Γ ΩΝΙΕΣ Π ΟΥ Σ ΥΝΔΕΟΝΤΑΙ Μ ΕΤΑΞΥ Τ ΟΥΣ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Γ ΩΝΙΕΣ Π ΟΥ Σ ΥΝΔΕΟΝΤΑΙ Μ ΕΤΑΞΥ Τ ΟΥΣ"

Transcript

1 Γ ΩΝΙΕΣ Π ΟΥ Σ ΥΝΔΕΟΝΤΑΙ Μ ΕΤΑΞΥ Τ ΟΥΣ Γωνίες με την ίδια τελική λευρά Γωνίες με άθροισμα Γωνίες με διαφορά Γωνίες αντίθετες Γωνίες με άθροισμα 90 - Γωνίες με διαφορά 90 Γωνίες με την ίδια τελική λευρά 1. Συμληρώστε τις ισότητες: α) ημ (κ + α) =... β) εφ (8 - α) =... γ) συν (α - λ) =... δ) σφ (10 - α) =.... Να χαρακτηρίσετε με σωστό ή λάθος τις ισότητες: Σωστό Λάθος α) ημ500 = ημ140 β) συν750 = συν0 γ) εφ (-100 ) = εφ (-10 ). Να βρείτε τους τριγωνομετρικούς αριθμούς των γωνιών: , 1110, 4. Το ημ660 ισούται με το: Α. ημ10 Β. συν60 Γ. συν10 Δ. ημ (-60 ) Ε. ημ60 5. Να δείξετε ότι: εφ (740 + x - y) - εφ (0 + x - y) = Να αλοοιηθεί το κλάσμα: ημ ( + α) σϕ (7 + α) συνα συν ( + α) σϕ (4 + α) ημα 61

2 7. Να αντιστοιχήσετε τις γωνίες της στήλης (Α) στις γωνίες της στήλης (Β), με τις οοίες έχουν τους ίδιους τριγωνομετρικούς αριθμούς. στήλη (Α) στήλη (Β) Γωνίες με άθροισμα Γωνίες με διαφορά Γωνίες αντίθετες 1. Με τη βοήθεια του αρακάτω τριγωνομετρικού κύκλου συνδέστε τους τριγωνομετρικούς αριθμούς της γωνίας x με τους τριγωνομετρικούς αριθμούς των γωνιών: x, x και - x στις αρακάτω ισότητες. 6

3 . Υολογίστε: α) ημ (- 6 ) β) εφ (-45 ) γ) συν (- ) δ) σφ (- 60 ). Εάν x και y είναι δύο οοιεσδήοτε γωνίες, να δείξετε ότι: α) συν (x - y) = συν (y - x) β) ημ (x - y) = - ημ (y - x) 4. Εαληθεύστε τις ισότητες: α) συν (x - ) = συν (x + ) β) ημ (x - ) = ημ ( + x) 5. Να εκφράσετε συναρτήσει του συνx και του ημx την αράσταση: Α = συν (- x) + ημ (- x) + ημ ( + x) + συν ( - x) 6. Δίνεται: συν 8 = 1 +. Υολογίστε: α) ημ 8 γ) ημ ε) ημ 9 9 και συν και συν 8 8 β) ημ 7 7 και συν 8 8 δ) ημ (- 8 ) και συν (- 8 ) 7. Συμληρώστε τον ίνακα: Γωνία ημ συν εφ 6

4 8. Εάν Α, Β, Γ είναι γωνίες τριγώνου, να αοδείξετε ότι: α) ημ (Β + Γ) = ημα β) συν (Β + Γ) = - συνα γ) εφ (Β + Γ) = - εφα 9. Εάν Α, Β, Γ, Δ είναι γωνίες κυρτού τετραλεύρου, να αοδείξετε ότι: A + B Γ + Δ α) ημ = ημ A + Γ B + Δ β) εφ = - εφ A + Δ B + Γ γ) συν = - συν 10. Να αοδείξετε ότι: συν560 ημ140 - ημ680 συν80 = Να βρείτε συναρτήσει του ημx και του συνx τα ημίτονα και τα συνημίτονα των αριθμών: α) x -, β) x + 4, γ) - x Αν κ Ζ, να δειχθεί ότι: ημ ( 4κκ - α α ) = - ημ. 1. Δίνεται ημ4 = 0,66. Να βρείτε το ημ18 και το συν. 14. Εάν συν146 = - 0,8, να βρείτε το συν4 και το ημ Δίνεται μια οξεία γωνία α και η γωνία β = + α. α) Να αοδείξετε ότι οι γωνίες - α και + α είναι αραληρωματικές. β) Γράψτε τις ισότητες ου συνδέουν τους αριθμούς ημβ, συνβ, εφβ, με τους ημ ( - α), συν ( - α), εφ ( - α). 64

5 Δίνεται ότι: συν =. 5 4 α) Να υολογίσετε: i) ημ και ii) εφ. 5 5 β) Αό τα ημ 5 και συν 5, να υολογισθούν: i) ημ και συν, ii) ημ και συν Δίνεται ότι ημ = 1 4 : α) Υολογίστε: i) συν, ii) εφ. 1 1 β) Στη συνέχεια υολογίστε το ημίτονο και το συνημίτονο των γωνιών: i), ii), iii) Υολογίστε το ημίτονο και το συνημίτονο των αρακάτω γωνιών: α) ,, -,, β) -,,,, γ) , -,,, δ) -,, 6 4 Χρησιμοοιήστε τους τριγωνομετρικούς αριθμούς των γωνιών, 4 και 6 καθώς και τους τύους ου συνδέουν τις γωνίες. 19. Το ημ (-ω) ισούται με: Α. ημω Β. συν ( - ω) Γ. - συν ( + ω) Δ. - ημω 65

6 0. Το - συν (-ω) ισούται με: Α. συνω Β. - συνω Γ. ημω Δ. ημ (-ω) 1. Το συν (-ω) ισούται με: Α. συνω Β. - συνω Γ. ημ ( - ω) Δ. - ημ ( - ω). Η εφ (-ω) ισούται με: Α. - σφω Β. - εφω Γ. εφ ( + ω) Δ. σφω. Να βρεθεί η αριθμητική τιμή της αράστασης: Α = ημ (x - y) συν (y - x) + ημ (y - x) συν (x - y) 4. Αν κ ακέραιος, τότε για κάθε γωνία x να δειχθεί ότι: α) ημ [(- 1) κ + 1 x] = - ημx β) συν [(- 1) κ + 1 x] = συνx γ) εφ [(- 1) κ x] = εφx 5. Να δειχθεί ότι αν - < x <, τότε συν x = συν (- κ + x). 6. Το ημ ( - ω) ισούται με: Α. συνω Β. - ημω Γ. ημω Δ. - συνω 7. Το συν ( + ω) ισούται με: Α. ημ (-ω) Β. συνω Γ. ημω Δ. - συνω 8. Η εφ ( + ω) ισούται με: Α. σφω Β. εφω Γ. - εφω Δ. σφ (-ω) 66

7 9. Το ημ15 ισούται με: Α. Β. - Γ. Δ. 1 Ε Η εφ15 ισούται με: Α. 1 Β. -1 Γ. Δ. - Ε Το ημ ( + ω) ισούται με: Α. ημω Β. - ημω Γ. συνω Δ. συν ( - ω). Το συν ( - ω) ισούται με: Α. ημ (-ω) Β. συνω Γ. - συνω Δ. ημω. Αν ημθ = ημ4 και 90 θ 180, τότε η γωνία θ είναι: Α. 1 Β. 18 Γ. 14 Δ. 148 Ε Μας δίνονται οι σχέσεις: 1 α) εφθ = - ημθ δ) εφθ = συνθ β) - < θ < 0 γ) συν θ = ε) ημ θ + συν θ = εφ θ Για να υολογίσουμε το ημθ θα χρησιμοοιήσουμε τις σχέσεις: Α. (α), (β), (γ), (δ) Β. (α), (γ), (ε) Γ. (α), (γ), (δ) Δ. (α), (β), (δ) Ε. (α), (β), (γ) 67

