ΑΣΚΗΣΗ 10. Λύση. π/ P1 =0 => P1+P2+4=0 => 4P1=1004+P2 => P1= 1004+P2 = R1(P2) 4 P2= 1004+P1 = R2(P1) 4

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΑΣΚΗΣΗ 10. Λύση. π/ P1 =0 => P1+P2+4=0 => 4P1=1004+P2 => P1= 1004+P2 = R1(P2) 4 P2= 1004+P1 = R2(P1) 4"

Transcript

1 ΑΣΚΗΣΗ 10 Στον κλάδο υπάρχουν δύο επιχειρήσεις που παράγουν ατελώς υποκατάστατα αγαθά. Οι καµπύλες ζήτησης των προϊόντων τους είναι q 1 = p1 +p2 και q 2 = p2 +p1. Οι δύο επιχειρήσεις έχουν την ίδια τεχνολογία που τους επιτρέπει να παράγουν τα αγαθά τους µε το ίδιο κόστος ανά µονάδα προϊόντος ίσο µε 2 (δεν υπάρχει σταθερό κόστος). Η στρατηγική µεταβλητή των επιχειρήσεων είναι η τιµή και οι επιχειρήσεις παίρνουν τις αποφάσεις τους ταυτόχρονα. Προσδιορίσατε την ισορροπία του Nash του παιγνίου. Λύση q 1 =1000-2p1+p2 q 2 =1000-2p2+p1 C(qi)=2qi, i=1,2 Max P1(1000-2P1+P2)-2(1000-2P1+P2) P1 π/ P1 =0 => P1+P2+4=0 => 4P1=1004+P2 => Λόγω συµµετρίας προκύπτει ότι : P1= 1004+P2 = R1(P2) 4 P2= 1004+P1 = R2(P1) P2 P1= 1004+P2 => P1 = *4P1=1004* P1 => 16P1=5*1004+P1 => 15P1=5*1004 => P1=334,67 και P2=334,67 Συνεπώς, η ισορροπία κατά Nash είναι : (334,67, 334,67) 17

2 ΑΣΚΗΣΗ 11 Εύρεση ισορροπίας σε µεικτές στρατηγικές Βρείτε την ισορροπία σε µεικτές στρατηγικές των ακόλουθων παιγνίων: ` L R T 2, 1 0, 2 B 1,2 3,0 L R T -2, -1 0, 0 B 0,0-1,-2 ( q 1-q L R Λύση p T 1-p B 2,1 0,2 1,2 3,0 Παίχτης 1: Π1(Τ)=2q+0(1-q)=2q Π1(Β)=1q+3(1-q)=3-2q Αν Π1(Τ)>Π1(Β) => 2q>3-2q => 4q>3 => q>3/4 (T, B ; 1, 0) Αν Π1(Τ)<Π1(Β) => q<3/4 (T, B ; 0, 1) Αν Π1(Τ)=Π1(Β) => q=3/4 (T, B ; p, 1-p), όπου 0 < p < 1 Για τον παίχτη 2: Π2(L)=1p+2(1-p)= -p+2 18

3 Π2(R) = 2p+0(1-p) = 2p Αν Π2(L) > Π2(R) => 2-p>2p => p<2/3 (L, R ; 1, 0) Αν Π2(L) < Π2(R) => p>2/3 (L, R ; 0, 1) Αν Π2(L) = Π2(R) => p=2/3 (L, R ; q, 1-q), όπου 0 < q < 1 Τα κέρδη του παίχτη 1 είναι ίδια όταν ακολουθεί τη στρατηγική Τ ή την Β, δεδοµένης της στρατηγικής του παίχτη 2. Άρα, σύµφωνα µε την αρχή της εξίσωσης των κερδών έχω: Π1(Τ)=Π1(Β) => 2q*=3-2q* => q*=3/4 Οµοίως : Π2(L)=Π2(R) => 2-p*=2p* => p*=2/3 Συνεπώς, η ισορροπία σε µικτές στρατηγικές είναι: [(T, B ; 2/3, 1/3 ), (L, R ; 3/4, 1/4)] Ακολουθώ και για την επόµενη µήτρα την ίδια ακριβώς διαδικασία : ( p 1-p L R q T 1-q B -2,-1 0,0 0,0-1,-2 Καταλήγω : Π1(Τ) = Π1(Β) => -2p* = -(1-p) => p* =1/3 και : Π2(L) = Π2(R) => -q* = -2(1-q) => q* =2/3 Άρα, η ισορροπία σε µικτές στρατηγικές είναι : [(T, B ; 2/3, 1/3 ), (L, R ; 1/3, 2/3)] 19

