Ασκήσεις Τριγωνοµετρικοί Αριθµοί
|
|
- Φώτιος Αθανασιάδης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Ασκήσεις Τριγωνοµετρικοί Αριθµοί. Σε ορθογώνιο τρίγωνο ΑΒΓ ( Â =90 ο ) φέρουµε το ύψος Α. Ν.δ.ο. Γ ηµβ σφγ =. ΑΒ. Να υολογίσετε τους τριγωνοµετρικούς αριθµούς της γωνίας 5 ο. 3. Να υολογίσετε τους τριγωνοµετρικούς αριθµούς της γωνίας 3 4. Αν ισχύει < x <, ν.δ.ο. i) σφx 3συνx > 0 ηµx συνx + εφx > 0 5. Σ ένα ορθογώνιο τρίγωνο ΑΒΓ ( Â = 90 ο ): 5. 3 i) Να ορίσετε τους τριγωνοµετρικούς αριθµούς της γωνίας Bˆ. α Ν.δ.ο. εφβ + εφγ =. βγ 6. Σε οξυγώνιο τρίγωνο ΑΒΓ φέρουµε το ύψος Α. Ν.δ.ο. ΒΓ = ΑΓ συνγ + ΑΒ συνβ. 7. Σε τρίγωνο ΑΒΓ δίνονται: Βˆ = 45 ο, Γˆ = 30 ο και ΒΓ = 0( + 3 ). Να βρείτε το ύψος Α. 8. Σε ορθογώνιο τρίγωνο ΑΒΓ ( Â = 90 ο ) είναι Γˆ = 60 ο και ΒΓ = 7cm. Να υολογίσετε τα µήκη των καθέτων λευρών του. 9. Σε τρίγωνο ΑΒΓ είναι Βˆ = 45 ο, Γˆ = 30 ο και το ύψος Α έχει µήκος 3cm. Να υολογίσετε τα µήκη των λευρών του. 0. Όταν βρισκόµαστε στην όχθη ενός οταµού βλέουµε στην αέναντι όχθη ένα δένδρο µε γωνία ύψους 60 ο. Αν όµως αοµακρυνθούµε κατά 0 µέτρα, τότε βλέουµε το δένδρο µε γωνία ύψους 30 ο. Να υολογίσετε: i) Το ύψος του δένδρου. Το λάτος του οταµού. (Α.: 0, 0 3 )
2 . Αν ηµω = Ασκήσεις Τριγωνοµετρικές Ταυτότητες 5 και 80 ο 3 τριγωνοµετρικούς αριθµούς της γωνίας ω.. Αν γνωρίζετε ότι συνω = τριγωνοµετρικούς αριθµούς της γωνίας ω. < ω < 70 ο, να υολογίσετε τους άλλους 4 και 90 ο < ω < 80 ο, να υολογίσετε τους άλλους Αν είναι εφω =, < ω <, να υολογιστούν οι υόλοιοι τριγωνοµετρικοί 3 αριθµοί. 4. Να εξετάσετε αν υάρχει γωνία ω, για την οοία ισχύει ηµω = και συνω =. 5. i) Αν γνωρίζετε ότι εφθ = 3 και αράσταση Α = σφ θ + ηµ θ + συνθ. 3 < θ <, να υολογίσετε την Να εξετάσετε αν υάρχει τόξο φ για το οοίο να ισχύει ηµφ = Α. 6. i) Αν γνωρίζετε ότι σφθ = 3 και < θ <, να υολογίσετε την 33 αράσταση Α = σφ θ + ηµ θ + συνθ + (εφθ σφθ) 00 + (συν θ + ηµ θ) 004. Να εξετάσετε αν υάρχει τόξο φ για το οοίο να ισχύει ηµφ = Α. 7. Αν ισχύει 3ηµ α = συν α και είναι τριγωνοµετρικοί αριθµοί. < α <, να υολογιστούν όλοι οι 8. Αν γνωρίζετε ότι ισχύει ηµx + 3 συνx =, να υολογίσετε τα ηµx, συνx. 9. Αν γνωρίζετε ότι ισχύει 4εφω + 4σφω = 7, να υολογίσετε τα εφω, σφω. 0. Ν.δ.ο. για τυχαία γωνία α ισχύει: i) ηµ 3 α συν 3 α = ( συνα)( + συνα) ηµ 4 α συν 4 α = ( συνα)( + συνα) i συν 4 α + ηµ α συν α + ηµ α = iv) συν α + = v) vi) συνα εφα = + + συνα + = + συνα
3 Ασκήσεις Αναγωγή στο ο Τεταρτηµόριο. Να υολογιστούν οι τριγωνοµετρικοί αριθµοί των γωνιών 0 ο, 35 ο, 50 ο, 0 ο, 5 ο, 40 ο, 300 ο, 35 ο, 330 ο, 750 ο, 840 ο, 960 ο και των αντιθέτων τους.. Ν.δ.ο.: i) ηµ (45 ο ω) + ηµ (45 ο + ω) = ηµ (360 ο κ + ω) + συν (360 ο κ ω) =, κ Ζ i εφ x εφ 3 3. Αν α + β = ν.δ.ο. i) ηµ α + ηµ β = 6 συν α + συν β = i εφα εφβ = iv) σφα σφβ = + x = 4. Αν Α, Β, Γ γωνίες τριγώνου ν.δ.ο. i) ηµβ = ηµ(α + Γ) Γ Α+ Β ηµ = συν i ηµα = ηµ(α + Β + Γ) iv) εφ(3α + 3Β) + εφ3γ = 0 5. ίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Â = 90 ο ). Αν ισχύει ηµb συνγ = 4, να υολογίσετε τις γωνίες Β και Γ. (Α.: 60 ο, 30 ο ) 6. ίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Â = 90 ο ). Αν ισχύει ηµβ συνγ =, ν.δ.ο. το τρίγωνο ΑΒΓ είναι ισοσκελές. 7. Ν.δ.ο.: i) εφ ο εφ ο εφ3 ο εφ87 ο εφ88 ο εφ89 ο = (ηµ ο συν ο ) + (ηµ ο συν ο ) + + (ηµ89 ο συν89 ο ) = 0 8. Ν.δ.ο. ηµ α ηµ β - συν 3 β συν ( α) = ηµ α ηµ β 9. Για οιες τιµές των x, y R η αράσταση: Α = x y 3 3 ηµ(5 + α) + xσυν α + συν α είναι ανεξάρτητη του α. (Α.: x =, y =0)
4 Ασκήσεις Τριγωνοµετρικές Συναρτήσεις. Ν.δ.ο.: i) H f(x) = ηµx + 5συν4x έχει ερίοδο 3. H f(x) = 4σφ3x + 5ηµ4x έχει ερίοδο 3. i H f(x) = ηµ(x ) έχει ερίοδο. 3 iv) H f(x) = αηµ(ωx + β) έχει ερίοδο, α 0 και ω > 0. ω v) H f(x) = αεφ(ωx + β) έχει ερίοδο ω, α 0 και ω > 0.. Αν η συνάρτηση f είναι εριοδική µε ερίοδο Τ ν.δ.ο. i) H g µε g(x) = f(x + α) έχει ερίοδο Τ. Η h µε h(x) = f(αx), α > 0 έχει ερίοδο α T. 3. Να γίνει η γραφική αράσταση των συναρτήσεων: i) f(x) = ηµx i f(x) = ηµx f(x) = ηµ4x x iv) f(x) = 3ηµ v) f(x) = συν(x + 4 ) vi) f(x) = συνx + 3 v f(x) = + εφx 4. Το διάγραµµα της f(x) = αηµx + β ερνάει αό τα σηµεία Α, 3 και Β, 0. i) Να βρεθούν οι αριθµοί α, β R. Να γίνει ο ίνακας µονοτονίας και να βρεθούν τα ακρότατα της f. i Να γίνει η γραφική αράσταση της f. 5. H συνάρτηση f(x) = x β αηµ +, α, β R, x R, έχει µέγιστο τον αριθµό 5 και 4 η γραφική της αράσταση ερνάει αό το σηµείο Α(, 3). Να γίνει η γραφική αράσταση της f.