8 5. Αν ημx = 5 4 και συνx = - 5, τότε η γωνία x βρίσκεται ανάμεσα: Α. 0 < x < Β. 0 < x < Γ. 0 < x < Δ. < x < Ε. 0 < x < Ποια αό τις έντε εριτώσεις δεν μορεί να είναι σωστή; 6. Αν 0 x 180, τότε η σχέση ημx - 5 = 0 αληθεύει για: Α. μια τιμή του x Β. δύο τιμές του x Γ. για καμία τιμή του x Δ. για άειρες τιμές του x Ε. για δύο αντίθετες τιμές του x 7. Σε ένα τετράλευρο ΑΒΓΔ έχουμε ημα + ημβ + ημγ + ημδ = 4. Τότε αυτό είναι: Α. τετράγωνο ή ορθογώνιο Β. ρόμβος Γ. τραέζιο Δ. τυχαίο τετράλευρο Ε. δεν μορούμε να καθορίσουμε το είδος του τετραλεύρου 8. Να δειχθεί ότι ημ (κ60 + x) + συν (κ60 - x) = Αν ημx = 5, 90 < x < 180, τότε εφx ισούται με: Α. 4 Β. 4 Γ. - 4 Δ Ε Το άθροισμα ημ (-ω) + συν (-ω) + ημ (180 - ω) + συν (180 - ω) ισούται με: Α. 1 Β. - 1 Γ. 0 Δ. Ε. ημω 41. Αν Α, Β, Γ γωνίες τριγώνου, τότε το συν (Α + Β + Γ) ισούται με: Α. συν (Α + Β + Γ) Β. 0 Γ. - 1 Δ. 1 Ε. - ημ (Α + Β + Γ) 68

9 4. Αν 0 < x 1 < x < 180 γράψτε όλες τις δυνατές σχέσεις μεταξύ ημx 1 και ημx (χρησιμοοιήστε τον τριγωνομετρικό κύκλο). 4. Να εξετάσετε αν οι ρίζες της εξίσωσης 4x + ( - 1) x - = 0 μορούν να είναι το ημίτονο και το συνημίτονο μιας γωνίας θ. 44. Να βρείτε όλες τις τιμές των: α) ημκ β) συνκ γ) εφκ, όου κ Ζ 45. Να δείξετε ότι σε κάθε τρίγωνο ΑΒΓ έχουμε: α) ημα = ημ (Β + Γ) β) ημ Β + συν (Α + Γ) = Να δείξετε ότι: 0 < εφ ( - x) σφ ( - x) - εφx < Αν Α, Β, Γ οι εξωτερικές γωνίες ενός τριγώνου ΑΒΓ, τότε ημ (Α + Β + Γ ) = Αν Α, Β, Γ, Δ οι εξωτερικές γωνίες ενός κυρτού τετραλεύρου ΑΒΓΔ, τότε ημ (Α + Β + Γ + Δ ) = Να δειχθεί ότι οι διαγώνιοι ενός τετραλεύρου ΑΒΓΔ τέμνονται κάθετα αν το άθροισμα των ημιτόνων των τεσσάρων γωνιών ου έχουν κορυφή το σημείο τομής των διαγωνίων είναι Να δειχθεί ότι η εφατομένη κάθε εξωτερικής γωνίας οξυγώνιου τριγώνου είναι αρνητικός αριθμός. 51. Αν x γωνία τριγώνου, να δειχθεί ότι ημ x - 60 = - ημx. 69

10 5. Να τοοθετήσετε αό το μικρότερο ρος το μεγαλύτερο τους τριγωνομετρικούς αριθμούς: α) ημ (- ), ημ (- ), ημ (- 4 ), ημ (- 6 ), ημ0, ημ 6, ημ 4, ημ, ημ90. β) εφ (- 6 ), εφ 4, εφ (- 4 ), εφ, εφ (- ), εφ0. γ) συν (-170 ), συν40, συν (-150 ), συν (-90 ), συν 6, συν (- ). 5. Να δείξετε ότι: 5 ημ 4 4 ηημ 7. συν 6 5. εφ 4 4. εφ. σφ = Γωνίες με άθροισμα 90 - Γωνίες με διαφορά Να αντιστοιχήσετε τα στοιχεία της στήλης (Α) ου είναι ίσα με στοιχεία της στήλης (Β). στήλη (Α) στήλη (Β) ημ (90 - ω) - ημω συν (90 - ω) εφω εφ (90 - ω) ημω σφ (90 - ω) - συνω συνω - εφω σφω - σφω. Το ημ ( + ω) ισούται με: Α. ημ (-ω) Β. συνω Γ. - συνω Δ. ημω 70

11 . Το συν ( + ω) ισούται με: Α. ημω Β. συν (-ω) Γ. - συνω Δ. - ημω 4. Η εφ ( + ω) ισούται με: Α. εφω Β. - σφω Γ. - εφω Δ. σφω 5. Να γράψετε συναρτήσει των τριγωνομετρικών αριθμών γωνίας θετικής και μικρότερης αό 45 τις εκφράσεις: α) εφ85, β) ημ65, γ) συν15 6. Να αοδείξετε ότι: ημ450 + εφ0 + σφ410 = 1 + εφ40 7. Αν α οξεία γωνία να δείξετε ότι: α) οι γωνίες + α και - α είναι συμληρωματικές β) συν ( + α) = - ημα γ) εφ ( + α) = - σφα 8. Δίνεται: ημ8 = 0,47 και συν8 = 0,88. α) Υολογίστε: ημ6, συν6 και εφ6. β) Υολογίστε: ημ118, συν118 και εφ Αν συν 8 = 1 +, να υολογίσετε το ημ Αν x + y = και ημx = 0,8, να υολογίσετε: α) συνy, β) ημy και γ) εφy 71

12 11. Να εκφράσετε συναρτήσει του ημx και του συνx τις αραστάσεις: Α = συν (x - ) + συν (x - ) + ημ (x - ) + ημ (x - ) Β = ημ ( - x) + συν ( + x) - συν (x - ) 1. Δίνονται δύο γωνίες x και y, 0 < x < 90 και 0 < y < 90. Δίνεται είσης ότι: ημx = συνy (1) και x = y () α) Τι συμεραίνετε αό την (1) για τις γωνίες x και y; β) Βρείτε τις γωνίες x και y. 1. Η αράσταση ημ x + ημ ( - x) ισούται με: Α. Β. 0 Γ. ημ x Δ. 1 Ε. 1 - ημ x 14. Αν σε τρίγωνο ΑΒΓ είναι ημ (Β + Γ) = 1, τότε να αοδείξετε ότι το ΑΒΓ είναι ορθογώνιο. 15. Η τιμή της αράστασης κ = ημ (45 + x) - συν (45 - x) είναι: Α. Β. - Γ. 0 Δ. ημx Ε. συνx 16. Αν οι γωνίες x και y είναι συμληρωματικές, οια αό τις αρακάτω σχέσεις δεν ισχύει: Α. ημ x + ημ y = 1 Β. (ημx + ημy) = 1 - ημxημy Γ. εφx εφy = 1 Δ. συν x + συν y = 1 Ε. σφx. σφy = Να δειχθεί ότι: ημx + ημ (x + 90 ) + ημ (x ) + ημ (x + 70 ) = α) Να αοδείξετε ότι: συν (x + 45 ) = ημ (45 - x) β) Να βρεθεί η αριθμητική τιμή του αθροίσματος: συν (x + 45 ) + συν (x - 45 ) + ημ (45 - y) + ημ (y + 45 ). 7

13 19. Να αοδείξετε ότι: - ηημ(70 + θ) ημ (180 + θ) -1 =. 1+ συν (90 + θ) συν (180 - θ) 0. Να αλοοιηθεί η κλασματική αράσταση: ημ( + x) ημ ( - x) συν ( x) συν ( + x). 1. Να δείξετε ότι για κάθε κ Ζ είναι: ημx = (-1) κ συν [(κ + 1) - x] Ερωτήσεις του τύου «σωστό - λάθος» Να χαρακτηρίσετε με Σωστό (Σ) ή Λάθος (Λ) τις αρακάτω ροτάσεις: Σωστό Λάθος 1. Εάν τα δύο τόξα του διλανού σχήματος ΓΔ και ΑΜ έχουν το ίδιο μήκος, τότε η ΟΜ είναι η μεσοκάθετος της χορδής ΑΒ.. Το μέτρο μιας γωνίας σε μοίρες βρίσκεται αν ολλαλασιάσουμε το μέτρο της γωνίας σε ακτίνια εί Αν μια γωνία έχει μέτρο -, τότε έχει την 6 ίδια αρχική και τελική λευρά με τη γωνία Τα σημεία του τριγωνομετρικού κύκλου ου αντιστοιχούν στους αριθμούς 0,,,, - και - είναι κορυφές κανονικού εξαγώνου. 7