4 ΑΣΚΗΣΗ 12 Το ακόλουθο διάγραµµα παριστά το δέντρο ενός παιγνίου τέλειας πληροφόρησης µεταξύ δύο παιχτών. r D e l R I N c M D II r L a m W D I L R l b M D L II L d r I l D (α) Προσδιορίσατε τα σύνολα πληροφόρησης κάθε παίχτη. (β) Ποιες είναι οι αµιγείς στρατηγικές κάθε παίχτη; Και ποιες είναι οι επιλογές κάθε παίχτη σε καθένα από τα σύνολα πληροφόρησής του; (γ) Ποιο είναι το αποτέλεσµα του συνδυασµού των στρατηγικών (rll, LM); (δ) Προσδιορίσατε όλα τα δυνατά ζευγάρια στρατηγικών που οδηγούν το παίγνιο στην πορεία rrl Λύση 20

5 r D e l R I N c M D II r L a m W D I L R l b M D L II L d r I l D Σύνολα Πληροφόρησης Παίχτης Ι : a, e, d Παίχτης ΙI : b, c Αµιγείς Στρατηγικές Παίχτης Ι : lrr, llr, lrl (Σύνολο 3*2*2=12) lll, mrr, mrl mlr, mll, rrr rrl, rlr, rll Παίχτης ΙΙ : RR, RM, RL, MR, MM, ML, LR, LL, LM Επιλογές στα σύνολα πληροφόρησης Παίχτης Ι : (a) : r, m, l (d) : r, l (e) : r, l Παίχτης ΙI : (b) : R, M, L (c) : R, M, L 21

6 Το αποτέλεσµα του συνδυασµού των στρατηγικών (rll, LM) Το παίγνιο σταµατά στον κόµβο c και το αποτέλεσµα είναι D (rrl, RR), (rll, MR), (rrl, MR), (rll, RR), (rll, LR), (rrl, LR) ΑΣΚΗΣΗ 13 ίνεται το ακόλουθο παίγνιο σε αναλυτική µορφή : A L 10, l H 0, 0 B L -1, -1 h H 3, (α) Προσδιορίσατε τις ισορροπίες κατά Nash του παιγνίου αυτού. (β) Παραστήσατε σε µορφή στρατηγική το παίγνιο. (γ) Είναι κάποια από τις ισορροπίες κατά Nash τέλεια ισορροπία υποπαιγνίων; (δ) Υποθέτοντας τώρα ότι ο παίχτης Β παρατηρεί την απόφαση του παίχτη Α πριν πάρει την απόφασή του, απαντήσατε στις τρεις προηγούµενες ερωτήσεις. Λύση Ισορροπίες κατά Nash : (l, L) (10,2) (h, H) (3,5) L H l h 10, 0,0-1,1 3, 22

7 Οι δύο ισορροπίες κατά Nash είναι και τέλειες ισορροπίες υποπαιγνίων. Αυτό συµβαίνει διότι όταν δεν υπάρχουν υποπαίγνια υπάρχει απόλυτη αντιστοιχία µεταξύ του αριθµού των ισορροπιών κατά Nash και των τέλειων ισορροπιών υποπαιγνίων. Αν ο Β γνωρίζει την ιστορία του παιγνίου, τότε αυτό µπορεί να παρασταθεί σε µορφή δέντρου ως εξής : L 10,2 l H 0,0 A h B L -1,-1 H 3,5 Και σε µορφή µήτρας : LL LH HL HH l h, 2, 2,0 0,0-1, -1 3, 5-1, -1, 5 Οι ισορροπίες κατά Nash είναι: (l, LL), (l, LH), (h, HH) και τα αποτελέσµατά τους: (10,2), (10,2), (3,5) (l, LL): Σηµαίνει ότι ο παίχτης 2 επιλέγει L σε κάθε περίπτωση. Είναι διαχρονικά ασυνεπής διότι, αν ο π. 1 κάνει λάθος και αντί για l επιλέξει h, ο π. 2 θα επιλέξει L, που δεν έχει νόηµα. Στηρίζεται σε µη αξιόπιστη απειλή. Ο π. 2 λεει Θα επιλέξω L σε κάθε περίπτωση, ότι και αν γίνει. Αν ο π. 1 τον πιστέψει θα επιλέξει l, αν όµως δεν τον πιστέψει και επιλέξει h, τότε ο π. 2 θα αλλάξει την συµπεριφορά του επιλέγοντας Η. Η ισορροπία (h, HH) αποτελεί επίσης µη αξιόπιστη απειλή και είναι διαχρονικά ασυνεπής. (Η αιτιολόγηση οµοίως µε προηγουµένως. ) Μόνο η ισορροπία κατά Nash (l, LH) είναι τέλεια ισορροπία υποπαιγνίων, καθώς ο π. 2 επιλέγει L όταν το παίγνιο πάει προς τα πάνω και Η αν (από λάθος του π. 1) πάει προς τα κάτω. 23