5 Ασκήσεις - Τριγωνοµετρικές Εξισώσεις. Να αντιστοιχίσετε σε κάθε τριγωνοµετρική εξίσωση της στήλης Α τις κατάλληλες λύσεις αό τη στήλη Β. ηµx = Α Β x = κ + 6 ή x = κ 6, κ Ζ συνx = 3 x = κ +, κ Z 7 εφx = 3 x = κ ή x = κ +, κ Ζ 6 6 σφx = 0 x = κ + 3, κ Ζ x = κ 3, κ Ζ. Να λύσετε τις εξισώσεις: i) ηµ3x = 3 συν 3 x + = 0 i εφ(x 0 o 4x ) = 3 iv) 3 εφ 5 = v) ηµ(x 60 o ) = συν(x + 0 o ) vi) εφ(x 3 ) = σφ(x + 4 ) v ( ηµx + )(εφ x )(συνx + 3 ) = 0 vi 4συν 3 x = 3συνx ix) ηµx εφx + = ηµx + εφx x) ηµx + συνx = ηµx xi) εφ(x 4 ) σφ(x + 3 ) = x + συνx = ηµx xi ηµ x συνx = 0 xiv) συν(ηµx) = xv) ηµ 3 x + συν 3 x = συνx xvi) συν 3. Να λυθούν στο [0, ] οι εξισώσεις: x εφx = 4 i) ηµ x 7ηµx + 3 = 0 εφx = σφx 4. Ν.δ.ο. η εξίσωση x xσυνω + συν ω = 0 έχει µια διλή ρίζα. Να βρεθεί ο ω (0, ) ώστε η ρίζα αυτή να είναι ρ = /. 5. ίνονται οι συναρτήσεις f(x) = 3εφ x και g(x) = εφx. Να βρεθούν τα κοινά τους σηµεία.
1.0 Βασικές Έννοιες στην Τριγωνομετρία
0 Βασικές Έννοιες στην Τριγωνομετρία Ένας αρατηρητής βρίσκεται σε μια όχθη ενός οταμού και βλέει στην αέναντι όχθη ένα δέντρο υό γωνία ύψους 60 ο Αν αομακρυνθεί κατά 40m, βλέει το ίδιο δέντρο υό γωνία
Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:
Ο μαθητής ου έχει μελετήσει το κεφάλαιο αυτό θα ρέει: Να γνωρίζει την έννοια της εριοδικής συνάρτησης,και να μορεί να σχεδιάζει τις γραφικές αραστάσεις των συναρτήσεων y= αημ(ωx), y=ασυν(ωx). Να μορεί
ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 3ο Κεφάλαιο - Τριγωνομετρία - Βασικές τριγωνομετρικές ταυτότητες. , να βρεθούν
ΠΑΝΤΕΛΗΣ ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΑΛΓΕΒΡΑ B Λυκείου Κ Ε Φ Α Λ Α Ι Ο 3ο - Φ Υ Λ Λ Ο Νο ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ ΑΣΚΗΣΕΙΣ. Αν 3 και < x < 3, να βρεθούν οι ΠΡΟΣΟΧΗ : Βασικές Τριγωνομετρικές Ταυτότητες
Τριγωνομετρικός κύκλος Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜAΤΙΚΟΣ
Τριγωνομετρικός κύκλος Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜAΤΙΚΟΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΚΥΚΛΟΣ Β ημφ, εφφ σφφ Μ Δ συνφ Α www.commonmaths.weebly.com Σελίδα 1 N Β, 90 ο Α, ο H O 1ο 3ο E Σ Δ, 180 ο 360 ο Ν, 70 ο 4ο 1 ο Τεταρτημόριο
Γ ΩΝΙΕΣ Π ΟΥ Σ ΥΝΔΕΟΝΤΑΙ Μ ΕΤΑΞΥ Τ ΟΥΣ
Γ ΩΝΙΕΣ Π ΟΥ Σ ΥΝΔΕΟΝΤΑΙ Μ ΕΤΑΞΥ Τ ΟΥΣ Γωνίες με την ίδια τελική λευρά Γωνίες με άθροισμα 180 - Γωνίες με διαφορά 180 - Γωνίες αντίθετες Γωνίες με άθροισμα 90 - Γωνίες με διαφορά 90 Γωνίες με την ίδια
ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΑΘΡΟΙΣΜΑΤΟΣ ΚΑΙ ΔΙΑΦΟΡΑΣ ΓΩΝΙΩΝ
Υπολογισμός παραστάσεων ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΑΘΡΟΙΣΜΑΤΟΣ ΚΑΙ ΔΙΑΦΟΡΑΣ ΓΩΝΙΩΝ. Να υπολογίσετε τις τιμές των παραστάσεων : 4 6 6 4 δ) ε) 4 6 4. Να υπολογίσετε τις τιμές των
3.1 Τριγωνομετρικοί αριθμοί γωνίας
. Τριγωνομετρικοί αριθμοί γωνίας Τριγωνομετρικοί αριθμοί οξείας γωνίας αέναντι κάθετη λευρά ημβ υοτείνουσα ημγ ΑB ροσκε ίμενη κάθετη λευρά συνβ υοτείνουσα συνγ αέναντι κάθετη λευρά εφβ ροσκε ίμενη κάθετη
Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:
Ο μαθητής ου έχει μελετήσει το κεφάλαιο αυτό θα ρέει: Να γνωρίζει την έννοια της εριοδικής συνάρτησης,και να μορεί να σχεδιάζει τις γραφικές αραστάσεις των συναρτήσεων y= αημ(ωx), y=ασυν(ωx). Να μορεί
2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Β Λυκει ου. 2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ. 2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ. 2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ
ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Β Λυκει ου ογελ ΣΥΚΕΩΝ ο ΓΕΛ ογελ ΣΥΚΕΩΝ ΣΥΚΕΩΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Β Λυκει ου ΣΧΟΛΙΚΟ ΕΤΟΣ 3-4 ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ Ειμέλεια: ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
Τριγωνομετρία. Αναγωγή στο 1ο τεταρτημόριο
Τριγωνομετρία Αναγωγή στο 1ο τεταρτημόριο Να προσέχεις: ημ(-x)= - ημx εφ(-x)= - εφx σφ(-x)= - σφx συν(-x)= συνx να θυμάμαι όταν έχω - συνx γράφω συν(π-x) δηλαδή συν(π-x)= - συν x ημ(π-x)=ημx δηλαδή ημ10=ημ60
ΚΕΦΑΛΑΙΟ 3 ο ΘΕΩΡΙΑ. 3.1 Τριγωνομετρικοί Αριθμοί Γωνίας
ΚΕΦΑΛΑΙΟ 3 ο ΘΕΩΡΙΑ Τριγωνομετρικοί αριθμοί οξείας γωνίας Δίνεται ορθογώνιο τρίγωνο ΑΒΓ, με Α = 90 ο, κάθετες πλευρές β, γ και οξεία γωνία ω. απέναντι κάθετη Ορίζουμε, ημω = υποτείνουσα συνω = προσκείμενη
ΤΡΙΓΩΝΟΜΕΤΡΙΑ Α. Τριγωνοµ ετρικοί αριθµ οί οξείας γωνίας ορθογωνίου τριγώνου
ΤΡΙΓΩΝΟΜΕΤΡΙΑ Α Τριγωνοµ ετρικοί αριθµ οί οξείας γωνίας ορθογωνίου τριγώνου 18 Τριγωνοµετρικοί αριθµοί που συνδέονται µε τις οξείες γωνίες ενός ορθογωνίου τριγώνου 1. α) Με βάση το διπλανό σχήµα να χαρακτηρίσετε
ΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ
ΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ 1. Τι ονομάζουμε εριοδική συνάρτηση Μια συνάρτηση ƒ με εδίο ορισμού το Α λέγεται εριοδική όταν υάρχει ραγματικός αριθμός Τ, Τ > 0 τέτοιος ώστε για κάθε χ Α να ισχύει α) χ+τ Α, χ -
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑ. 1.Να βρείτε τους αριθμούς: i)ημ ii)συν( ) ΛΥΣΗ i)διαιρώντας το 1125 με το 360 βρίσκω.