14 5. Εάν μια γωνία φ είναι αρνητική τότε ένας τουλάχιστον αό τους ημφ και συνφ είναι είσης αρνητικός. 6. ημ + ημ 5 = Αν 0 x 90, τότε ημx = - 1- συν x. 8. Εάν μια γωνία ω αυξηθεί κατά, τότε το συνω και το ημω αλλάζουν ρόσημο. 9. Εάν ο y αλλάξει ρόσημο, τότε αλλάζει και το ρόσημο του ημy και του συνy. 10. Για οοιαδήοτε γωνία x ισχύει: ημx = ημx. 11. Υάρχουν γωνίες ω τέτοιες ώστε ημω + συνω = 1. Αν Α, Β, Γ γωνίες τριγώνου τότε ημα + ημβ + ημγ =. 1. Αν 90 < x < 180 και ημx = 5 τότε συνx = - 1. Αν 180 < x < 70 και συνx = - τότε ημ x = Αν ημx = 0 τότε συνx = Αν ημx = 1 τότε συνx = Αν ημx > 0 και συνx > 0 τότε εφx > Είναι ημx. 18. Είναι συνx > Αν 90 x 180 τότε συνx = 1- ημ x. 0. Αν 0 < x < τότε συνx. εφx = - 1. ημx Υάρχει x ώστε συνx = ημx. εφx. Αν 0 < x < 90 τότε ημx < εφx.. Αν εφx = 1 τότε ημx = συνx. 74

15 4. Ισχύει ημ0 = ημ Αν συνx = συνx τότε -90 x Αν 0 < x < 60 και ημx = συνx τότε x = 45 ή x = Αν 45 < x < 90 τότε 1 εφx < Αν 90 < x < 180 τότε εφx < Αν 0 x 180 τότε ημx Αν 0 < ω < φ < τότε συνω < συνφ. 1. Αν ω + φ = τότε συνφ = ημω.. Αν ω + φ = τότε συνω = ημω.. Αν < φ < ω < τότε ημφ < ημω. 4. Αν ν Ν* τότε ημx ν ημx. 5. Αν ημωσυνω < 0 τότε < ω < ή < ω <. 6. Υάρχουν α, β με α = β ώστε ημα = ημβ. 7. Αν ημα = ημβ τότε συνβ = - συνα. 8. Αν α - β = κ τότε οι α, β έχουν ίσους τριγωνομετρικούς αριθμούς. 9. Αν x + y = 0 τότε ημx = ημy. 40. Αν x = κ60 + ω, κ Ζ, τότε ημx = ημy. 41. Αν y = - κ60 + ω, κ Ζ, τότε συνx = συνy. 4. Αν 0 < x < τότε ημx > Σε ισόλευρο τρίγωνο ΑΒΓ έχουμε συνα + συνβ + συνγ =. 44. Σε ορθογώνιο ΑΒΓΔ είναι ημα + ημβ + ημγ + ημδ = 4. 75

16 45. Για οοιαδήοτε γωνία x ισχύει: 46. (1- συνx) + (1+ συνx) =. Ισχύει ( -συνx) + (ημx - 1) = 0. α) Σε κάθε τρίγωνο ΑΒΓ είναι ημα = ημ ( Β + Γ). β) Σε κάθε τρίγωνο ΑΒΓ είναι ημ A B + Γ = συν. A B + Γ γ) Σε κάθε τρίγωνο ΑΒΓ είναι συν = ημ. δ) Σε κάθε τρίγωνο ΑΒΓ είναι συνα = - συν (Β + Γ). 47. Σε κάθε κυρτό τετράλευρο ΑΒΓΔ έχουμε: α) ημ (Α + Β + Γ + Δ) = 1 β) συν (Α + Β + Γ + Δ) = 0 γ) ημ (Α + Β) = ημ (Γ + Δ) δ) συν (Α + Γ) = συν (Β + Δ) 48. Για κάθε γωνία ή τόξο x είναι ημ ( + x) = ημ ( - x). 49. Ισχύει άντοτε εφ x = εφx. 50. Υάρχει τρίγωνο ου το ημίτονο μιας γωνίας του είναι Είναι ημx + συνx > 1 76

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Ο μαθητής ου έχει μελετήσει το κεφάλαιο αυτό θα ρέει: Να γνωρίζει την έννοια της εριοδικής συνάρτησης,και να μορεί να σχεδιάζει τις γραφικές αραστάσεις των συναρτήσεων y= αημ(ωx), y=ασυν(ωx). Να μορεί

Διαβάστε περισσότερα

Β Γενική Τριγωνομετρία

Β Γενική Τριγωνομετρία Β Γενική Τριγωνομετρία 40 Γενικευμένη γωνία - Γενικευμένα τόξα - Το ακτίνιο Τριγωνομετρικός κύκλος - Τριγωνομετρικοί αριθμοί γενικευμένης γωνίας 1. Η γωνία ω του παρακάτω σχήματος είναι θετική. α) Συνδέστε

Διαβάστε περισσότερα

Τριγωνομετρικοί αριθμοί οξείας γωνίας. Τριγωνομετρικοί αριθμοί γωνίας. Τριγωνομετρικοί αριθμοί οποιασδήποτε γωνίας. . Τότε ορίζουμε: ί ά ά.

Τριγωνομετρικοί αριθμοί οξείας γωνίας. Τριγωνομετρικοί αριθμοί γωνίας. Τριγωνομετρικοί αριθμοί οποιασδήποτε γωνίας. . Τότε ορίζουμε: ί ά ά. ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ Τριγωνομετρικοί αριθμοί οξείας γωνίας Αό το Γυμνάσιο ξέρουμε ότι σε κάθε ορθογώνιο τρίγωνο ΑΒΓ ισχύει: ημβ = = έάά ί Γ συνβ = = ίάά ί β α εφβ = = έάά ίάά Τριγωνομετρικοί

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Ο μαθητής ου έχει μελετήσει το κεφάλαιο αυτό θα ρέει: Να γνωρίζει την έννοια της εριοδικής συνάρτησης,και να μορεί να σχεδιάζει τις γραφικές αραστάσεις των συναρτήσεων y= αημ(ωx), y=ασυν(ωx). Να μορεί

Διαβάστε περισσότερα

1. Τριγωνομετρικοί αριθμοί οξείας γωνίας

1. Τριγωνομετρικοί αριθμοί οξείας γωνίας v.5 «Αυτό το ρόβλημα, τούτ η μεγάλη συμφορά για να λυθεί χρειάζεται, δίχως αμφιβολία, όως κοιτάζω α τη δική σου την λευρά, να δεις κι εσύ α τη δική μου τη γωνία».. Τριγωνομετρικοί αριθμοί οξείας γωνίας

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ

ΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ ΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ 1. Τι ονομάζουμε εριοδική συνάρτηση Μια συνάρτηση ƒ με εδίο ορισμού το Α λέγεται εριοδική όταν υάρχει ραγματικός αριθμός Τ, Τ > 0 τέτοιος ώστε για κάθε χ Α να ισχύει α) χ+τ Α, χ -

Διαβάστε περισσότερα

Τριγωνομετρία ΓΙΩΡΓΟΣ ΚΑΡΙΠΙΔΗΣ 2 ΑΝΘΟΥΛΑ ΣΟΦΙΑΝΟΠΟΥΛΟΥ

Τριγωνομετρία ΓΙΩΡΓΟΣ ΚΑΡΙΠΙΔΗΣ 2 ΑΝΘΟΥΛΑ ΣΟΦΙΑΝΟΠΟΥΛΟΥ ΕΥΚΛΕΙΔΗΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ ΤΟ ΒΑΣΙΚΟ ΘΕΩΡΗΜΑ: ημ χ+συν χ= ημ χ=-συν χ συν χ=- ημ χ εφχ + σφ χ = εφχ ημχ συνχ = σφχ = ημ χ εφχσφχ σφχ = = συνχ ημχ + εφ χ = συν χ Γωνία χ Τριγωνομετρικοί Αριθμοί