8 ΑΣΚΗΣΗ 14 ίνεται το ακόλουθο παίγνιο σε αναλυτική µορφή: I II U 2 10, U 1 D 2 0, 0 u 2-1, -1 D 1 II d 2 3, (α) Προσδιορίσατε ποιες είναι οι στρατηγικές κάθε παίχτη και βρείτε όλες τις τέλειες ισορροπίες κατά Nash υποπαιγνίων. (β) Παραστήσατε το παίγνιο σε στρατηγική µορφή και βρείτε όλες τις ισορροπίες κατά Nash. Λύση Στρατηγικές π. 1: U 1 ή D 1 Στρατηγικές π. 2: U 2 u 2, U 2 d 2, D 2 u 2, D 2 d 2 Σε αυτό το παίγνιο υπάρχουν δύο υποπαίγνια τα οποία αν αποµονώσουµε θα βρούµε τις ισορροπίες κατά Nash: (1,2) U 2 (0,3) 1 ο *ο π. II θα επιλέξει D2 II D 2 (0,3) (2,1) u 2 (0,3) 2 ο *ο π. II θα επιλέξει d2 ΙΙ d 2 (0,3) 24

9 Το επόµενο βήµα είναι η αντικατάσταση των υποπαιγνίων µε τη σχετική ισορροπία κατά Nash: (0,3) U 1 I D 1 (0,3) Ο π. 1 είναι αδιάφορος µεταξύ U 1 και D 1. Και αν αποκλείσουµε την περίπτωση των µεικτών στρατηγικών, θα έχουµε άπειρες τέλειες ισορροπίες κατά Nash υποπαιγνίων, οι οποίες είναι της µορφής: [(U 1, D 1 ; p,1-p), (D 2, d 2 )],όπου 0 < p < 1 B U 2 u 2 U 2 d 2 D 2 u 2 D 2 d 2 U 1 D 1 1, 2, 2 0, 3, 3, 1 0, 3, 1, 3 Άρα, οι ισορροπίες κατά Nash είναι: [U 1, (D 2,d 2 )] και [D 1, (D 2,d 2 )]. Το αποτέλεσµά τους είναι (0,3). Οι ισορροπίες κατά Νash σε µεικτές στρατηγικές είναι άπειρες και δίδονται ως εξής: [[(U 1, D 1 ; p, (1-p)], (D 2,d 2 )] ΑΣΚΗΣΗ 15 Ας θεωρήσουµε το παίγνιο στο οποίο ο παίχτης Ι επιλέγει πρώτος µεταξύ 0 και 1. Κατόπιν εκλέγει η Τύχη µεταξύ 0 και 1 µε ίσες πιθανότητες. Τέλος ο παίχτης ΙΙ επιλέγει µεταξύ 0 και 1 µη γνωρίζοντας την επιλογή του παίχτη Ι αλλά γνωρίζοντας ποια ήταν η εκλογή της Τύχης. Αν το άθροισµα των τριών επιλογών είναι ίσο µε 1, ο παίχτης Ι πληρώνει τον παίχτη ΙΙ µια λίρα. Στην αντίθετη περίπτωση ο παίχτης ΙΙ πληρώνει τον παίχτη Ι µια λίρα. (α) Σχεδιάστε το δέντρο του παιγνίου. (β) είξατε ποια είναι τα σύνολα πληροφόρησης κάθε παίχτη. (γ) Ποιες είναι οι αµιγείς στρατηγικές κάθε παίχτη; Ποιες είναι οι επιλογές κάθε παίχτη σε καθένα από τα σύνολα πληροφόρησής του; (δ) Αν επιλέγονταν ο συνδυασµός των στρατηγικών: 0 για τον παίχτη Ι και (1, 0) για τον παίχτη ΙΙ, δηλ. [0 (1, 0)], σε ποιο τελικό κόµβο του δέντρου θα φτάναµε; και µε ποια πιθανότητα; 25

