣ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 1-1. -175663 Βασικές Τριγωνομετρικές ταυτότητες Αν 0
Διαβάστε περισσότεραΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ
ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ 78 Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ: 1ο ΣΧΕ ΙΟ Η γενικευµένη γωνία Το ηµίτονο και το συνηµίτονό της ιάρκεια: Ολιγόλεπτο Θέµατα: ΘΕΜΑ 1ο 8 µονάδες 1. Με βάση το
Διαβάστε περισσότερα1.2 Βασικές Τριγωνομετρικές Εξισώσεις
. Βασικές Τριγωνομετρικές Εξισώσεις. Να λύσετε τις εξισώσεις: i) ημ = ημ = i = iv) =. Να λύσετε τις εξισώσεις: i) εφ = εφ = i σφ = iv) σφ =. Να λυθούν οι εξισώσεις: i) ημ = = i εφ = iv) σφ = 4. Να λυθούν
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο ΚΕΦΑΛΑΙΟ Ι. Να αντιστοιχίσετε καθένα από τα συστήματα: (Σ 1 ): { (Σ 2 ): { (Σ 3 ): { (Σ 4 ): { με εκείνη από τις απαντήσεις Α, Β, Γ που νομίζετε ότι είναι η σωστή.
Διαβάστε περισσότεραΆλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ. Τόμος 3ος
Άλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Τόμος 3ος Συγγραφική ομάδα: Ανδρεαδάκης Στυλιανός Καθηγητής Πανειστημίου Αθηνών Κατσαργύρης Βασίλειος Καθηγητής μαθηματικών Βαρβακείου Πειραμ. Λυκείου Παασταυρίδης Στάυρος Καθηγητής
Διαβάστε περισσότεραΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ. Γενικής Παιδείας ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ
ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ Γενικής Παιδείας ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ Σχολικό βιβλίο: Ααντήσεις Λύσεις Κεφάλαιο ο: Συστήματα Γραμμικά συστήματα Α ΟΜΑΔΑΣ Έχουμε: y i 6 + y + y y Άρα, η λύση του συστήματος
Διαβάστε περισσότερα3.5 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
1. ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Ασκσεις σχολικού βιβλίου σελίδας 88-89 A Oµάδας 1.i) Να λύσετε την εξίσωση ηµx = 0 ηµx = 0 ηµx = ηµ0 x = k + 0 x = k + 0, k Z Σηµείωση: Οι λύσεις αυτές διαφορετικά
Διαβάστε περισσότερα3.9 Η ΣΥΝΑΡΤΗΣΗ f(x) = αηµx + βσυνx
1.9 Η ΣΥΝΑΡΤΗΣΗ f(x) = αηµx + βσυνx Ασκήσεις σχολικού βιβλίου σελίδας 11 11 A Oµάδας 1.i) Να βρείτε την ερίοδο, τη µέγιστη τιµή και την ελάχιστη τιµή της αρακάτω συνάρτησης και στη συνέχεια να την αραστήσετε
Διαβάστε περισσότεραΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ ΚΑΙ ΛΥΣΕΙΣ ΟΛΩΝ ΤΩΝ ΘΕΜΑΤΩΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ ΘΕΜΑΤΑ 16968, 1765, 17656, 17663, 17664, 17681, 1769, 17699, 17704, 1775, 17736, 17739, 17741 ΘΕΜΑΤΑ 4 17837, 17838,
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότεραΝίκος Ζανταρίδης. Χρήσιμες γνώσεις Τριγωνομετρίας. Λυμένες Ασκήσεις. Προτεινόμενες Ασκήσεις
Νίκος Ζανταρίδης ΑΝΤΙΜΕΤΩΠΙΣΗ ΑΣΚΗΣΕΩΝ ΑΛΓΕΒΡΑΣ ΜΕ ΤΗΝ ΒΟΗΘΕΙΑ ΤΗΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Χρήσιμες γνώσεις Τριγωνομετρίας Λυμένες Ασκήσεις Προτεινόμενες Ασκήσεις Αύγουστος 04 Πρόλογος Στο μικρό αρόν όνημα καταβλήθηκε
Διαβάστε περισσότερα3. Να δειχτει οτι α α. Ποτε ισχυει το ισον; α, β θετικοι, να συγκρινεται τους αριθμους Α = α + β, Β = α β + αβ
TΡΙΓΩΝΟΜΕΤΡΙΑ Τ ρ ι γ ω ν ο μ ε τ ρ ι κ ο ι Α ρ ι θ μ ο ι Ο ρ ι σ μ ο ι. Να δειχτει οτι α + α. Ποτε ισχυει το ισον; Ονομαζουμε ημx την τεταγμενη π/ του Μ (εντονο. Aν μπλε) α, β θετικοι, να συγκρινεται
Διαβάστε περισσότεραΟΝΟΜ/ΜΟ :... ΟΜΑ Α Α. 1. Χαρακτηρίστε µε ΣΩΣΤΟ (Σ) ή ΛΑΘΟΣ (Λ) τις παρακάτω προτάσεις : Σχῆµα 1: Ασκηση 1δ.