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Να βρείτε τους αριθμούς: i)ημ5 0 ii)συν(-660 0 ) i)διαιρώντας το 5 με το 60 βρίσκω και εομένως 0 0 0 5 60 5 5 60 5 5 0 0 0 0 0 ii) ( 660 ) ( 70 60 ) ( 60 60 ) 0 (60 ) Να
Τριγωνομετρικοί αριθμοί οξείας γωνίας. Τριγωνομετρικοί αριθμοί γωνίας. Τριγωνομετρικοί αριθμοί οποιασδήποτε γωνίας. . Τότε ορίζουμε: ί ά ά.
ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ Τριγωνομετρικοί αριθμοί οξείας γωνίας Αό το Γυμνάσιο ξέρουμε ότι σε κάθε ορθογώνιο τρίγωνο ΑΒΓ ισχύει: ημβ = = έάά ί Γ συνβ = = ίάά ί β α εφβ = = έάά ίάά Τριγωνομετρικοί
Ε. ΛΙΑΤΣΟΣ Μαθηµατικός 4
Ε. ΛΙΑΤΣΟΣ Μθηµτικός ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΕΩΝ Μορφές: Α. ηµ x, συνx, εφx, σφx. Β. ηµ x συνx, εφx σφx. Ν λυθούν οι εξισώσεις: ηµ x ( συνx + ) (συν x 3)εφx ηµ 3 x ηµ x συν x 3 3 3 x σφ x εφx óõí çì x 3 3 3εφ x
ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ - ΠΑΡΑΤΗΡΗΣΕΙΣ ΚΑΙ ΜΕΘΟΔΕΥΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ
ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ - ΠΑΡΑΤΗΡΗΣΕΙΣ ΚΑΙ ΜΕΘΟΔΕΥΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ Πρόσημο τριγωνομετρικών αριθμών Το ρόσημο των τριγωνομετρικών αριθμών μιας γωνίας (ή τόξου) καθ αό το τεταρτημόριο στο οοίο βρίσκεται
Ημερομηνία: Πέμπτη 29 Δεκεμβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ 8//06 ΕΩΣ 0/0/06 ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Ημερομηνία: Πέμτη 9 Δεκεμβρίου 06 Διάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α A. Να αοδείξετε ότι ημ ω συν ω Α. Να δώσετε τον ορισμό της εριοδικής
Τριγωνομετρία ΓΙΩΡΓΟΣ ΚΑΡΙΠΙΔΗΣ 2 ΑΝΘΟΥΛΑ ΣΟΦΙΑΝΟΠΟΥΛΟΥ
ΕΥΚΛΕΙΔΗΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ ΤΟ ΒΑΣΙΚΟ ΘΕΩΡΗΜΑ: ημ χ+συν χ= ημ χ=-συν χ συν χ=- ημ χ εφχ + σφ χ = εφχ ημχ συνχ = σφχ = ημ χ εφχσφχ σφχ = = συνχ ημχ + εφ χ = συν χ Γωνία χ Τριγωνομετρικοί Αριθμοί
Ελευθέριος Πρωτοπαπάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΛΙΓΟ ΠΡΙΝ ΤΙΣ ΕΞΕΤΑΣΕΙΣ (ΘΕΜΑΤΑ ΤΕΛΕΥΤΑΙΑΣ ΕΠΑΝΑΛΗΨΗΣ)
Ελευθέρις Πρωταάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΛΙΓΟ ΠΡΙΝ ΤΙΣ ΕΞΕΤΑΣΕΙΣ (ΘΕΜΑΤΑ ΤΕΛΕΥΤΑΙΑΣ ΕΠΑΝΑΛΗΨΗΣ) Να βρείτε την τιµή των αραστάσεων: o o συν 90 + ηµ 0 -σφ75 α) A =, ηµ o o 0 + συν 80
ΑΛΓΕΒΡΑ Β Λυκείου ΑΣΚΗΣΕΙΣ. 2. Να υπολογίσετε την τιµή των παραστάσεων : α) συν π 18 συνπ 9 - ηµ π. 18 ηµπ 9. β) συν18 ο συν27 ο - ηµ18 ο ηµ27 ο
ΠΑΝΤΕΛΗΣ ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΑΛΓΕΒΡΑ Β Λυκείου Γενικής Παιδείας Κ Ε Φ Α Λ Α Ι Ο ο - Φ Υ Λ Λ Ο Νο 6 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΑΘΡΟΙΣΜΑΤΟΣ ΓΩΝΙΩΝ ΑΣΚΗΣΕΙΣ 1. Να υπολογίσετε την τιµή των παραστάσεων : α) συν
1. Τριγωνομετρικοί αριθμοί οξείας γωνίας
v.5 «Αυτό το ρόβλημα, τούτ η μεγάλη συμφορά για να λυθεί χρειάζεται, δίχως αμφιβολία, όως κοιτάζω α τη δική σου την λευρά, να δεις κι εσύ α τη δική μου τη γωνία».. Τριγωνομετρικοί αριθμοί οξείας γωνίας
Β Γενική Τριγωνομετρία
Β Γενική Τριγωνομετρία 40 Γενικευμένη γωνία - Γενικευμένα τόξα - Το ακτίνιο Τριγωνομετρικός κύκλος - Τριγωνομετρικοί αριθμοί γενικευμένης γωνίας 1. Η γωνία ω του παρακάτω σχήματος είναι θετική. α) Συνδέστε
ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΚΥΚΛΟΣ
Περιοδικό ΕΥΚΛΕΙΔΗΣ Β E.M.E. (τεύχος 4) ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΚΥΚΛΟΣ Κώστα Βακαλόουλου ΕΙΣΑΓΩΓΗ Αν κάοιος θέλει να άψει να φοβάται το κεφάλαιο της Τριγωνομετρίας, ρέει ν αοφασίσει να διαβάσει ροσεκτικά τους
1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η απόσταση του σώµατος
1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η αόσταση του σώµατος αό το έδαφος (σε cm), δίνεται αό την συνάρτηση f(t)=1ηµ t +13, όου t ο χρόνος σε ώρες. α) Να βρείτε την ερίοδο της ταλάντωσης.