10 Λύση (α) 0 0 b 1 (1, -1) (-1, 1) 0 (-1, 1) 0 1 α 1 (1, -1) Ι 1 0 (-1, 1) 0 Τ 1 (1, -1) 1 c 0 (1, -1) ΙΙ 1 (1, -1) (β) Ο παίχτης Ι αποφασίζει στο σύνολο πληροφόρησης α. Ο παίχτης ΙΙ δε γνωρίζει την επιλογή του παίχτη Ι αλλά γνωρίζει την επιλογή της τύχης Τ. Αυτό σηµαίνει ότι ο παίχτης ΙΙ αποφασίζει σε δύο κόµβους πληροφόρησης, τους b και c. (γ) Οι αµιγείς στρατηγικές του Ι είναι: I(0, 1) κόµβος α Οι αµιγείς στρατηγικές του ΙΙ είναι: ΙΙ(0,0, 0,1, 1,0, 1,1) κόµβος b κόµβος c Ο παίχτης Ι στο σύνολο πληροφόρησης α αποφασίζει µεταξύ 0 και 1, ενώ ο παίχτης ΙΙ αποφασίζει στους κόµβους πληροφόρησης b και c µεταξύ 0 και 1. (δ) Αν ο παίχτης Ι επιλέξει 0, τότε το παιχνίδι πηγαίνει προς τα πάνω. Αν τώρα ο παίχτης ΙΙ ακολουθήσει στρατηγική (1, 0) τότε εξαιτίας του παράγοντα τύχη έχουµε: Πιθανότητα ½ εάν η τύχη αποφασίσει 0 να καταλήξουµε στον κόµβο b Πιθανότητα ½ εάν η τύχη αποφασίσει 1 να καταλήξουµε στον κόµβο c Όµως και στις δύο περιπτώσεις προκύπτει το ίδιο αποτέλεσµα (-1, 1) 26

11 ΑΣΚΗΣΗ 16 Σε ένα κλάδο υπάρχει µια καθιερωµένη επιχείρηση, ενώ µια νέα επιχείρηση σκέφτεται να εισέλθει στον κλάδο. Αν η τελευταία αποφασίσει να εισέλθει, η καθιερωµένη επιχείρηση έχει δύο επιλογές: να αποδεχτεί την είσοδο της νέας επιχείρησης χάνοντας έτσι ένα µέρος των πελατών της ή να διεξάγει πόλεµο τιµών στη νεοεισερχόµενη. Αν αποδεχτεί την είσοδο της αντιπάλου, τα κέρδη της καθιερωµένη επιχείρησης θα είναι 10 εκατ., ενώ αν διεξάγει πόλεµο τιµών θα έχει απώλειες 10 εκατ. Από την άλλη, η νεοεισερχόµενη θα κερδίσει 10 εκατ. Αν δεν δεχτεί τον πόλεµο τιµών, ενώ θα έχει απώλειες 20 εκατ. Στην αντίθετη περίπτωση. Τέλος, αν η αντίπαλος αποφασίσει να µην εισέλθει στον κλάδο, η καθιερωµένη επιχείρηση θα συνεχίσει να πετυχαίνει τα κέρδη του µονοπωλίου που είναι 30 εκατ. Σχεδιάστε την αναλυτική µορφή του παιγνίου. Προσδιορίσατε κατόπιν τη στρατηγική µορφή του και βρείτε τις ισορροπίες κατά Nash σε αµιγείς στρατηγικές. Ποιες απ αυτές είναι τέλειες ισορροπίες υποπαιγνίων; Λύση α είσοδος b αποδοχή (10, 10) υποπαίγνιο Ι όχι II πόλεµος τιµών (-20, -10) (0, 30) (II) a b αποδοχή πόλεµος (Ι) είσοδος 10, 10-20, -10 όχι 0, 30 0, 30 Για να βρω τις ισορροπίες κατά Nash λειτουργώ ως εξής: Εάν ο Ι αποφασίσει είσοδος ο ΙΙ αποφασίζει αποδοχή Εάν ο Ι αποφασίσει όχι o II είναι αδιάφορος µεταξύ εισόδου και πολέµου τιµών. Εάν ο ΙΙ αποφασίσει αποδοχή o I αποφασίζει είσοδος Εάν ο ΙΙ αποφασίσει πόλεµος ο Ι αποφασίζει όχι. Οι ισορροπίες κατά Nash που προκύπτουν είναι: (είσοδος, αποδοχή) = (10,10) (όχι, πόλεµος τιµών) = (0,30) 27