Διαβάστε περισσότερα

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Β Λυκει ου. 2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ. 2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ. 2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Β Λυκει ου. 2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ. 2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ. 2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Β Λυκει ου ογελ ΣΥΚΕΩΝ ο ΓΕΛ ογελ ΣΥΚΕΩΝ ΣΥΚΕΩΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Β Λυκει ου ΣΧΟΛΙΚΟ ΕΤΟΣ 3-4 ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ Ειμέλεια: ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

Διαβάστε περισσότερα

Τριγωνομετρικός κύκλος Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜAΤΙΚΟΣ

Τριγωνομετρικός κύκλος Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜAΤΙΚΟΣ Τριγωνομετρικός κύκλος Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜAΤΙΚΟΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΚΥΚΛΟΣ Β ημφ, εφφ σφφ Μ Δ συνφ Α www.commonmaths.weebly.com Σελίδα 1 N Β, 90 ο Α, ο H O 1ο 3ο E Σ Δ, 180 ο 360 ο Ν, 70 ο 4ο 1 ο Τεταρτημόριο

Διαβάστε περισσότερα

Άλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ. Τόμος 3ος

Άλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ. Τόμος 3ος Άλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Τόμος 3ος Συγγραφική ομάδα: Ανδρεαδάκης Στυλιανός Καθηγητής Πανειστημίου Αθηνών Κατσαργύρης Βασίλειος Καθηγητής μαθηματικών Βαρβακείου Πειραμ. Λυκείου Παασταυρίδης Στάυρος Καθηγητής

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΙΣΑΓΩΓΗ ΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ. ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΗΣ 2ου ΒΑΘΜΟΥ ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΙΣΑΓΩΓΗ ΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ. ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΗΣ 2ου ΒΑΘΜΟΥ ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΙΣΑΓΩΓΗ ΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΗΣ ου ΒΑΘΜΟΥ α + β + γ 0, α 0 β 4 αγ Αν >0, τότε η εξίσωση έχει δύο πραγµατικές ρίζες: 1, β ± α Αν 0, τότε η εξίσωση έχει µια ρίζα διπλή: β

Διαβάστε περισσότερα

Κεφάλαιο 2ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

Κεφάλαιο 2ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Κεφάλαιο ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύου «Σωστό - Λάθος». * Αν = α + βi, α, β R και = 0, τότε α = 0 και β = 0. Σ Λ. * Αν = α + βi και αβ 0, τότε = α β i. Σ Λ. * Αν = κ + λi κ, λ R, τότε Re () =

Διαβάστε περισσότερα

1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η απόσταση του σώµατος

1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η απόσταση του σώµατος 1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η αόσταση του σώµατος αό το έδαφος (σε cm), δίνεται αό την συνάρτηση f(t)=1ηµ t +13, όου t ο χρόνος σε ώρες. α) Να βρείτε την ερίοδο της ταλάντωσης.

Διαβάστε περισσότερα

1.0 Βασικές Έννοιες στην Τριγωνομετρία

1.0 Βασικές Έννοιες στην Τριγωνομετρία .0 Βασικές Έννοιες στην Τριγωνομετρία Εύρεση τριγωνομετρικών αριθμών οξείας γωνίας σε ορθογώνιο τρίγωνο. ΑΠΑΝΤΗΣΗ Έστω ορθογώνιο τρίγωνο ΑΒΓ (Α= 90 0 ). Οι τριγωνομετρικοί αριθμοί μιας οξείας γωνίας ορίζονται

Διαβάστε περισσότερα

Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Κολλινιάτη Γιωργία. Μάκος Σπύρος. Πανούσης Γιώργος. Παπαθανάση Κέλλυ. Ραμαντάνης Βαγγέλης.

Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Κολλινιάτη Γιωργία. Μάκος Σπύρος. Πανούσης Γιώργος. Παπαθανάση Κέλλυ. Ραμαντάνης Βαγγέλης. Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Κολλινιάτη Γιωργία Μάκος Σύρος Πανούσης Γιώργος Πααθανάση Κέλλυ Ραμαντάνης Βαγγέλης Σαμάνης Νίκος Τόλης Ευάγγελος -1-01 18808Δίνεται η εξίσωση x y 7 Γραμμικά

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ Χαρακτηριστικά μεγέθη της αλής αρμονικής ταλάντωσης είναι: Α) Αομάκρυνση (x ή y): ονομάζεται η αόσταση του σώματος κάθε χρονική στιγμή αό την θέση ισορροίας (x= ή y=) Β) Το λάτος της

Διαβάστε περισσότερα

(Μονάδες 15) (Μονάδες 12)

(Μονάδες 15) (Μονάδες 12) ΑΛΓΕΒΡΑ Β Λυκε ί ου τ ράε ζ αθε μάτ ων( 1ηέ κδοση) θέ μαδε ύτ ε ροκαιτ έ τ αρτ ο Κόμβ οςατ σι οούλου01415 δης Ει μέ λε ι α:εμμανουήλκ.σκαλί Αντ ώνηςκ.αοστ όλου Άσκηση 1 α) Να κατασκευάσετε ένα γραμμικό

Διαβάστε περισσότερα

ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ

ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ - ΣΗΜΕΙΩΣΕΙΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ: ΡΟΥΓΑΣ ΑΘΑΝΑΣΙΟΣ http://mathhmagic.blogspot.com/ Οι τριγωνομετρικοί αριθμοί (Εαναλητικά) Ε ί εδη γωνία είναι η κλίση µεταξύ δυο

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ ΚΑΙ ΛΥΣΕΙΣ ΟΛΩΝ ΤΩΝ ΘΕΜΑΤΩΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ ΘΕΜΑΤΑ 16968, 1765, 17656, 17663, 17664, 17681, 1769, 17699, 17704, 1775, 17736, 17739, 17741 ΘΕΜΑΤΑ 4 17837, 17838,

Διαβάστε περισσότερα

Μία σύντομη εισαγωγή στην Τριγωνομετρία με Ενδεικτικές Ασκήσεις

Μία σύντομη εισαγωγή στην Τριγωνομετρία με Ενδεικτικές Ασκήσεις Μία σύντομη εισαγωγή στην Τριγωνομετρία με Ενδεικτικές Ασκήσεις. Ονομασίες Ορισμοί Ο τριγωνομετρικός κύκλος έχει ακτίνα R. Αρχή μέτρησης των τόξων (γωνιών) είναι το Α, είτε κατά τη θετική φορά (αριστερόστροφα)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο 1 ο ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α1.1 Ισότητα τριγώνων Στο διπλανό σχήμα το τρίγωνο ΑΒΓ είναι ισοσκελές με ΑΒ=ΑΓ. Προεκτείνουμε τη βάση ΒΓ κατά ίσα τμήματα

Διαβάστε περισσότερα

Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ

Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ ΚΥΠΡΙΑΝΟΣ ΕΥΑΓΓΕΛΟΣ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Το τετράγωνο μιας κάθετης πλευράς είναι ίσο με την υποτείνουσα επί την προβολή της πλευράς στην υποτείνουσα. ΑΒ 2 = ΒΓ ΑΔ ή ΑΓ 2 = ΒΓ ΓΔ Σε κάθε

Διαβάστε περισσότερα

3.9 Η ΣΥΝΑΡΤΗΣΗ f(x) = αηµx + βσυνx

3.9 Η ΣΥΝΑΡΤΗΣΗ f(x) = αηµx + βσυνx 1.9 Η ΣΥΝΑΡΤΗΣΗ f(x) = αηµx + βσυνx Ασκήσεις σχολικού βιβλίου σελίδας 11 11 A Oµάδας 1.i) Να βρείτε την ερίοδο, τη µέγιστη τιµή και την ελάχιστη τιµή της αρακάτω συνάρτησης και στη συνέχεια να την αραστήσετε

Διαβάστε περισσότερα

Ελευθέριος Πρωτοπαπάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΛΙΓΟ ΠΡΙΝ ΤΙΣ ΕΞΕΤΑΣΕΙΣ (ΘΕΜΑΤΑ ΤΕΛΕΥΤΑΙΑΣ ΕΠΑΝΑΛΗΨΗΣ)

Ελευθέριος Πρωτοπαπάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΛΙΓΟ ΠΡΙΝ ΤΙΣ ΕΞΕΤΑΣΕΙΣ (ΘΕΜΑΤΑ ΤΕΛΕΥΤΑΙΑΣ ΕΠΑΝΑΛΗΨΗΣ) Ελευθέρις Πρωταάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΛΙΓΟ ΠΡΙΝ ΤΙΣ ΕΞΕΤΑΣΕΙΣ (ΘΕΜΑΤΑ ΤΕΛΕΥΤΑΙΑΣ ΕΠΑΝΑΛΗΨΗΣ) Να βρείτε την τιµή των αραστάσεων: o o συν 90 + ηµ 0 -σφ75 α) A =, ηµ o o 0 + συν 80

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ...7 ΕΝΟΤΗΤΑ 1: ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ... 9 Θεωρία... 9 Ερωτήσεις... 9 Μεθοδολογία Παραδείγματα Ασκήσεις...