1.1 Τριγωνομετρικές Συναρτήσεις
11 Τριγωνομετρικές Συναρτήσεις Ποια συνάρτηση ονομάζουμε εριοδική; ΑΠΑΝΤΗΣΗ Μια συνάρτηση f με εδίο ορισμού το σύνολο Α λέγεται εριοδική, όταν υάρχει ραγματικός αριθμός Τ > 0 τέτοιος, ώστε για κάθε x A
ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΑΛΓΕΒΡΑΣ... ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑ 1 Ο
Αµυραδάκη, Νίκαια (1-493576) ΙΑΝΟΥΑΡΙΟΣ 1 Α1. Έστω P(x) ένα πολυώνυµο του x και p ένας πραγµατικός αριθµός. Αν π(χ) είναι το πηλίκο και υ(x) το υπόλοιπο της διαίρεσης του πολυωνύµου P(x) µε το πολυώνυµο
ΚΕΦΑΛΑΙΟ 1 Ο ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΤΥΠΟΛΟΓΙΟ - ΑΣΚΗΣΕΙΣ
ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΤΥΠΟΛΟΓΙΟ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΤΥΠΟΛΟΓΙΟ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ ΤΑΥΤΟΤΗΤΕΣ α ) η μ + συν = γ ) εφ + =, ¹ κπ+ sun hm β ) εφ =, ¹ κπ+ sun sun δ ) σφ =, ¹
= συν. Μάθηµα 9. Κεφάλαιο: Τριγωνοµετρία. Θεµατικές Ενότητες: 1. Τριγωνοµετρικοί Αριθµοί Αθροίσµατος Γωνιών. Εισαγωγή
Μάθηµα 9 Κεφάλαιο: Τριγωνοµετρία Θεµατικές Ενότητες: 1 Τριγωνοµετρικοί Αριθµοί Αθροίσµατος Γωνιών Εισαγωγή Γνωρίζουµε τους τριγωνοµετρικούς αριθµούς των 30 0, όως και των 45 0 Είναι δυνατόν, µέσω αυτών,
ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΙΣΑΓΩΓΗ ΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ. ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΗΣ 2ου ΒΑΘΜΟΥ ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ
ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΙΣΑΓΩΓΗ ΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΗΣ ου ΒΑΘΜΟΥ α + β + γ 0, α 0 β 4 αγ Αν >0, τότε η εξίσωση έχει δύο πραγµατικές ρίζες: 1, β ± α Αν 0, τότε η εξίσωση έχει µια ρίζα διπλή: β
ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 3 ου ΚΕΦΑΛΑΙΟΥ (Γ ΟΜΑ ΑΣ) Ασκήσεις σχολικού βιβλίου σελίδας
1 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ου ΚΕΦΑΛΑΙΟΥ (Γ ΟΜΑ ΑΣ) Ασκήσεις σχολικού βιβλίου σελίδας 1 1 1. Σε τρίγωνο ΑΒΓ το ύψος του Α είναι ίσο µε το µισό της λευράς ΒΓ. να αοδείξετε ότι ισχύει εφβ + εφγ εφβ εφγ και σφβ +
Τριγωνομετρικοί αριθμοί παραπληρωματικών γωνιών
ΜΕΡΟΣ Β. ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΠΑΡΑΠΛΗΡΩΜΑΤΙΚΩΝ ΓΩΝΙΩΝ 491. ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΠΑΡΑΠΛΗΡΩΜΑΤΙΚΩΝ ΓΩΝΙΩΝ Τριγωνομετρικοί αριθμοί παραπληρωματικών γωνιών 8 Μ(x,y) 6 ρ 4 180-ω -10-5 5 Ο ω - -4 Οι παραπληρωματικές
1ο Κεφάλαιο. Συστήµατα. 1. Να λύσετε γραφικά τα παρακάτω συστήµατα: 2. Να λύσετε τα παρακάτω συστήµατα µε τη µέθοδο της αντικατάστασης:
Άλγεβρα Β Λυκείου 0-0.. Γραµµικά συστήµατα ο Κεφάλαιο Συστήµατα Α. Γραµµικό σύστηµα Χ. Να λύσετε γραφικά τα αρακάτω συστήµατα: α) ψ= + β) ψ= γ) -ψ= ψ= -ψ= + ψ=. Να λύσετε τα αρακάτω συστήµατα µε τη µέθοδο
α) Αν ονομάσουμε x το πλάτος του Νείλου στην συγκεκριμένη θέση ΑΒ έχουμε: Από το ορθογώνιο τρίγωνο ΑΒΓ εφ45 o = 1 = ΒΓ = x
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΑΣΚΗΣΗ η Αιγύτιοι μηχανικοί, για να ροσδιορίσουν το λάτος του οταμού Νείλου μεταξύ δύο σημείων A και B, ροσδιόρισαν με το θεοδόλιχο μια διεύθυνση κάθετη ρος την
Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ. Τριγωνομετρικοι αριθμοι οξειων γωνιων
Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ Τριγωνομετρικοι αριθμοι οξειων γωνιων 22 ΙΑΝΟΥΑΡΙΟΥ 2014 Κλίση ευθείας Όλοι έχουμε στο δρόμο τα παρακάτω σήματα, που από την εμπειρία μας καταλαβαίνουμε ότι πλησιάζουμε σε
Τριγωνομετρικές συναρτήσεις Τριγωνομετρικές εξισώσεις
6 Τριγωνομετρικές συναρτήσεις Τριγωνομετρικές εξισώσεις 1. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Περιοδική συνάρτηση Μια συνάρτηση f με εδίο ορισμού Α λέγεται εριοδική, όταν υάρχει T τέτοιος ώστε για κάθε x A να
Αναγωγή στο 1ο τεταρτημόριο
ΑΛΓΕΒΡΑ ΒΛ ΤΡΙΓΩΝΟΜΕΤΡΙΑ - ΑΣΚΗΣΕΙΣ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 1-1. -175663 Βασικές Τριγωνομετρικές ταυτότητες Αν 0
ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ
ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ 78 Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ: 1ο ΣΧΕ ΙΟ Η γενικευµένη γωνία Το ηµίτονο και το συνηµίτονό της ιάρκεια: Ολιγόλεπτο Θέµατα: ΘΕΜΑ 1ο 8 µονάδες 1. Με βάση το
1.2 Βασικές Τριγωνομετρικές Εξισώσεις
. Βασικές Τριγωνομετρικές Εξισώσεις. Να λύσετε τις εξισώσεις: i) ημ = ημ = i = iv) =. Να λύσετε τις εξισώσεις: i) εφ = εφ = i σφ = iv) σφ =. Να λυθούν οι εξισώσεις: i) ημ = = i εφ = iv) σφ = 4. Να λυθούν
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο ΚΕΦΑΛΑΙΟ Ι. Να αντιστοιχίσετε καθένα από τα συστήματα: (Σ 1 ): { (Σ 2 ): { (Σ 3 ): { (Σ 4 ): { με εκείνη από τις απαντήσεις Α, Β, Γ που νομίζετε ότι είναι η σωστή.
Άλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ. Τόμος 3ος
Άλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Τόμος 3ος Συγγραφική ομάδα: Ανδρεαδάκης Στυλιανός Καθηγητής Πανειστημίου Αθηνών Κατσαργύρης Βασίλειος Καθηγητής μαθηματικών Βαρβακείου Πειραμ. Λυκείου Παασταυρίδης Στάυρος Καθηγητής
ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ. Γενικής Παιδείας ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ
ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ Γενικής Παιδείας ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ Σχολικό βιβλίο: Ααντήσεις Λύσεις Κεφάλαιο ο: Συστήματα Γραμμικά συστήματα Α ΟΜΑΔΑΣ Έχουμε: y i 6 + y + y y Άρα, η λύση του συστήματος
3.5 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
1. ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Ασκσεις σχολικού βιβλίου σελίδας 88-89 A Oµάδας 1.i) Να λύσετε την εξίσωση ηµx = 0 ηµx = 0 ηµx = ηµ0 x = k + 0 x = k + 0, k Z Σηµείωση: Οι λύσεις αυτές διαφορετικά
3.9 Η ΣΥΝΑΡΤΗΣΗ f(x) = αηµx + βσυνx
1.9 Η ΣΥΝΑΡΤΗΣΗ f(x) = αηµx + βσυνx Ασκήσεις σχολικού βιβλίου σελίδας 11 11 A Oµάδας 1.i) Να βρείτε την ερίοδο, τη µέγιστη τιµή και την ελάχιστη τιµή της αρακάτω συνάρτησης και στη συνέχεια να την αραστήσετε
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ ΚΑΙ ΛΥΣΕΙΣ ΟΛΩΝ ΤΩΝ ΘΕΜΑΤΩΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ ΘΕΜΑΤΑ 16968, 1765, 17656, 17663, 17664, 17681, 1769, 17699, 17704, 1775, 17736, 17739, 17741 ΘΕΜΑΤΑ 4 17837, 17838,
τα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Νίκος Ζανταρίδης. Χρήσιμες γνώσεις Τριγωνομετρίας. Λυμένες Ασκήσεις. Προτεινόμενες Ασκήσεις
Νίκος Ζανταρίδης ΑΝΤΙΜΕΤΩΠΙΣΗ ΑΣΚΗΣΕΩΝ ΑΛΓΕΒΡΑΣ ΜΕ ΤΗΝ ΒΟΗΘΕΙΑ ΤΗΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Χρήσιμες γνώσεις Τριγωνομετρίας Λυμένες Ασκήσεις Προτεινόμενες Ασκήσεις Αύγουστος 04 Πρόλογος Στο μικρό αρόν όνημα καταβλήθηκε
3. Να δειχτει οτι α α. Ποτε ισχυει το ισον; α, β θετικοι, να συγκρινεται τους αριθμους Α = α + β, Β = α β + αβ
TΡΙΓΩΝΟΜΕΤΡΙΑ Τ ρ ι γ ω ν ο μ ε τ ρ ι κ ο ι Α ρ ι θ μ ο ι Ο ρ ι σ μ ο ι. Να δειχτει οτι α + α. Ποτε ισχυει το ισον; Ονομαζουμε ημx την τεταγμενη π/ του Μ (εντονο. Aν μπλε) α, β θετικοι, να συγκρινεται
ΟΝΟΜ/ΜΟ :... ΟΜΑ Α Α. 1. Χαρακτηρίστε µε ΣΩΣΤΟ (Σ) ή ΛΑΘΟΣ (Λ) τις παρακάτω προτάσεις : Σχῆµα 1: Ασκηση 1δ.
ΙΑΓΩΝΙΣΜΑ 1 oυ 4 νoυ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ΟΜΑ Α Α 1. Χαρακτηρίστε µε ΣΩΣΤΟ (Σ) ή ΛΑΘΟΣ (Λ) τις παρακάτω προτάσεις : (α ) Η περίοδος της συνάρτησης f(x) = 3συν x 5 είναι 5π... (ϐ ) Η συνάρτηση f(x)
1.0 Βασικές Έννοιες στην Τριγωνομετρία
.0 Βασικές Έννοιες στην Τριγωνομετρία Εύρεση τριγωνομετρικών αριθμών οξείας γωνίας σε ορθογώνιο τρίγωνο. ΑΠΑΝΤΗΣΗ Έστω ορθογώνιο τρίγωνο ΑΒΓ (Α= 90 0 ). Οι τριγωνομετρικοί αριθμοί μιας οξείας γωνίας ορίζονται
1. ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ ΑΝΑΓΩΓΗ ΣΤΟ 1 Ο ΤΕΤΑΡΤΗΜΟΡΙΟ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ
1. ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ ΑΝΑΓΩΓΗ ΣΤΟ 1 Ο ΤΕΤΑΡΤΗΜΟΡΙΟ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ Έστω ΑΒΓ ένα ορθογώνιο τρίγωνο Είναι γνωστό ότι: ( ΑΒ) ηµ Γ= ( ΒΓ ) ( ΑΓ) συν Γ= ( ΒΓ ) ( ΑΒ) εφ Γ= ( ΑΓ ) ( ΑΓ)
ΤΡΙΓΩΝΟΜΕΤΡΙΑ. Ορίζω: Ορίζω: ηµω= y ρ. x x
1 ΤΡΙΓΩΝΜΕΤΡΙΑ [1].Τυολόγιο τριγνοµετρίας (Εαναλήψεις) α. Τριγνοµετρικοί αριθµοί σε ορθογώνιο τρίγνο αέναντι Γ Α β υοτείνουσα α γ ροσκείµενη ρίζ: β. Τριγνοµετρικοί αριθµοί σε σύστηµα συντεταγµένν ηµβ=
ΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΛΛΟ ΕΠΑΝΑΛΗΨΗΣ 1