ΙΑΓΩΝΙΣΜΑ 1 oυ 4 νoυ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ΟΜΑ Α Α 1. Χαρακτηρίστε µε ΣΩΣΤΟ (Σ) ή ΛΑΘΟΣ (Λ) τις παρακάτω προτάσεις : (α ) Η περίοδος της συνάρτησης f(x) = 3συν x 5 είναι 5π... (ϐ ) Η συνάρτηση f(x)
Διαβάστε περισσότερα1.0 Βασικές Έννοιες στην Τριγωνομετρία
.0 Βασικές Έννοιες στην Τριγωνομετρία Εύρεση τριγωνομετρικών αριθμών οξείας γωνίας σε ορθογώνιο τρίγωνο. ΑΠΑΝΤΗΣΗ Έστω ορθογώνιο τρίγωνο ΑΒΓ (Α= 90 0 ). Οι τριγωνομετρικοί αριθμοί μιας οξείας γωνίας ορίζονται
Διαβάστε περισσότερα1. ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ ΑΝΑΓΩΓΗ ΣΤΟ 1 Ο ΤΕΤΑΡΤΗΜΟΡΙΟ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ
1. ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ ΑΝΑΓΩΓΗ ΣΤΟ 1 Ο ΤΕΤΑΡΤΗΜΟΡΙΟ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ Έστω ΑΒΓ ένα ορθογώνιο τρίγωνο Είναι γνωστό ότι: ( ΑΒ) ηµ Γ= ( ΒΓ ) ( ΑΓ) συν Γ= ( ΒΓ ) ( ΑΒ) εφ Γ= ( ΑΓ ) ( ΑΓ)
Διαβάστε περισσότεραΤΡΙΓΩΝΟΜΕΤΡΙΑ. Ορίζω: Ορίζω: ηµω= y ρ. x x
1 ΤΡΙΓΩΝΜΕΤΡΙΑ [1].Τυολόγιο τριγνοµετρίας (Εαναλήψεις) α. Τριγνοµετρικοί αριθµοί σε ορθογώνιο τρίγνο αέναντι Γ Α β υοτείνουσα α γ ροσκείµενη ρίζ: β. Τριγνοµετρικοί αριθµοί σε σύστηµα συντεταγµένν ηµβ=
Διαβάστε περισσότεραΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΛΛΟ ΕΠΑΝΑΛΗΨΗΣ 1
ΘΕΜΑ Α ΦΥΛΛΟ 1 Α1. Να αποδείξετε ότι το υπόλοιπο υ της διαίρεσης ενός πολυωνύμου P(x) με το x - ρ είναι ίσο με την τιμή του πολυωνύμου για x = ρ. Είναι δηλαδή υ = P(ρ). Α. Να χαρακτηρίσετε τις προτάσεις
Διαβάστε περισσότεραΗμερομηνία: Σάββατο 29 Δεκεμβρίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Ημερομηνία: Σάββατο 29 Δεκεμβρίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1 Α2 να γράψετε στο τετράδιό σας τον αριθμό της
Διαβάστε περισσότεραBbs. ΑΛΓΕΒΡΑ ΣΥΝΟΛΑ Σύνολο Φυσικών αριθμών: N = {0,1,2, } Σύνολο Ακέραιων αριθμών: Z = {,-2,-1,0,1,2, } Σύνολο Ρητών αριθμών: Q = {
ΑΛΓΕΒΡΑ ΣΥΝΟΛΑ Σύνολο Φυσικών αριθμών: N = {0,1,2, } Σύνολο Ακέραιων αριθμών: Z = {,-2,-1,0,1,2, } Σύνολο Ρητών αριθμών: Q = { Άρρητοι αριθμοί A: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών αριθμών R=
Διαβάστε περισσότεραΑ λ γ ε β ρ α Α Λ υ κ ε ι ο υ Α λ γ ε β ρ α B Λ υ κ ε ι ο υ
Κ Κ α α ι ι τ τ ο ο Λ Λ υ υ σ σ α α ρ ρ ι ι............ Α Α λ λ λ λ ι ι ω ς ς!!!!!! Α λ γ ε β ρ α Α Λ υ κ ε ι ο υ Α λ γ ε β ρ α B Λ υ κ ε ι ο υ Ε ι μ ε λ ε ι α Τ α κ η ς Τ σ α κ α λ α κ ο ς w w w. d r