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ...7 ΕΝΟΤΗΤΑ 1: ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ... 9 Θεωρία... 9 Ερωτήσεις... 9 Μεθοδολογία Παραδείγματα Ασκήσεις... ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ...7 ΕΝΟΤΗΤΑ 1: ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ... 9 Θεωρία... 9 Ερωτήσεις... 9 Μεθοδολογία... 16 Παραδείγματα... 6 Ασκήσεις... 33 ΕΝΟΤΗΤΑ : ΔΥΝΑΜΙΚΗ ΠΡΟΣΕΓΓΙΣΗ... 39 Θεωρία... 39 Ερωτήσεις...

Διαβάστε περισσότερα

Ο λόγος που σχηματίζεται, αν διαιρέσουμε την απέναντι κάθετη πλευρά

Ο λόγος που σχηματίζεται, αν διαιρέσουμε την απέναντι κάθετη πλευρά ΜΕΡΟΣ. ΗΜΙΤΟΝΟ ΚΙ ΣΥΝΗΜΙΤΟΝΟ ΟΞΕΙΣ ΩΝΙΣ 61 Ορισμοί. ΗΜΙΤΟΝΟ ΚΙ ΣΥΝΗΜΙΤΟΝΟ ΟΞΕΙΣ ΩΝΙΣ Ημίτονο γωνίας Ο λόγος που σχηματίζεται, αν διαιρέσουμε την απέναντι κάθετη πλευρά μιας οξείας γωνίας ω ενός ορθογωνίου

Διαβάστε περισσότερα

Web page: Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία

Web page:    Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Άλγεβρα Κανόνας των πρόσημων: (+) (+) = + ( ) ( ) = + (+) ( ) = ( ) (+) = Συνοπτική

Διαβάστε περισσότερα

3. Να δειχτει οτι α α. Ποτε ισχυει το ισον; α, β θετικοι, να συγκρινεται τους αριθμους Α = α + β, Β = α β + αβ

3. Να δειχτει οτι α α. Ποτε ισχυει το ισον; α, β θετικοι, να συγκρινεται τους αριθμους Α = α + β, Β = α β + αβ TΡΙΓΩΝΟΜΕΤΡΙΑ Τ ρ ι γ ω ν ο μ ε τ ρ ι κ ο ι Α ρ ι θ μ ο ι Ο ρ ι σ μ ο ι. Να δειχτει οτι α + α. Ποτε ισχυει το ισον; Ονομαζουμε ημx την τεταγμενη π/ του Μ (εντονο. Aν μπλε) α, β θετικοι, να συγκρινεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις : ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν

Διαβάστε περισσότερα

Ορισμοί Μεταβολές ημιτόνου, συνημιτόνου και εφαπτομένης οξείας γωνίας ω.

Ορισμοί Μεταβολές ημιτόνου, συνημιτόνου και εφαπτομένης οξείας γωνίας ω. ΜΕΡΟΣ Β 2.3 ΜΕΤΑΒΟΛΕΣ ΗΜΙΤΟΝΟΥ, ΣΥΝΗΜΙΤΟΝΟΥ ΚΑΙ ΕΦΑΠΤΟΜΕΝΗΣ 271 2.3 ΜΕΤΑΒΟΛΕΣ ΗΜΙΤΟΝΟΥ, ΣΥΝΗΜΙΤΟΝΟ ΚΑΙ ΕΦΑΠΤΟ- ΜΕΝΗΣ Ορισμοί Μεταβολές ημιτόνου, συνημιτόνου και εφαπτομένης οξείας γωνίας ω. Όταν μια οξεία

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β ΥΜΝΑΣΙΟ - 010 48 Α. Τι λέγεται τετραγωνική ρίζα ενός θετικού αριθμού α και πώς συμβολίζεται αυτή; Β. Ποιος αριθμός ονομάζεται άρρητος;. Πώς ορίζονται οι πραγματικοί αριθμοί; Α. Τι λέγεται ημίτονο μιας

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Β' Γυμν. - Επαναληπτικές Ασκήσεις 1 Άσκηση 1 Απλοποίησε τις αλγεβρικές παραστάσεις (α) 2y 2z 8ω 8ω 2y 2z (β) 1x 2y 3z 3 3 z 2z z 2 x y Επαναληπτικές Ασκήσεις Άλγεβρα - Γεωμετρία Άσκηση 2 Υπολόγισε την

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ 2008 ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β

ΓΥΜΝΑΣΙΟ 2008 ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β ΥΜΝΑΣΙΟ 008 65 ΥΜΝΑΣΙΟ 008 66 α. Πότε μια γωνία λέγεται εγγεγραμμένη και πότε επίκεντρη; β. Ποια είναι η σχέση μεταξύ επίκεντρης και εγγεγραμμένης γωνίας, που βαίνουν στο ίδιο τόξο; γ. Πότε δύο τόξα μ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΨΗ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο ΕΠΑΝΑΛΗΨΗ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Το ακτίνιο ως μονάδα μέτρησης γωνιών: Το ακτίνιο (ή rad) είναι η γωνία που, όταν γίνει επίκεντρη κύκλου (Ο, ρ), βαίνει σε τόξο που έχει μήκος ίσο με την ακτίνα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του

Διαβάστε περισσότερα

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ Α. Να συμπληρωθούν οι ισότητες: (α + β) =.., (α β) 3 = και (α + β)(α β) =.. Β. Να αποδείξετε τη δεύτερη. Θέμα ο Να γράψετε τα τρία (3) κριτήρια ισότητας τριγώνων. Να λυθεί η εξίσωση: 3 + 4 = 7 + 1 Άσκηση

Διαβάστε περισσότερα

ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ ΣΠΑΡΤΗ 2008

ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ ΣΠΑΡΤΗ 2008 ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ ΣΠΑΡΤΗ 008 Κάθε γνήσιο αντίτυπο έχει την ιδιόχειρη υπογραφή του συγγραφέα Γενική επιμέλεια : Στράτης Αντωνέας Copyright : Στράτης Αντωνέας e-mail: stranton@otenet.gr Τηλέφωνα επικοινωνίας

Διαβάστε περισσότερα

2.4 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ 30 Ο 45 Ο 60 Ο

2.4 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ 30 Ο 45 Ο 60 Ο .4 ΤΡΙΩΝΟΜΕΤΡΙΚΟΙ ΡΙΘΜΟΙ 0 Ο 45 Ο 60 Ο ΘΕΩΡΙ. Τριγωνοµετρικοί αριθµοί 0 ο, 45 ο, 60 ο : ηµίτονο συνηµίτονο εφαπτοµένη 0 ο 45 ο 60 ο ΣΚΗΣΕΙΣ. Στο διπλανό πίνακα, σε κάθε πληροφορία της στήλης, να επιλέξετε

Διαβάστε περισσότερα

2.3 ΣΧΕΣΕΙΣ ΜΕΤΑΞΥ ΤΡΙΓΩΝΟΜΕΤΡΙΚΩΝ ΑΡΙΘΜΩΝ ΜΙΑΣ ΓΩΝΙΑΣ Βασικές τριγωνομετρικές ταυτότητες