ΘΕΜΑ Α ΦΥΛΛΟ 1 Α1. Να αποδείξετε ότι το υπόλοιπο υ της διαίρεσης ενός πολυωνύμου P(x) με το x - ρ είναι ίσο με την τιμή του πολυωνύμου για x = ρ. Είναι δηλαδή υ = P(ρ). Α. Να χαρακτηρίσετε τις προτάσεις
Ημερομηνία: Σάββατο 29 Δεκεμβρίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Ημερομηνία: Σάββατο 29 Δεκεμβρίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1 Α2 να γράψετε στο τετράδιό σας τον αριθμό της
Bbs. ΑΛΓΕΒΡΑ ΣΥΝΟΛΑ Σύνολο Φυσικών αριθμών: N = {0,1,2, } Σύνολο Ακέραιων αριθμών: Z = {,-2,-1,0,1,2, } Σύνολο Ρητών αριθμών: Q = {
ΑΛΓΕΒΡΑ ΣΥΝΟΛΑ Σύνολο Φυσικών αριθμών: N = {0,1,2, } Σύνολο Ακέραιων αριθμών: Z = {,-2,-1,0,1,2, } Σύνολο Ρητών αριθμών: Q = { Άρρητοι αριθμοί A: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών αριθμών R=
Α λ γ ε β ρ α Α Λ υ κ ε ι ο υ Α λ γ ε β ρ α B Λ υ κ ε ι ο υ
Κ Κ α α ι ι τ τ ο ο Λ Λ υ υ σ σ α α ρ ρ ι ι............ Α Α λ λ λ λ ι ι ω ς ς!!!!!! Α λ γ ε β ρ α Α Λ υ κ ε ι ο υ Α λ γ ε β ρ α B Λ υ κ ε ι ο υ Ε ι μ ε λ ε ι α Τ α κ η ς Τ σ α κ α λ α κ ο ς w w w. d r
3.4 Οι τριγωνομετρικές συναρτήσεις
3.4 Οι τριγωνομετρικές συναρτήσεις Περιοδικές συναρτήσεις Ορισμός Μια συνάρτηση f με εδίο ορισμού το Α λέγεται εριοδική, όταν υάρχει ραγματικός αριθμός Τ>0 τέτοιος ώστε για κάθε Α να ισχύει: ( T)A και
Άλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ. Τόμος 2ος
Άλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Τόμος ος Συγγραφική ομάδα: Ανδρεαδάκης Στυλιανός Καθηγητής Πανεπιστημίου Αθηνών Κατσαργύρης Βασίλειος Καθηγητής μαθηματικών Βαρβακείου Πειραμ. Λυκείου Παπασταυρίδης Στάυρος Καθηγητής
ΕΠΑΝΑΛΗΨΗ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ
ΚΕΦΑΛΑΙΟ Ο ΕΠΑΝΑΛΗΨΗ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Το ακτίνιο ως μονάδα μέτρησης γωνιών: Το ακτίνιο (ή rad) είναι η γωνία που, όταν γίνει επίκεντρη κύκλου (Ο, ρ), βαίνει σε τόξο που έχει μήκος ίσο με την ακτίνα
Άλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Τόμος 2ος 1η ΕΚΔΟΣΗ
Άλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Τόμος ος 1η ΕΚΔΟΣΗ Συγγραφική ομάδα: Ανδρεαδάκης Στυλιανός Καθηγητής Πανεπιστημίου Αθηνών Κατσαργύρης Βασίλειος Καθηγητής μαθηματικών Βαρβακείου Πειραμ. Λυκείου Παπασταυρίδης
ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ
ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Α. ΕΦΑΠΤΟΜΕΝΗ ΟΞΕΙΑΣ ΓΩΝΙΑΣ 1. Στο τρίγωνο ΑΒΓ είναι ΑΒ = 8cm και η γωνία Β = 64 0. Να υπολογίσετε το μήκος της πλευράς ΑΓ. 2. Στο ορθογώνιο τρίγωνο ΑΒΓ είναι ΑΒ = 9cm και εφγ
(Μονάδες 15) (Μονάδες 12)
ΑΛΓΕΒΡΑ Β Λυκε ί ου τ ράε ζ αθε μάτ ων( 1ηέ κδοση) θέ μαδε ύτ ε ροκαιτ έ τ αρτ ο Κόμβ οςατ σι οούλου01415 δης Ει μέ λε ι α:εμμανουήλκ.σκαλί Αντ ώνηςκ.αοστ όλου Άσκηση 1 α) Να κατασκευάσετε ένα γραμμικό
ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ ΣΠΑΡΤΗ 2008
ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ ΣΠΑΡΤΗ 008 Κάθε γνήσιο αντίτυπο έχει την ιδιόχειρη υπογραφή του συγγραφέα Γενική επιμέλεια : Στράτης Αντωνέας Copyright : Στράτης Αντωνέας e-mail: stranton@otenet.gr Τηλέφωνα επικοινωνίας
συν 2α = συν α ηµ α = 1 2ηµ α = 2συν α εφα+ εφα 2εφα Μάθηµα 10 Κεφάλαιο: Τριγωνοµετρία Θεµατικές Ενότητες: 1. Τριγωνοµετρικοί Αριθµοί της Γωνίας 2α
Μάθηµ 0 Κεφάλιο: Τριγωνοµετρί Θεµτικές Ενότητες:. Τριγωνοµετρικοί Αριθµοί της Γωνίς Εισγωγή Χρησιµοοιώντς τους τύους ου υολογίζουν τους τριγωνοµετρικούς ριθµούς του θροίσµτος (ροηγούµενο µάθηµ), ροσδιορίζουµε
Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Κολλινιάτη Γιωργία. Μάκος Σπύρος. Πανούσης Γιώργος. Παπαθανάση Κέλλυ. Ραμαντάνης Βαγγέλης.
Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Κολλινιάτη Γιωργία Μάκος Σύρος Πανούσης Γιώργος Πααθανάση Κέλλυ Ραμαντάνης Βαγγέλης Σαμάνης Νίκος Τόλης Ευάγγελος -1-01 18808Δίνεται η εξίσωση x y 7 Γραμμικά
τα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
3.5 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
1.5 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΘΕΩΡΙΑ Λύσεις των βασικών τριγωνοµετρικών εξισώσεων ηµx = ηµθ x = κ + θ x = κ + ( θ), κ Z συνx = συνθ x = κ + θ x = κ θ, κ Z εφx = εφθ x = κ + θ, κ Z σφx = σφθ x =
2.4 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ 30 Ο 45 Ο 60 Ο
.4 ΤΡΙΩΝΟΜΕΤΡΙΚΟΙ ΡΙΘΜΟΙ 0 Ο 45 Ο 60 Ο ΘΕΩΡΙ. Τριγωνοµετρικοί αριθµοί 0 ο, 45 ο, 60 ο : ηµίτονο συνηµίτονο εφαπτοµένη 0 ο 45 ο 60 ο ΣΚΗΣΕΙΣ. Στο διπλανό πίνακα, σε κάθε πληροφορία της στήλης, να επιλέξετε
Άλγεβρα Β Λσκείοσ. Τριγωμομετρία. Στέλιος Μιταήλογλοσ. Εσάγγελος Τόλης
Άλγεβρα Β Λσκείοσ Τριγωμομετρία Στέλιος Μιταήλογλοσ Εσάγγελος Τόλης www.askisopolis.gr 1. ΤΙΓΩΝΟΜΕΤΙ 1.1. ΒΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΤΙΓΩΝΟΜΕΤΙ Οι αρακάτω έννοιες ου θα αναφέρουµε συµεριλαµβάνονται στη διδακτέα
2.1 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ
ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ ΜΟΝΑΔΕΣ ΜΕΤΡΗΣΗΣ ΤΟΞΩΝ ΓΩΝΙΩΝ Χρησιμιύμε τις αρακάτω μνάδες μέτρησης τόξων και γωνιών: Τόξ ενός ακτινίυ ( rad ), λέγεται τ τόξ u υ έχει μήκς ίσ με την ακτίνα R τυ κύκλυ Αν
ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ
- ΣΗΜΕΙΩΣΕΙΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ: ΡΟΥΓΑΣ ΑΘΑΝΑΣΙΟΣ http://mathhmagic.blogspot.com/ Οι τριγωνομετρικοί αριθμοί (Εαναλητικά) Ε ί εδη γωνία είναι η κλίση µεταξύ δυο
ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ' ΓΥΜΝΑΣΙΟΥ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ ΘΕΩΡΙΑ :
ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ' ΓΥΜΝΑΣΙΟΥ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Θέμα 1 ον ΘΕΩΡΙΑ : α) Τι καλείται αριθμητική παράσταση και τι καλείται αλγεβρική παράσταση ; β) Να συμπληρώσετε
Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ
Α. Να συμπληρωθούν οι ισότητες: (α + β) =.., (α β) 3 = και (α + β)(α β) =.. Β. Να αποδείξετε τη δεύτερη. Θέμα ο Να γράψετε τα τρία (3) κριτήρια ισότητας τριγώνων. Να λυθεί η εξίσωση: 3 + 4 = 7 + 1 Άσκηση
ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα
ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ 1 ο δείγμα Α. Θεωρία Α) Πότε ένα πολύγωνο λέγεται κανονικό; Β) Να δώσετε τον ορισμό της εγγεγραμμένης γωνίας σε κύκλο (Ο, ρ). (Να γίνει σχήμα) Γ) Ποια
1.0 Βασικές Έννοιες στην Τριγωνομετρία
1.0 Βασικές Έννιες στην Τριγωνμετρία 1 η Μρφή Ασκήσεων: Ασκήσεις όπυ θέλυμε να βρύμε στιχεία ενός γεωμετρικύ σχήματς 1. Στ διπλανό σχήμα να απδείξετε ότι: ΒΓ υ εφω + εφθ. Τ τρίγων ΑΔΒ είναι ρθγώνι στ Δ,
1.06 Δίνεται ένα σύστημα (Σ) 2 γραμμικών
ΣΥΣΤΗΜΑΤΑ λ y λ.0 Δίνεται τ σύστημα:, λy λ λ R. Να υλγίσετε τις τιμές τυ λ ώστε για τη λύση τυ συστήματς (,y) να ισχύει y 0.0 Δίνεται η συνάρτηση : αν 0 f() με λ R λ αν 0 Να βρεθύν ι τιμές τυ λ ώστε f(0)
ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΤΗΣ Β ΛΥΚΕΙΟΥ (παράγραφοι 3.1 έως και 3.5) Α. Να αποδείξετε τις παρακάτω ταυτότητες:
ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΤΗΣ Β ΛΥΚΕΙΟΥ (παράγραφοι.1 έως και.5) Α. Να αποδείξετε τις παρακάτω ταυτότητες: 1 1. 1. 1 1 1. 4. 1 1 1 5. 1 1 1 1 1 6. 1 7 Β. Να υπολογίσετε την τιμή των παρακάτω παραστάσεων:
1 η δεκάδα θεµάτων επανάληψης
1 1 η δεκάδα θεµάτων εανάληψης 1. ίνεται το ολυώνυµο Ρ(x) = x 3 x 2 4x + 4 Να αοδείξετε ότι ο αριθµός ρ = 1 είναι ρίζα του ολυωνύµου i Να βρείτε το ηλίκο της διαίρεσης του ολυωνύµου Ρ(x) µε το ολυώνυµο
ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ
ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ Τελευταία ενηµέρωση: Νοέµβριος 016) Ανέστης Τσοµίδης Κατερίνη Περιεχόµενα 1 Συστήµατα 1.1 Μη γραµµικά συστήµατα........................ Ιδιότητες συναρτήσεων 3.1 Μονοτονία,
Ασκήσεις. g x α β συν α β x, α,β 0. Αν οι. π π Α f g 3 4. α) Να βρείτε την μέγιστη και την ελάχιστη τιμή της f καθώς και την περίοδο της f.
wwwaskisopolisgr Ασκήσεις 1 Δίνεται η συνάρτηση fx ημ x 5συνx 1 α) Να αποδείξετε ότι είναι περιοδική με περίοδο π β) Να βρείτε τα σημεία τομής της με τους άξονες γ) Να λύσετε την εξίσωση f x συν x 8 f
ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ ΣΠΑΡΤΗ 2008
ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ ΣΠΑΡΤΗ 008 Κάθε γνήσιο αντίτυπο έχει την ιδιόχειρη υπογραφή του συγγραφέα Γενική επιμέλεια : Στράτης Αντωνέας Copyright : Στράτης Αντωνέας e-mail: stranton@otenet.gr Τηλέφωνα επικοινωνίας
Τ ρ α π ε ζ α Θ ε μ α τ ω ν
Τ ρ α π ε ζ α Θ ε μ α τ ω ν Α λ γ ε β ρ α B Λ υ κ ε ι ο υ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς Α λ γ ε β ρ α B Λ υ κ ε ι ο υ Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Γ ρ α μ μ ι κ α Σ υ σ τ η μ α τ α 16950 16954
Ελευθέριος Πρωτοπαπάς. Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Β Γενικού Λυκείου
Ελευθέριος Πρωτοαάς Εκφωνήσεις και λύσεις των ασκήσεων της Τράεζας Θεμάτων στην Άλγεβρα Β Γενικού Λυκείου Δεκέμβριος 04 Περιεχόµενα o Θέμα Θέµα Σελίδα Θέµα Σελίδα Θέµα Σελίδα Θέµα Σελίδα 6950 8 6954 9
ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ. εφχ = εφθ χ = κ + θ χ = κ π + θ ( τύποι λύσεων σε ακτίνια )
ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ηµχ = ηµθ χ = 0 0 κ + θ ή χ = 0 0 κ + 80 0 - θ ( τύοι λύσεων σε µοίρες ) χ = κ + θ ή χ = κ + - θ ( τύοι λύσεων σε ακτίνια ) κ ακέραιος συνχ = συνθ χ = 0 0 κ ± θ ( τύοι λύσεων
ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου
ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο 1 ο ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α1.1 Ισότητα τριγώνων Στο διπλανό σχήμα το τρίγωνο ΑΒΓ είναι ισοσκελές με ΑΒ=ΑΓ. Προεκτείνουμε τη βάση ΒΓ κατά ίσα τμήματα
Άλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ. Τόμος 6ος 1η ΕΚΔΟΣΗ
Άλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Τόμος 6ος 1η ΕΚΔΟΣΗ Συγγραφική ομάδα: Ανδρεαδάκης Στυλιανός Καθηγητής Πανειστημίου Αθηνών Κατσαργύρης Βασίλειος Καθηγητής μαθηματικών Βαρβακείου Πειραμ. Λυκείου Παασταυρίδης
1 of 79 ΘΕΜΑ 2. Δίνεται η συνάρτηση f(x) = x 2 4x + 5, x R
1 of 79 Δίνεται η συνάρτηση f(x) = x 2 4x + 5, x R α) Να αποδείξετε ότι η f γράφεται στη μορφή f(x) = (x- 2) 2 + 1. (Μονάδες 12) β) Στο σύστημα συντεταγμένων που ακολουθεί, να παραστήσετε γραφικά τη συνάρτηση
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΑΡΧΙΑ ΠΕΛΛΑΣ ΣΧΟΛΙΚΟ ΕΤΟΣ : ΔΙΕΥΘΥΝΣΗ Δ/ΒΜΙΑΣ ΕΚΠ/ΣΗΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ ΓΥΜΝΑΣΙΟ ΕΞΑΠΛΑΤΑΝΟΥ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΑΡΧΙΑ ΠΕΛΛΑΣ ΣΧΟΛΙΚΟ ΕΤΟΣ : 2008-2009 ΔΙΕΥΘΥΝΣΗ Δ/ΒΜΙΑΣ ΕΚΠ/ΣΗΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ ΓΥΜΝΑΣΙΟ ΕΞΑΠΛΑΤΑΝΟΥ Ονοματεπώνυμο μαθητή/τριας Εξεταζόμενο Μάθημα : ΜΑΘΗΜΑΤΙΚΑ Τάξη : Β
Κεφάλαιο 3 ο ΤΡΙΓΩΝΟΜΕΤΡΙΑ
Κεφάλαιο ο ΤΡΙΓΩΝΟΜΕΤΡΙΑ. τριγωνομετρικοι αριθμοι γωνιασ Τριγωνομετρικοί αριθμοί οξείας γωνίας Έστω οξεία γωνία ω. Αν άνω στη μία αό τις δύο λευρές της γωνίας άρουμε τυχαία σημεία Μ και Ν και φέρουμε τις
ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ 0 ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ α α (ii)
ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ 1-13 1 Ποιοι αριθμοί ονομάζονται ομόσημοι και ποιοι ετερόσημοι; 1 Δίνονται οι αριθμοί: 1,,.1,,, 9, + 3, 3 3.1 Ποιοι από αυτούς είναι θετικοί και ποιοι αρνητικοί;.