12 Για να βρω την τέλεια ισορροπία κατά Nash υποπαιγνίων, αποµονώνω το µοναδικό υποπαίγνιο που υπάρχει (αυτό που αντιστοιχεί στο σύνολο πληροφόρησης b). Εδώ παίζει µόνο η καθιερωµένη επιχείρηση (παίχτης ΙΙ). Ο ΙΙ δεδοµένου ότι ο Ι εισέρχεται στον κλάδο, θα αποφασίζει να τον αποδεχτεί ώστε να µεγιστοποιήσει τα κέρδη του (10 > -10). Άρα, το παίγνιο µπορεί να γραφτεί ως εξής: a I είσοδος (10, 10) όχι (0, 30) Εδώ παίζει µόνο η νέα επιχείρηση (παίχτης ΙΙ) η οποία φυσικά επιλέγει να εισέλθει στον κλάδο ώστε να µεγιστοποιήσει τα κέρδη της (10 > 0) Άρα, η (είσοδος, αποδοχή) είναι η ισορροπία κατά Nash που είναι επίσης και η ισορροπία υποπαιγνίων. Οπότε, είναι η τέλεια ισορροπία κατά Nash υποπαιγνίων. Προφανώς, η ισορροπία (όχι, πόλεµος τιµών) δεν µπορεί να είναι τέλεια ισορροπία κατά Nash υποπαιγνίων, γιατί το κοµµάτι της ισορροπίας που αντιστοιχεί στο υποπαίγνιο (δηλ. πόλεµος τιµών ) δεν είναι ισορροπία κατά Nash στο υποπαίγνιο. ΑΣΚΗΣΗ 17 Στον κλάδο της πληροφορικής υπάρχουν συνήθως ορισµένες εταιρίες που έχουν ηγετικό ρόλο και άλλες που αναµένουν τις πρώτες να πάρουν τις αποφάσεις τους και κατόπιν προσαρµόζουν κατάλληλα τις αποφάσεις τους. Ας υποθέσουµε ότι στον κλάδο η εταιρία ΙΤΜ παίζει το ρόλο του ηγέτη κατά Stackelberg και η εταιρία MIGA είναι ακόλουθος κατά Stackelberg. Οι δύο επιχειρήσεις έχουν την ίδια τεχνολογία και το κόστος παραγωγής τους είναι c(qi) = cqi, όπου c > 0. Η καµπύλη ζήτησης του προϊόντος είναι p(q) = 120 Q, (0 < Q < 120), όπου Q είναι η συνολική ποσότητα που προσφέρεται στην αγορά. Το παίγνιο µεταξύ των δύο εταιριών είναι το εξής: ΙΤΜ ανακοινώνει την ποσότητα του νέου προϊόντος που θα παράγει. Αφού παρατηρήσει αυτή την απόφαση, η MIGA αποφασίζει αν θα εισάγει το νέο προϊόν, και αν το εισάγει πόσο θα παράγει. Τα κέρδη της είναι µηδέν αν δεν το εισάγει. Αν το εισάγει τα κέρδη και των δύο εταιριών εξαρτώνται τόσο από την απόφαση της ΙΤΜ όσο και της MIGA. Παραστήσατε το παίγνιο σε αναλυτική µορφή. Ποιες είναι οι στρατηγικές κάθε εταιρίας; ποια είναι τα κέρδη τους σε κάθε ενδεχόµενο; Προσδιορίσατε την ισορροπία κατά Stackelberg του παιγνίου αυτού. Θα εισέλθει ή όχι η MIGA στον κλάδο; Λύση 28