2.3 ΣΧΕΣΕΙΣ ΜΕΤΑΞΥ ΤΡΙΓΩΝΟΜΕΤΡΙΚΩΝ ΑΡΙΘΜΩΝ ΜΙΑΣ ΓΩΝΙΑΣ Βασικές τριγωνομετρικές ταυτότητες ΜΕΡΟΣ Β.3 ΣΧΕΣΕΙΣ ΜΕΤΑΞΥ ΤΡΙΓΩΝΟΜΕΤΡΙΚΩΝ ΑΡΙΘΜΩΝ ΜΙΑΣ ΓΩΝΙΑΣ 97.3 ΣΧΕΣΕΙΣ ΜΕΤΑΞΥ ΤΡΙΓΩΝΟΜΕΤΡΙΚΩΝ ΑΡΙΘΜΩΝ ΜΙΑΣ ΓΩΝΙΑΣ Βασικές τριγωνομετρικές ταυτότητες 8 6 y Μ(x,y) ρ Ο ω x 1 Σ ε ορθοκανονικό σύστημα αξόνων

Διαβάστε περισσότερα

Πώς ; ΣΤ)""Τριγωνομετρία. Ι. Πίνακας βασικών τριγωνοµετρικών γωνιών. π 4 rad 60 ο ή. π 6 rad 45 ο ή εν ορ-ζεται. ΙΙ. Τύποι της Τριγωνοµετρίας.

Πώς ; ΣΤ)Τριγωνομετρία. Ι. Πίνακας βασικών τριγωνοµετρικών γωνιών. π 4 rad 60 ο ή. π 6 rad 45 ο ή εν ορ-ζεται. ΙΙ. Τύποι της Τριγωνοµετρίας. ΣΤ)""Τριγωνομετρία. Ι. Πίνακας βασικών τριγωνοµετρικών γωνιών. Γωνία Τριγωνοµετρικός αριθµός o ή rad o ή 6 rad 45 ο ή 4 rad 6 ο ή rad 9 ο ή rad ημ (ημίτονο) συν (συνημίτονο) εφ (εφατομένη) +εν ορ-ζεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝ Γ ΛΥΚΕΙΟΥ ΟΡΙΑ - ΣΥΝΕΧΕΙΑ 1 Να υολογίσετε τα όρια: 9 i) ii) ( ) 9 iii) 1 1 1 iv) 7 10 5 15 t t t 1 v) vi) t (t )(t ) 1 1 9 i) (ημ συν) ) 1 7 συν vii) 1 ημ viii) 1 5 i) ii) ημ 6 1 009, άν

Διαβάστε περισσότερα

Ελευθέριος Πρωτοπαπάς. Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Β Γενικού Λυκείου

Ελευθέριος Πρωτοπαπάς. Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Β Γενικού Λυκείου Ελευθέριος Πρωτοαάς Εκφωνήσεις και λύσεις των ασκήσεων της Τράεζας Θεμάτων στην Άλγεβρα Β Γενικού Λυκείου Δεκέμβριος 04 Περιεχόµενα o Θέμα Θέµα Σελίδα Θέµα Σελίδα Θέµα Σελίδα Θέµα Σελίδα 6950 8 6954 9

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ 1 ο δείγμα Α. Θεωρία Α) Πότε ένα πολύγωνο λέγεται κανονικό; Β) Να δώσετε τον ορισμό της εγγεγραμμένης γωνίας σε κύκλο (Ο, ρ). (Να γίνει σχήμα) Γ) Ποια

Διαβάστε περισσότερα

Γραμμικά Συστήματα Δίνεται η εξίσωση 4x y 11(1). α) Ποια από τα ζεύγη (2, 3),(0, 11), (1, 8) κα (7, 0) είναι λύση της εξίσωσης (1);

Γραμμικά Συστήματα Δίνεται η εξίσωση 4x y 11(1). α) Ποια από τα ζεύγη (2, 3),(0, 11), (1, 8) κα (7, 0) είναι λύση της εξίσωσης (1); 8808Δίνεται η εξίσωση x y 7 Γραμμικά Συστήματα α) Να επαληθεύσετε ότι το ζεύγος αριθμών x, y, είναι μια λύση της εξίσωσης β) Να αποδείξετε ότι το, 88Δίνεται η εξίσωση x y 8 δεν είναι λύση του συστήματος

Διαβάστε περισσότερα

2.7 ΑΝΑΛΥΣΗ ΔΙΑΝΥΣΜΑΤΟΣ ΣΕ ΔΥΟ ΚΑΘΕΤΕΣ ΣΥΝΙΣΤΩΣΕΣ

2.7 ΑΝΑΛΥΣΗ ΔΙΑΝΥΣΜΑΤΟΣ ΣΕ ΔΥΟ ΚΑΘΕΤΕΣ ΣΥΝΙΣΤΩΣΕΣ ΜΕΡΟΣ Β.7 ΑΝΑ ΔΙΑΝΥΣΜΑΤΟΣ ΣΕ ΔΥΟ ΚΑΘΕΤΕΣ ΣΥΝΙΣΤΩΣΕΣ 33.7 ΑΝΑ ΔΙΑΝΥΣΜΑΤΟΣ ΣΕ ΔΥΟ ΚΑΘΕΤΕΣ ΣΥΝΙΣΤΩΣΕΣ Ανάλυση διανύσματος σε δυο κάθετες συνιστώσες y x Α Γ x Δ Β y Όπως φαίνεται στο παραπάνω σχήμα κατασκευάζουμε

Διαβάστε περισσότερα

Ταυτότητες. α 2 β 2 = (α β)(α + β) "διαφορά τετραγώνων" α 3 β 3 = (α β)(α 2 + αβ + β 2 ) "διαφορά κύβων"

Ταυτότητες. α 2 β 2 = (α β)(α + β) διαφορά τετραγώνων α 3 β 3 = (α β)(α 2 + αβ + β 2 ) διαφορά κύβων Ταυτότητες (α β) α αβ β " αναπτύγματα τετραγώνων " (α β) αβ β (α β) α α β αβ β " αναπτύγματα κύβων " (α β) α α β αβ β " παραγοντοποίηση τριωνύμου " (α β) αβ ( α)( β) (α β) αβ ( α)( β) α β = (α β)(α + β)

Διαβάστε περισσότερα

ΘΕΜΑ 2 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο.

ΘΕΜΑ 2 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. (Μονάδες 10) β) Να παραστήσετε γραφικά στο επίπεδο τις δυο εξισώσεις

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ

ΓΕΩΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ ΕΩΜΕΤΡΙΑ ΥΜΝΑΣΙΟΥ Χρήστος Π. Μουρατίδης 2014 2015 ΤΑΞΗ ΦΥΛΛΟ ΕΡΑΣΙΑΣ Κ 1.1 ΕΝΟΤΗΤΑ : Εμβαδόν επίπεδης επιφάνειας Τάξη : υμνασίου. Καθ. Χρήστος Μουρατίδης Όνομα Μαθητή :.. Ημ/νία :. 1. Να βρείτε το εμβαδόν

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου

Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου Θέµα 1 Α. Να υπολογίσετε την πλευρά λ και το απόστηµα α τετραγώνου εγγεγραµµένου σε κύκλο (Ο, R) συναρτήσει της ακτίνας R (10 Μονάδες) Β. Να χαρακτηρίσετε τις

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών Θετικής & Τεχν.Κατ/νσης Γ Λυκείου 2000

Θέµατα Μαθηµατικών Θετικής & Τεχν.Κατ/νσης Γ Λυκείου 2000 Θέµατα Μαθηµατικών Θετικής & Τεχν.Κατ/νσης Γ Λυκείου Ζήτηµα ο Α. Αν η συνάρτηση f είναι αραγωγίσιµη σ ένα σηµείο x του εδίου ορισµού της να γραφεί η εξίσωση της εφατοµένης της γραφικής αράστασης της f