Διαβάστε περισσότερα3.4 Οι τριγωνομετρικές συναρτήσεις
3.4 Οι τριγωνομετρικές συναρτήσεις Περιοδικές συναρτήσεις Ορισμός Μια συνάρτηση f με εδίο ορισμού το Α λέγεται εριοδική, όταν υάρχει ραγματικός αριθμός Τ>0 τέτοιος ώστε για κάθε Α να ισχύει: ( T)A και
Διαβάστε περισσότεραΆλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ. Τόμος 2ος
Άλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Τόμος ος Συγγραφική ομάδα: Ανδρεαδάκης Στυλιανός Καθηγητής Πανεπιστημίου Αθηνών Κατσαργύρης Βασίλειος Καθηγητής μαθηματικών Βαρβακείου Πειραμ. Λυκείου Παπασταυρίδης Στάυρος Καθηγητής
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ
ΚΕΦΑΛΑΙΟ Ο ΕΠΑΝΑΛΗΨΗ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Το ακτίνιο ως μονάδα μέτρησης γωνιών: Το ακτίνιο (ή rad) είναι η γωνία που, όταν γίνει επίκεντρη κύκλου (Ο, ρ), βαίνει σε τόξο που έχει μήκος ίσο με την ακτίνα
Διαβάστε περισσότεραΆλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Τόμος 2ος 1η ΕΚΔΟΣΗ
Άλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Τόμος ος 1η ΕΚΔΟΣΗ Συγγραφική ομάδα: Ανδρεαδάκης Στυλιανός Καθηγητής Πανεπιστημίου Αθηνών Κατσαργύρης Βασίλειος Καθηγητής μαθηματικών Βαρβακείου Πειραμ. Λυκείου Παπασταυρίδης
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ
ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Α. ΕΦΑΠΤΟΜΕΝΗ ΟΞΕΙΑΣ ΓΩΝΙΑΣ 1. Στο τρίγωνο ΑΒΓ είναι ΑΒ = 8cm και η γωνία Β = 64 0. Να υπολογίσετε το μήκος της πλευράς ΑΓ. 2. Στο ορθογώνιο τρίγωνο ΑΒΓ είναι ΑΒ = 9cm και εφγ
Διαβάστε περισσότερα(Μονάδες 15) (Μονάδες 12)
ΑΛΓΕΒΡΑ Β Λυκε ί ου τ ράε ζ αθε μάτ ων( 1ηέ κδοση) θέ μαδε ύτ ε ροκαιτ έ τ αρτ ο Κόμβ οςατ σι οούλου01415 δης Ει μέ λε ι α:εμμανουήλκ.σκαλί Αντ ώνηςκ.αοστ όλου Άσκηση 1 α) Να κατασκευάσετε ένα γραμμικό
Διαβάστε περισσότεραΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ ΣΠΑΡΤΗ 2008
ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ ΣΠΑΡΤΗ 008 Κάθε γνήσιο αντίτυπο έχει την ιδιόχειρη υπογραφή του συγγραφέα Γενική επιμέλεια : Στράτης Αντωνέας Copyright : Στράτης Αντωνέας e-mail: stranton@otenet.gr Τηλέφωνα επικοινωνίας
Διαβάστε περισσότερασυν 2α = συν α ηµ α = 1 2ηµ α = 2συν α εφα+ εφα 2εφα Μάθηµα 10 Κεφάλαιο: Τριγωνοµετρία Θεµατικές Ενότητες: 1. Τριγωνοµετρικοί Αριθµοί της Γωνίας 2α