1 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 2008
ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 008 α). Να αποδείξετε ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου Ρ(x) με το πρωτοβάθμιο πολυώνυμο x ρ ισούται με την αριθμητική τιμή του Ρ(x) για x =
ΛΥΚΕΙΟ ΚΟΚΚΙΝΟΧΩΡΙΩΝ ΦΩΤΗ ΠΙΤΤΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ:
ΛΥΚΕΙΟ ΚΟΚΚΙΝΟΧΩΡΙΩΝ ΦΩΤΗ ΠΙΤΤΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 016-017 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 017 ΤΑΞΗ: Β Ενιαίου Λυκείου ΗΜΕΡΟΜΗΝΙΑ: 5/05/017 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ : :30
2.3 ΣΧΕΣΕΙΣ ΜΕΤΑΞΥ ΤΡΙΓΩΝΟΜΕΤΡΙΚΩΝ ΑΡΙΘΜΩΝ ΜΙΑΣ ΓΩΝΙΑΣ Βασικές τριγωνομετρικές ταυτότητες
ΜΕΡΟΣ Β.3 ΣΧΕΣΕΙΣ ΜΕΤΑΞΥ ΤΡΙΓΩΝΟΜΕΤΡΙΚΩΝ ΑΡΙΘΜΩΝ ΜΙΑΣ ΓΩΝΙΑΣ 97.3 ΣΧΕΣΕΙΣ ΜΕΤΑΞΥ ΤΡΙΓΩΝΟΜΕΤΡΙΚΩΝ ΑΡΙΘΜΩΝ ΜΙΑΣ ΓΩΝΙΑΣ Βασικές τριγωνομετρικές ταυτότητες 8 6 y Μ(x,y) ρ Ο ω x 1 Σ ε ορθοκανονικό σύστημα αξόνων
Έργο του καλλιτέχνη Άγγελου Γεωργίου
ο ΚΕΦΑΛΑΙΟ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Έργο του καλλιτένη Άγγελου Γεωργίου ο ΚΕΦΑΛΑΙΟ ΤΡΙΓΩΝΟΜΕΤΡΙΑ ο ΚΕΦΑΛΑΙΟ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Π Ρ Ο Λ Ο Γ Ο Σ Η ΤΡΙΓΩΝΟΜΕΤΡΙΑ γράφτηκε σαν ένα ξεωριστό εγειρίδιο γιατί αφ ενός η τριγωνοµετρία
( ) ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ 2 = ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΤΑΞΗ : Β Λυκείου κατ. 1) Να βρεθεί το Π.Ο.
ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΤΑΞΗ : Β Λυκείου κατ. ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ ΣΥΝΑΡΤΗΣΕΙΣ 1) Να βρεθεί το Π.Ο. των συναρτήσεων : α) f ( ) β) f ( ) + 5 + 6 ln( + 1) γ) f ( ) δ) 1 f( ) 4 ) Να βρεθεί
1 Τριγωνοµετρικοί αριθµοί
Τριγωνµετρικί αριθµί Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Τριγωνµετρικί αριθµί υ συνδένται µε τις ξείες γωνίες ρθγωνίυ τριγώνυ Έστω ΑΒΓ ( A= 90 o ) ρθγώνι τρίγων µε λευρές α, β, γ. Γνωρίζυµε ότι: µήκς αέναντι
ΘΕΩΡΙΑ ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: ΘΕΜΑ 1 ο. A. Τι ονομάζουμε τετραγωνική ρίζα θετικού αριθμού α ;
ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: B ΘΕΩΡΙΑ ΘΕΜΑ 1 ο A. Τι ονομάζουμε τετραγωνική ρίζα θετικού αριθμού α ; B. Να αντιγράψετε και να συμπληρώσετε τις παρακάτω σχέσεις: i. Αν α 0,
Ταυτότητες. α 2 β 2 = (α β)(α + β) "διαφορά τετραγώνων" α 3 β 3 = (α β)(α 2 + αβ + β 2 ) "διαφορά κύβων"
Ταυτότητες (α β) α αβ β " αναπτύγματα τετραγώνων " (α β) αβ β (α β) α α β αβ β " αναπτύγματα κύβων " (α β) α α β αβ β " παραγοντοποίηση τριωνύμου " (α β) αβ ( α)( β) (α β) αβ ( α)( β) α β = (α β)(α + β)
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Άλγεβρας Β τάξης Γενικού Λυκείου 2o Θέμα. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (26/11/2014)
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Άλγεβρας Β τάξης Γενικού Λυκείου o Θέμα Εκφωνήσεις Λύσεις των θεμάτων Έκδοση 1 η (6/11/014) Οι ααντήσεις και οι λύσεις είναι αοτέλεσμα συλλογικής δουλειάς των Ειμελητών των φακέλων του
1.1 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ (Επαναλήψεις Συμπληρώσεις) Τριγωνομετρικοί αριθμοί οξείας γωνίας
. ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ (Επαναλήψεις Συμπληρώσεις) Τριγωνομετρικοί αριθμοί οξείας γωνίας Έστω οξεία γωνία ω. Αν πάνω στη μία από τις δύο πλευρές της γωνίας πάρουμε τυχαία σημεία Μ και Ν και φέρουμε