Διαβάστε περισσότερα

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού

Διαβάστε περισσότερα

4.3 ΟΓΚΟΣ ΠΡΙΣΜΑΤΟΣ ΚΑΙ ΚΥΛΙΝΔΡΟΥ

4.3 ΟΓΚΟΣ ΠΡΙΣΜΑΤΟΣ ΚΑΙ ΚΥΛΙΝΔΡΟΥ ΜΡΟΣ Β 4. ΟΓΚΟΣ ΠΡΙΣΜΑΤΟΣ ΚΑΙ ΚΥΛΙΝΔΡΟΥ 81 4. ΟΓΚΟΣ ΠΡΙΣΜΑΤΟΣ ΚΑΙ ΚΥΛΙΝΔΡΟΥ Μονάδες μέτρησης όγκου Ως µονάδα µέτρησης όγκου θεωρούµε έναν κύο µε ακµή µήκους 1 µέτρο(m). Ο όγκος του ισούται µε 1 κυικό µέτρο

Διαβάστε περισσότερα

3.5 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

3.5 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1. ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Ασκσεις σχολικού βιβλίου σελίδας 88-89 A Oµάδας 1.i) Να λύσετε την εξίσωση ηµx = 0 ηµx = 0 ηµx = ηµ0 x = k + 0 x = k + 0, k Z Σηµείωση: Οι λύσεις αυτές διαφορετικά

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Οι ασκήσεις του φυλλαδίου δεν είναι ανά κεφάλαιο, αλλά τυχαία με σκοπό την τελική επανάληψη, και είναι θέματα εξετάσεων από διάφορα σχολεία του νομού Σερρών Σέρρες

Διαβάστε περισσότερα

Γιώργος Νάνος Φυσικός MSc ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΣΚΗΣΕΙΣ & ΠΡΟΒΛΗΜΑΤΑ. Μαθηματικά. Γυμνασίου

Γιώργος Νάνος Φυσικός MSc ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΣΚΗΣΕΙΣ & ΠΡΟΒΛΗΜΑΤΑ. Μαθηματικά. Γυμνασίου Φυσικός MSc ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΣΚΗΣΕΙΣ & ΠΡΟΒΛΗΜΑΤΑ Μαθηματικά B Γυμνασίου Μαθηματικά A Γυμνασίου Περιεχόμενα ΚΕΦΑΛΑΙΟ : Φυσικοί & Δεκαδικοί Αριθμοί Η θεωρία με Ερωτήσεις Ασκήσεις & Προβλήματα ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Άλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ. Τόμος 2ος

Άλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ. Τόμος 2ος Άλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Τόμος ος Συγγραφική ομάδα: Ανδρεαδάκης Στυλιανός Καθηγητής Πανεπιστημίου Αθηνών Κατσαργύρης Βασίλειος Καθηγητής μαθηματικών Βαρβακείου Πειραμ. Λυκείου Παπασταυρίδης Στάυρος Καθηγητής

Διαβάστε περισσότερα

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1 ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.6 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΕΜΒΑΔΟΥ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.7 ΕΜΒΑΔΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ ΚΑΙ ΚΥΚΛΙΚΟΥ ΤΜΗΜΑΤΟΣ 11.8 ΤΕΤΡΑΓΩΝΙΣΜΟΣ ΚΥΚΛΟΥ ΘΕΩΡΙΑ 1 (Εμβαδόν κυκλικού δίσκου) Θεωρούμε

Διαβάστε περισσότερα

Ερωτήσεις επί των ρητών αριθµών

Ερωτήσεις επί των ρητών αριθµών Σελ. 1 Ερωτήσεις επί των ρητών αριθµών 1. Ποια είναι τα πρόσηµα των ακεραίων αριθµών; Ζ={... -3,-2,-1,0,+1,+2,+3,... } 2. Ποιοι αριθµοί λέγονται θετικοί και ποιοι αρνητικοί; Γράψε από έναν. 3. Στον άξονα

Διαβάστε περισσότερα

Φύλλα Αξιολόγησης Β ΓΥΜΝΑΣΙΟΥ

Φύλλα Αξιολόγησης Β ΓΥΜΝΑΣΙΟΥ Φύλλα Αξιολόγησης Β ΓΥΜΝΑΣΙΟΥ Χρήστος Π. Μουρατίδης 2014 2015 Πρότυπο Πειραματικό Γυμνάσιο Αγίων Αναργύρων Τάξη Β 2 ΦΥΛΛΟ ΑΞΙΟΛΟΓΗΣΗΣ A ΕΝΟΤΗΤΑ : Πράξεις Ρητών αριθμών 1. Να χαρακτηρίσετε τις παρακάτω

Διαβάστε περισσότερα

Ερωτήσεις αντιστοίχισης

Ερωτήσεις αντιστοίχισης Ερωτήσεις αντιστοίχισης 1. ** Να αντιστοιχίσετε κάθε ευθεία που η εξίσωσή της βρίσκεται στη του πίνακα (Ι) µε τον συντελεστή της που βρίσκεται στη, συµπληρώνοντας τον πίνακα (ΙΙ) (α, β 0). 1. ε 1 : y =

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο ΚΕΦΑΛΑΙΟ Ι. Να αντιστοιχίσετε καθένα από τα συστήματα: (Σ 1 ): { (Σ 2 ): { (Σ 3 ): { (Σ 4 ): { με εκείνη από τις απαντήσεις Α, Β, Γ που νομίζετε ότι είναι η σωστή.

Διαβάστε περισσότερα

ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ ΣΠΑΡΤΗ 2008

ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ ΣΠΑΡΤΗ 2008 ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ ΣΠΑΡΤΗ 008 Κάθε γνήσιο αντίτυπο έχει την ιδιόχειρη υπογραφή του συγγραφέα Γενική επιμέλεια : Στράτης Αντωνέας Copyright : Στράτης Αντωνέας e-mail: stranton@otenet.gr Τηλέφωνα επικοινωνίας

Διαβάστε περισσότερα

Μαθηματικά Β' Γυμνασίου - Ασκήσεις επανάληψης στη Γεωμετρία Σελίδα 1. (απ.: Ε ΕΒΓΔΗΖ = 44 cm 2 ) (απ.: ΒΗ = 8 cm, (BHΝ) = 12 cm 2 )

Μαθηματικά Β' Γυμνασίου - Ασκήσεις επανάληψης στη Γεωμετρία Σελίδα 1. (απ.: Ε ΕΒΓΔΗΖ = 44 cm 2 ) (απ.: ΒΗ = 8 cm, (BHΝ) = 12 cm 2 ) Μαθηματικά Β' Γυμνασίου - Ασκήσεις επανάληψης στη Γεωμετρία Σελίδα 1 1) Στο διπλανό ορθογώνιο ΑΒΓΔ, να υπολογίσετε το εμβαδόν του σκιασμένου χωρίου ΕΒΓΔΗΖ, όταν ΓΔ = 10 cm, ΒΓ = 6 cm, ΗΔ = 2 cm, ενώ ΗΖ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα

( ) Λ αφού αν διαιρέσουμε με το 2 τους όρους του 2 ης εξίσωσης το σύστημα γίνεται Ρ =

( ) Λ αφού αν διαιρέσουμε με το 2 τους όρους του 2 ης εξίσωσης το σύστημα γίνεται Ρ = 17 ο Γενικό Λύκειο Αθηνών Σχολικό έτος 01-015 ΤΑΞΗ:B' Λυκείου ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΙΟΥΝΙΟΥ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΣΤΗΝ ΑΛΓΕΒΡΑ :Αθήνα 8-6-015 ΘΕΜΑ 1ο Α. Nα αοδείξετε ότι αν ένα ολυώνυμο

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ. 1. Τι ονομάζουμε εφαπτομένη μια οξείας γωνίας ενός ορθογωνίου τριγώνου; Να κάνετε σχήμα.

ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ. 1. Τι ονομάζουμε εφαπτομένη μια οξείας γωνίας ενός ορθογωνίου τριγώνου; Να κάνετε σχήμα. ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ 1. Τι ονομάζουμε εφαπτομένη μια οξείας γωνίας ενός ορθογωνίου τριγώνου; Να κάνετε σχήμα. 2. Τι ονομάζουμε ημίτονο μια οξείας γωνίας ενός ορθογωνίου τριγώνου;

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

3.1 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ

3.1 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ 1.1 ΤΡΙΓΩΝΜΕΤΡΙΚΙ ΑΡΙΘΜΙ ΓΩΝΙΑΣ ΘΕΩΡΙΑ 1. Για γωνία ω µε ο < ω < 9 ο ηµω = γ α = απέ ναντι κάθετη υποτείνουσα Β συνω = β α = προσκείµενη κάθετη υποτείνουσα εφω = γ β = απέ ναντι κάθετη προσκείµενη κάθετη

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

1 ο Κριτήριο αξιολόγησης (Τριγωνοµετρία)

1 ο Κριτήριο αξιολόγησης (Τριγωνοµετρία) 1 ο Κριτήριο αξιολόγησης (Τριγωνοµετρία) ΒΑΘ/ΓΙΑ ΘΕΜΑ 1ο µονάδες 1 Κάθε στοιχείο της στήλης Α είναι ίσο µε ένα και µόνο στοιχείο της στήλης Β Συνδέστε κατάλληλα τα στοιχεία των δύο στηλών στήλη Α συν (y

Διαβάστε περισσότερα

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ ΜΕΡΟΣ A ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 36, Γραφ. 1, Στρόβολος 3, Λευκωσία Τηλ. 357-37811 Φαξ: 357-3791 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 13 ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Πέμτη, 3/5/13

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εμβαδά επιπέδων σχημάτων

Κεφάλαιο 1 o Εμβαδά επιπέδων σχημάτων 9 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Β -- ΓΕΩΜΕΤΡΙΙΑ Κεφάλαιο 1 o Εμβαδά επιπέδων σχημάτων Β. 1. 1 44. Τι ονομάζεται εμβαδόν μιας επίπεδης επιφάνειας και από τι εξαρτάται; Ονομάζεται εμβαδόν

Διαβάστε περισσότερα

Γυμνάσιο Μαθηματικά Τάξη Γ

Γυμνάσιο Μαθηματικά Τάξη Γ 1 Θέματα εξετάσεων περιόδου Μαΐου-Ιουνίου στα Μαθηματικά Τάξη Γ ΘΕΜΑ 1 0 Η εξίσωση αχ + βχ +γ = 0 είναι βαθμού εξίσωση και λύνεται χρησιμοποιώντας τους τύπους Δ =.. χ 1 =. χ =.. Η διακρίνουσα Δ της εξίσωσης

Διαβάστε περισσότερα

Β Γυμνασίου. Θέματα Εξετάσεων

Β Γυμνασίου. Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων Θέμα 1. α. Ποια ποσά λέγονται ανάλογα και ποια σχέση τα συνδέει; β. Τι γνωρίζετε για τη γραφική παράσταση της συνάρτησης y=αx

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ Θέμα 1 ο α ) Ποια παράσταση καλείται μονώνυμο; Δώστε παράδειγμα. β ) Πότε δυο μονώνυμα είναι όμοια ; Δώστε παράδειγμα όμοιων μονωνύμων. γ ) Για ποιες τιμές των μεταβλητών

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ

ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ 1. Απόσταση δύο σηµείων Α και Β είναι το µήκος του ευθύγραµµου τµήµατος που τα ενώνει. 2. Γωνία είναι το µέρος του επιπέδου που βρίσκεται µεταξύ

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (42)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (42) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Θέμα ο (4) -- Τράπεζα θεμάτων Άλγεβρας Β Λυκείου - Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Β Λυκείου - Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

AB. Αν το διάνυσμα AB έχει μέτρο 1, τότε λέγεται

AB. Αν το διάνυσμα AB έχει μέτρο 1, τότε λέγεται ΔΙΑΝΥΣΜΑΤΑ Στη Γεωμετρία το διάνυσμα ορίζεται ως ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ως ένα ευθύγραμμο τμήμα του οποίου τα άκρα θεωρούνται διατεταγμένα Αν η αρχή και το πέρας ενός διανύσματος

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε Ν β K C Ε -α Ο α Ε Τάξη B Μ -β Λ Μάθημα: Η Θεωρία σε Ερωτήσεις Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Επιμέλεια: Διανύσματα Ερωτήσεις θεωρίας 1. Πως ορίζεται το διάνυσμα;. Τι λέγεται μηδενικό διάνυσμα;

Διαβάστε περισσότερα

Σημειώσεις Τριγωνομετρίας Β Λυκείου

Σημειώσεις Τριγωνομετρίας Β Λυκείου Χατζημανώλης Νίκος Μαθηματικός, M. Ed. Διδακτικής και Μεθοδολογίας των Μαθηματικών Σημειώσεις Τριγωνομετρίας Β Λυκείου ΘΕΣΣΑΛΟΝΙΚΗ 014 (B ΕΚΔΟΣΗ) ΠΡΟΛΟΓΟΣ Με τις σημειώσεις αυτές ροσαθώ να αοτυώσω τη δική

Διαβάστε περισσότερα

Θέµατα Εξετάσεων Άλγεβρας Β Λυκείου

Θέµατα Εξετάσεων Άλγεβρας Β Λυκείου Θέµατα Εξετάσεων Άλγεβρας Β Λυκείου 1999-004 Περιεχόµενα 1 Θέµατα 1999......................................... 3 Θέµατα 000......................................... 8 3 Θέµατα Σεπτεµβρίου 000..................................

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ο ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ

ΚΕΦΑΛΑΙΟ 9 ο ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ Θεώρημα οξείας γωνίας Το τετράγωνο πλευράς τριγώνου, που βρίσκεται απέναντι από οξεία γωνία, είναι ίσο με το άθροισμα των τετραγώνων των δύο άλλων πλευρών του, ελαττωμένο

Διαβάστε περισσότερα

ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ

ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ 1 2 ΚΕΦΑΛΑΙΟ 1ο ΓΕΩΜΕΤΡΙΑ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Κύρια και δευτερεύοντα στοιχεία τριγώνου - Είδη τριγώνων 1. Ποια είναι τα κύρια στοιχεία

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ. Να σηµειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισµούς:. Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α = β, τότε

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα... Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5

Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5 Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5 Α Σύνολα αριθμών Για τα σύνολα των αριθμών γνωρίζουμε ότι N Z Q R. ) Το N= { 0,,,,... } είναι το σύνολο των φυσικών αριθμών. ) Το Z = { 0, ±, ±, ±,... } είναι το σύνολο

Διαβάστε περισσότερα

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ klzxcvλοπbnαmqwertyuiopasdfghjklz ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ xcvbnmσγqwφertyuioσδφpγρaηsόρ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Θετικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Θετικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ (εκπαιδευτικό υλικό Θετικής κατεύθυνσης 999-000) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό - Λάθος».

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΝΑ ΑΠΑΝΤΗΣΕΤΕ ΕΝΑ ΑΠΟ ΤΑ ΔΥΟ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΚΑΙ ΔΥΟ ΑΠΟ ΤΙΣ ΤΡΕΙΣ ΑΣΚΗΣΕΙΣ ΟΙ ΑΣΚΗΣΕΙΣ ΚΑΙ ΤΑ ΘΕΜΑΤΑ ΤΗΣ ΘΕΩΡΙΑΣ ΕΙΝΑΙ

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΤΑΞΗ Β 59 ΑΣΚΗΣΕΙΣ. Θέμα 1 ο. Θέμα 2 ο : Άσκηση 1 η. Άσκηση 2 η. Άσκηση 3 η

ΓΥΜΝΑΣΙΟ ΤΑΞΗ Β 59 ΑΣΚΗΣΕΙΣ. Θέμα 1 ο. Θέμα 2 ο : Άσκηση 1 η. Άσκηση 2 η. Άσκηση 3 η ΥΜΝΑΣΙΟ ΤΑΞΗ ΥΜΝΑΣΙΟ ΤΑΞΗ Β 59 α. Να διατυπώσετε το Πυθαγόρειο Θεώρημα. β. Να διατυπώσετε το αντίστροφο του Πυθαγορείου Θεωρήματος. γ. Στο διπλανό σχήμα, το τρίγωνο ΔΕΖ είναι ορθογώνιο ( Δ = 90º) και ΔΑ

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Μεθοδική Επανάληψη

Μαθηματικά Γ Γυμνασίου. Μεθοδική Επανάληψη Μαθηματικά Γ Γυμνασίου Μεθοδική Επανάληψη Στέλιος Μιχαήλογλου www.askisopolis.gr Η επανάληψη των Μαθηματικών βήμα - βήμα Άλγεβρα Κεφάλαιο 1ο: Αλγεβρικές παραστάσεις 1.1. Πράξεις με πραγματικούς αριθμούς

Διαβάστε περισσότερα