13 q 2 εισαγωγή (120 c) 2, (120 - c) 2 q 1 MIGA 8 16 ΙΤΜ MIGA όχι (120 c) 2, 0 4 Οι στρατηγικές της ΙΤΜ είναι: ITM(q1), όπου 0 < q 1 < 120 a Οι στρατηγικές της MIGA είναι: MIGA(εισαγωγή, q 2, όχι), όπου 0 < q 2 < 120 b c Για να βρω τα κέρδη των εταιριών λειτουργώ ως εξής: q 2 = R 2 (q 1 ) = 120 c q 1 2 Οπότε, λύνω το πρόβληµα µεγιστοποίησης: max(120 q 1 q 2 )q 1 cq 1 q1 υπό τον περιορισµό: q 2 = 120 c q 1 2 Άρα : max (120 q c q1)q 1 cq 1 => max(120 q 1 c 120 q 1 c)q 1 q1 q1 2 2 => max1/2 (120 c q 1 )q 1 q1 Συνθήκη α τάξης: (60q 1 ½ cq 1 ½ q 1 2 ) = 0 => 60 ½ c q 1 = 0 => q 1 q 1 s = 120 c c q2 = 120 c q1 => q2 = 120 c - 2 => 2 2 q 2 s = 120 c 2 Οπότε: P c = 120 Q c => p s c = (120 c ) 120 c c => p s = 2 4 4(120 c) 2(120 c) (120 c) = 120 c => 4 4 p s c = 120 c 4 29

14 Τα κέρδη είναι: Π 1 s = p s q 1 s cq 1 s => Π 1 s = (p s c)q 1 s => Π 1 s = 120 c 120 c =>Π 1 s = (120 c) Π 2 s = p s q 1 s cq 1 s => Π 1 s = (p s c)q 1 s => Π 1 s = 120 c 120 c =>Π 1 s = (120 c) Στην περίπτωση που η εταιρία MIGA δεν εισάγει το νέο προϊόν, τότε: Q = q 1 Άρα : Π 1 = (120 q 1 )q 1 cq 1 Οπότε τίθεται το πρόβληµα µεγιστοποίησης: max(120q 1 q 2 cq 1 ) q1 Συνθήκη α τάξης: (120q 1 q 2 1 cq 1 ) = 0 => 120 2q 1 c = 0 =>2q 1 = 120 c => q 1 q 1 = 120 c 2 Για να βρω τα κέρδη λειτουργώ ως εξής: P s c = c c => 2 p s c = 120 c 2 Π 1 = c 120 c - c 120 c => Π1 = 120 c 120 c 120 c => Π 1 = 120 c 2 2 => Π 1 = (120 c ) 2 4 Συµπεραίνουµε, λοιπόν, ότι η ισορροπία κατά Stackelberg είναι η εξής: (q 1, εισαγωγή, q 2 ) = ( 120 c 2, 120 c ) Η επιλογή της MIGA θα είναι να εισέλθει στον κλάδο, αφού έτσι µεγιστοποιεί τα κέρδη της. ηλαδή 120 c 2 >

15 ΑΣΚΗΣΗ 18 Υποθέσατε ότι το παίγνιο είναι ακριβώς το ίδιο µε την άσκηση 17, εκτός του ότι το κόστος της MIGA είναι c(qi) = cqi + K, όπου Κ παριστά το σταθερό κόστος (π.χ. το κόστος του να αποκτήσει την απαραίτητη τεχνολογία). Υπάρχει κάποια τιµή της παραµέτρου Κ, πάνω απ την οποία η MIGA δεν θα εισάγει το προϊόν στην αγορά στην ισορροπία του παιγνίου; Λύση c q 2 [(120 c) 2 k, (120 c) 2 k ] εισαγωγή 8 16 a q 1 b όχι [(120 c) 2 k, k ] 4 Από την προηγούµενη άσκηση παίρνουµε q s 1 = 120 c και 2 q 2 s = 120 c 4 (Αφού το k είναι σταθερό κόστος αφαιρείτε από τα κέρδη) Για να βρω την τιµή του k πάνω απ την οποία δεν θα εισαχθεί νέο προϊόν, βρίσκω τα κέρδη της. ηλαδή: Π 1 s = (p 5 c)q1 s k => Π 1 s = (120 c) 2 k 8 Άρα, Π s 2 = (120 c) 2 k => Για k > (120 c) η MIGA δεν θα εισάγει προϊόν Στην περίπτωση που η MIGA δεν εισάγει το νέο προϊόν τότε: Q = q 1 Έτσι, τα κέρδη της ΙΤΜ γίνονται: Π 1 = (120 c) 2 k, ενώ στη MIGA αντιστοιχεί µόνο κόστος k. 4 31