Μάθηµ 0 Κεφάλιο: Τριγωνοµετρί Θεµτικές Ενότητες:. Τριγωνοµετρικοί Αριθµοί της Γωνίς Εισγωγή Χρησιµοοιώντς τους τύους ου υολογίζουν τους τριγωνοµετρικούς ριθµούς του θροίσµτος (ροηγούµενο µάθηµ), ροσδιορίζουµε
Διαβάστε περισσότεραΓια τις λύσεις συνεργάστηκαν οι μαθηματικοί: Κολλινιάτη Γιωργία. Μάκος Σπύρος. Πανούσης Γιώργος. Παπαθανάση Κέλλυ. Ραμαντάνης Βαγγέλης.
Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Κολλινιάτη Γιωργία Μάκος Σύρος Πανούσης Γιώργος Πααθανάση Κέλλυ Ραμαντάνης Βαγγέλης Σαμάνης Νίκος Τόλης Ευάγγελος -1-01 18808Δίνεται η εξίσωση x y 7 Γραμμικά
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότερα3.5 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
1.5 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΘΕΩΡΙΑ Λύσεις των βασικών τριγωνοµετρικών εξισώσεων ηµx = ηµθ x = κ + θ x = κ + ( θ), κ Z συνx = συνθ x = κ + θ x = κ θ, κ Z εφx = εφθ x = κ + θ, κ Z σφx = σφθ x =
Διαβάστε περισσότερα2.4 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ 30 Ο 45 Ο 60 Ο
.4 ΤΡΙΩΝΟΜΕΤΡΙΚΟΙ ΡΙΘΜΟΙ 0 Ο 45 Ο 60 Ο ΘΕΩΡΙ. Τριγωνοµετρικοί αριθµοί 0 ο, 45 ο, 60 ο : ηµίτονο συνηµίτονο εφαπτοµένη 0 ο 45 ο 60 ο ΣΚΗΣΕΙΣ. Στο διπλανό πίνακα, σε κάθε πληροφορία της στήλης, να επιλέξετε
Διαβάστε περισσότεραΆλγεβρα Β Λσκείοσ. Τριγωμομετρία. Στέλιος Μιταήλογλοσ. Εσάγγελος Τόλης
Άλγεβρα Β Λσκείοσ Τριγωμομετρία Στέλιος Μιταήλογλοσ Εσάγγελος Τόλης www.askisopolis.gr 1. ΤΙΓΩΝΟΜΕΤΙ 1.1. ΒΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΤΙΓΩΝΟΜΕΤΙ Οι αρακάτω έννοιες ου θα αναφέρουµε συµεριλαµβάνονται στη διδακτέα
Διαβάστε περισσότερα2.1 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ
ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ ΜΟΝΑΔΕΣ ΜΕΤΡΗΣΗΣ ΤΟΞΩΝ ΓΩΝΙΩΝ Χρησιμιύμε τις αρακάτω μνάδες μέτρησης τόξων και γωνιών: Τόξ ενός ακτινίυ ( rad ), λέγεται τ τόξ u υ έχει μήκς ίσ με την ακτίνα R τυ κύκλυ Αν
Διαβάστε περισσότεραΤΡΙΓΩΝΟΜΕΤΡΙΑ ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ
- ΣΗΜΕΙΩΣΕΙΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ: ΡΟΥΓΑΣ ΑΘΑΝΑΣΙΟΣ http://mathhmagic.blogspot.com/ Οι τριγωνομετρικοί αριθμοί (Εαναλητικά) Ε ί εδη γωνία είναι η κλίση µεταξύ δυο
Διαβάστε περισσότεραΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ' ΓΥΜΝΑΣΙΟΥ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ ΘΕΩΡΙΑ :
ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ' ΓΥΜΝΑΣΙΟΥ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Θέμα 1 ον ΘΕΩΡΙΑ : α) Τι καλείται αριθμητική παράσταση και τι καλείται αλγεβρική παράσταση ; β) Να συμπληρώσετε
Διαβάστε περισσότεραΘέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ
Α. Να συμπληρωθούν οι ισότητες: (α + β) =.., (α β) 3 = και (α + β)(α β) =.. Β. Να αποδείξετε τη δεύτερη. Θέμα ο Να γράψετε τα τρία (3) κριτήρια ισότητας τριγώνων. Να λυθεί η εξίσωση: 3 + 4 = 7 + 1 Άσκηση
Διαβάστε περισσότεραΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα
ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ 1 ο δείγμα Α. Θεωρία Α) Πότε ένα πολύγωνο λέγεται κανονικό; Β) Να δώσετε τον ορισμό της εγγεγραμμένης γωνίας σε κύκλο (Ο, ρ). (Να γίνει σχήμα) Γ) Ποια
Διαβάστε περισσότερα1.0 Βασικές Έννοιες στην Τριγωνομετρία
1.0 Βασικές Έννιες στην Τριγωνμετρία 1 η Μρφή Ασκήσεων: Ασκήσεις όπυ θέλυμε να βρύμε στιχεία ενός γεωμετρικύ σχήματς 1. Στ διπλανό σχήμα να απδείξετε ότι: ΒΓ υ εφω + εφθ. Τ τρίγων ΑΔΒ είναι ρθγώνι στ Δ,
Διαβάστε περισσότερα1.06 Δίνεται ένα σύστημα (Σ) 2 γραμμικών
ΣΥΣΤΗΜΑΤΑ λ y λ.0 Δίνεται τ σύστημα:, λy λ λ R. Να υλγίσετε τις τιμές τυ λ ώστε για τη λύση τυ συστήματς (,y) να ισχύει y 0.0 Δίνεται η συνάρτηση : αν 0 f() με λ R λ αν 0 Να βρεθύν ι τιμές τυ λ ώστε f(0)
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΤΗΣ Β ΛΥΚΕΙΟΥ (παράγραφοι 3.1 έως και 3.5) Α. Να αποδείξετε τις παρακάτω ταυτότητες:
ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΤΗΣ Β ΛΥΚΕΙΟΥ (παράγραφοι.1 έως και.5) Α. Να αποδείξετε τις παρακάτω ταυτότητες: 1 1. 1. 1 1 1. 4. 1 1 1 5. 1 1 1 1 1 6. 1 7 Β. Να υπολογίσετε την τιμή των παρακάτω παραστάσεων:
Διαβάστε περισσότερα1 η δεκάδα θεµάτων επανάληψης
1 1 η δεκάδα θεµάτων εανάληψης 1. ίνεται το ολυώνυµο Ρ(x) = x 3 x 2 4x + 4 Να αοδείξετε ότι ο αριθµός ρ = 1 είναι ρίζα του ολυωνύµου i Να βρείτε το ηλίκο της διαίρεσης του ολυωνύµου Ρ(x) µε το ολυώνυµο
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ
ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ Τελευταία ενηµέρωση: Νοέµβριος 016) Ανέστης Τσοµίδης Κατερίνη Περιεχόµενα 1 Συστήµατα 1.1 Μη γραµµικά συστήµατα........................ Ιδιότητες συναρτήσεων 3.1 Μονοτονία,
Διαβάστε περισσότεραΑσκήσεις. g x α β συν α β x, α,β 0. Αν οι. π π Α f g 3 4. α) Να βρείτε την μέγιστη και την ελάχιστη τιμή της f καθώς και την περίοδο της f.
wwwaskisopolisgr Ασκήσεις 1 Δίνεται η συνάρτηση fx ημ x 5συνx 1 α) Να αποδείξετε ότι είναι περιοδική με περίοδο π β) Να βρείτε τα σημεία τομής της με τους άξονες γ) Να λύσετε την εξίσωση f x συν x 8 f
Διαβάστε περισσότεραΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ ΣΠΑΡΤΗ 2008
ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ ΣΠΑΡΤΗ 008 Κάθε γνήσιο αντίτυπο έχει την ιδιόχειρη υπογραφή του συγγραφέα Γενική επιμέλεια : Στράτης Αντωνέας Copyright : Στράτης Αντωνέας e-mail: stranton@otenet.gr Τηλέφωνα επικοινωνίας
Διαβάστε περισσότεραΤ ρ α π ε ζ α Θ ε μ α τ ω ν
Τ ρ α π ε ζ α Θ ε μ α τ ω ν Α λ γ ε β ρ α B Λ υ κ ε ι ο υ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς Α λ γ ε β ρ α B Λ υ κ ε ι ο υ Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Γ ρ α μ μ ι κ α Σ υ σ τ η μ α τ α 16950 16954
Διαβάστε περισσότεραΕλευθέριος Πρωτοπαπάς. Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Β Γενικού Λυκείου
Ελευθέριος Πρωτοαάς Εκφωνήσεις και λύσεις των ασκήσεων της Τράεζας Θεμάτων στην Άλγεβρα Β Γενικού Λυκείου Δεκέμβριος 04 Περιεχόµενα o Θέμα Θέµα Σελίδα Θέµα Σελίδα Θέµα Σελίδα Θέµα Σελίδα 6950 8 6954 9
Διαβάστε περισσότεραΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ. εφχ = εφθ χ = κ + θ χ = κ π + θ ( τύποι λύσεων σε ακτίνια )
ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ηµχ = ηµθ χ = 0 0 κ + θ ή χ = 0 0 κ + 80 0 - θ ( τύοι λύσεων σε µοίρες ) χ = κ + θ ή χ = κ + - θ ( τύοι λύσεων σε ακτίνια ) κ ακέραιος συνχ = συνθ χ = 0 0 κ ± θ ( τύοι λύσεων
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου
ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο 1 ο ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α1.1 Ισότητα τριγώνων Στο διπλανό σχήμα το τρίγωνο ΑΒΓ είναι ισοσκελές με ΑΒ=ΑΓ. Προεκτείνουμε τη βάση ΒΓ κατά ίσα τμήματα
Διαβάστε περισσότεραΆλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ. Τόμος 6ος 1η ΕΚΔΟΣΗ
Άλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Τόμος 6ος 1η ΕΚΔΟΣΗ Συγγραφική ομάδα: Ανδρεαδάκης Στυλιανός Καθηγητής Πανειστημίου Αθηνών Κατσαργύρης Βασίλειος Καθηγητής μαθηματικών Βαρβακείου Πειραμ. Λυκείου Παασταυρίδης
Διαβάστε περισσότερα1 of 79 ΘΕΜΑ 2. Δίνεται η συνάρτηση f(x) = x 2 4x + 5, x R
1 of 79 Δίνεται η συνάρτηση f(x) = x 2 4x + 5, x R α) Να αποδείξετε ότι η f γράφεται στη μορφή f(x) = (x- 2) 2 + 1. (Μονάδες 12) β) Στο σύστημα συντεταγμένων που ακολουθεί, να παραστήσετε γραφικά τη συνάρτηση
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΑΡΧΙΑ ΠΕΛΛΑΣ ΣΧΟΛΙΚΟ ΕΤΟΣ : ΔΙΕΥΘΥΝΣΗ Δ/ΒΜΙΑΣ ΕΚΠ/ΣΗΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ ΓΥΜΝΑΣΙΟ ΕΞΑΠΛΑΤΑΝΟΥ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΑΡΧΙΑ ΠΕΛΛΑΣ ΣΧΟΛΙΚΟ ΕΤΟΣ : 2008-2009 ΔΙΕΥΘΥΝΣΗ Δ/ΒΜΙΑΣ ΕΚΠ/ΣΗΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ ΓΥΜΝΑΣΙΟ ΕΞΑΠΛΑΤΑΝΟΥ Ονοματεπώνυμο μαθητή/τριας Εξεταζόμενο Μάθημα : ΜΑΘΗΜΑΤΙΚΑ Τάξη : Β
Διαβάστε περισσότεραΚεφάλαιο 3 ο ΤΡΙΓΩΝΟΜΕΤΡΙΑ
Κεφάλαιο ο ΤΡΙΓΩΝΟΜΕΤΡΙΑ. τριγωνομετρικοι αριθμοι γωνιασ Τριγωνομετρικοί αριθμοί οξείας γωνίας Έστω οξεία γωνία ω. Αν άνω στη μία αό τις δύο λευρές της γωνίας άρουμε τυχαία σημεία Μ και Ν και φέρουμε τις
Διαβάστε περισσότεραΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ 0 ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ α α (ii)
ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ 1-13 1 Ποιοι αριθμοί ονομάζονται ομόσημοι και ποιοι ετερόσημοι; 1 Δίνονται οι αριθμοί: 1,,.1,,, 9, + 3, 3 3.1 Ποιοι από αυτούς είναι θετικοί και ποιοι αρνητικοί;.
Διαβάστε περισσότερα1 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 2008
ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 008 α). Να αποδείξετε ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου Ρ(x) με το πρωτοβάθμιο πολυώνυμο x ρ ισούται με την αριθμητική τιμή του Ρ(x) για x =
Διαβάστε περισσότεραΛΥΚΕΙΟ ΚΟΚΚΙΝΟΧΩΡΙΩΝ ΦΩΤΗ ΠΙΤΤΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ:
ΛΥΚΕΙΟ ΚΟΚΚΙΝΟΧΩΡΙΩΝ ΦΩΤΗ ΠΙΤΤΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 016-017 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 017 ΤΑΞΗ: Β Ενιαίου Λυκείου ΗΜΕΡΟΜΗΝΙΑ: 5/05/017 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ : :30
Διαβάστε περισσότερα2.3 ΣΧΕΣΕΙΣ ΜΕΤΑΞΥ ΤΡΙΓΩΝΟΜΕΤΡΙΚΩΝ ΑΡΙΘΜΩΝ ΜΙΑΣ ΓΩΝΙΑΣ Βασικές τριγωνομετρικές ταυτότητες
ΜΕΡΟΣ Β.3 ΣΧΕΣΕΙΣ ΜΕΤΑΞΥ ΤΡΙΓΩΝΟΜΕΤΡΙΚΩΝ ΑΡΙΘΜΩΝ ΜΙΑΣ ΓΩΝΙΑΣ 97.3 ΣΧΕΣΕΙΣ ΜΕΤΑΞΥ ΤΡΙΓΩΝΟΜΕΤΡΙΚΩΝ ΑΡΙΘΜΩΝ ΜΙΑΣ ΓΩΝΙΑΣ Βασικές τριγωνομετρικές ταυτότητες 8 6 y Μ(x,y) ρ Ο ω x 1 Σ ε ορθοκανονικό σύστημα αξόνων
Διαβάστε περισσότεραΈργο του καλλιτέχνη Άγγελου Γεωργίου
ο ΚΕΦΑΛΑΙΟ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Έργο του καλλιτένη Άγγελου Γεωργίου ο ΚΕΦΑΛΑΙΟ ΤΡΙΓΩΝΟΜΕΤΡΙΑ ο ΚΕΦΑΛΑΙΟ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Π Ρ Ο Λ Ο Γ Ο Σ Η ΤΡΙΓΩΝΟΜΕΤΡΙΑ γράφτηκε σαν ένα ξεωριστό εγειρίδιο γιατί αφ ενός η τριγωνοµετρία
Διαβάστε περισσότερα( ) ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ 2 = ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΤΑΞΗ : Β Λυκείου κατ. 1) Να βρεθεί το Π.Ο.
ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΤΑΞΗ : Β Λυκείου κατ. ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ ΣΥΝΑΡΤΗΣΕΙΣ 1) Να βρεθεί το Π.Ο. των συναρτήσεων : α) f ( ) β) f ( ) + 5 + 6 ln( + 1) γ) f ( ) δ) 1 f( ) 4 ) Να βρεθεί
Διαβάστε περισσότερα1 Τριγωνοµετρικοί αριθµοί
Τριγωνµετρικί αριθµί Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Τριγωνµετρικί αριθµί υ συνδένται µε τις ξείες γωνίες ρθγωνίυ τριγώνυ Έστω ΑΒΓ ( A= 90 o ) ρθγώνι τρίγων µε λευρές α, β, γ. Γνωρίζυµε ότι: µήκς αέναντι
Διαβάστε περισσότεραΘΕΩΡΙΑ ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: ΘΕΜΑ 1 ο. A. Τι ονομάζουμε τετραγωνική ρίζα θετικού αριθμού α ;
ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: B ΘΕΩΡΙΑ ΘΕΜΑ 1 ο A. Τι ονομάζουμε τετραγωνική ρίζα θετικού αριθμού α ; B. Να αντιγράψετε και να συμπληρώσετε τις παρακάτω σχέσεις: i. Αν α 0,
Διαβάστε περισσότεραΤαυτότητες. α 2 β 2 = (α β)(α + β) "διαφορά τετραγώνων" α 3 β 3 = (α β)(α 2 + αβ + β 2 ) "διαφορά κύβων"
Ταυτότητες (α β) α αβ β " αναπτύγματα τετραγώνων " (α β) αβ β (α β) α α β αβ β " αναπτύγματα κύβων " (α β) α α β αβ β " παραγοντοποίηση τριωνύμου " (α β) αβ ( α)( β) (α β) αβ ( α)( β) α β = (α β)(α + β)
Διαβάστε περισσότεραΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Άλγεβρας Β τάξης Γενικού Λυκείου 2o Θέμα. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (26/11/2014)
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Άλγεβρας Β τάξης Γενικού Λυκείου o Θέμα Εκφωνήσεις Λύσεις των θεμάτων Έκδοση 1 η (6/11/014) Οι ααντήσεις και οι λύσεις είναι αοτέλεσμα συλλογικής δουλειάς των Ειμελητών των φακέλων του
Διαβάστε περισσότερα1.1 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ (Επαναλήψεις Συμπληρώσεις) Τριγωνομετρικοί αριθμοί οξείας γωνίας
. ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ (Επαναλήψεις Συμπληρώσεις) Τριγωνομετρικοί αριθμοί οξείας γωνίας Έστω οξεία γωνία ω. Αν πάνω στη μία από τις δύο πλευρές της γωνίας πάρουμε τυχαία σημεία Μ και Ν και φέρουμε
Διαβάστε περισσότερα