16 ΑΣΚΗΣΗ 19 Στο ακόλουθο παίγνιο διαπραγµάτευσης, µια επιχείρηση (Ε) και ένα συνδικάτο (S) προσπαθούν να µοιράσουν µεταξύ τους τα κέρδη που δηµιουργούνται από την οικονοµική δραστηριότητά τους. Υποθέσατε ότι τα κέρδη αυτά είναι 20 εκατ. Η διαδικασία διαπραγµάτευσης περιλαµβάνει τρία στάδια προσφορών αντιπροσφορών. Η εταιρία κάνει την πρώτη προσφορά, κατόπιν το συνδικάτο κάνει µια αντιπροσφορά και τέλος κάνει µια νέα προσφορά η εταιρία. Σε κάθε στάδιο, αυτός που λαµβάνει την προσφορά έχει την δυνατότητα να την δεχτεί ή να την απορρίψει. Αν την δεχτεί, η διαπραγµάτευση παίρνει τέλος, ενώ αν την απορρίψει κάνει την αντιπροσφορά του. Αν δεν φτάσουν σε καµία συµφωνία µετά το τρίτο στάδιο και οι δύο κερδίζουν µηδέν. (α) Ποια είναι η πιθανή συµφωνία µεταξύ της εταιρίας και του συνδικάτου αν ο κοινός συντελεστής προεξόφλησης είναι δ = ¼; (β) Ποια είναι η πιθανή συµφωνία αν ο συντελεστής προεξόφλησης της εταιρίας είναι δ Ε = ¼ και του συνδικάτου δ S = ½; (γ) Συγκρίνατε τις παραπάνω συµφωνίες και σχολιάσατε αν και γιατί είναι λογικά τα παραπάνω αποτελέσµατα. (δ) Υποθέσατε τώρα ότι αλλάζει η διαδικασία διαπραγµάτευσης κατά τον εξής τρόπο: Είναι η ίδια όπως και τα προηγούµενα, αλλά τώρα εισάγεται η δυνατότητα ενός τέταρτου σταδίου (αν δεν επιτευχθεί καµία συµφωνία µέχρι και το τρίτο στάδιο), όπου παρέχεται η δυνατότητα στην εταιρία και στο συνδικάτο να απαιτήσουν ταυτόχρονα ένα µερίδιο των κερδών. Αν το άθροισµα των απαιτήσεων είναι µικρότερο ή ίσο από 20 εκατ., κάθε µέρος κερδίζει όσο ζήτησε. Στην αντίθετη περίπτωση, κανέµας δεν λαµβάνει τίποτα. Αναλύσατε το παίγνιο όταν ο συντελεστής προεξόφλησης είναι ίσος µε 1. Τι αναµένεται να συµβεί σε αυτήν την περίπτωση; Ποια είναι η διαφορά µε την περίπτωση που δεν υπάρχει το τέταρτο στάδιο; Λύση αποδοχή (x, 20 x) a b (20δ 2, 20δ 20δ 2 ) E x S αποδοχή [δy, δ(20 y)] όχι c (20δ 2, 20δ 20δ 2 ) d [δ 2 z, δ 2 (20 z)] (20δ 2, 0) αποδ. S y S e (20δ 2, 0) f z όχι (0, 0) (a) Ξεκινάµε απ τον κόµβο f όπου το S αποφασίζει µεταξύ αποδοχής και όχι Η στρατηγική του είναι: 32

17 S: [αποδέχοµαι z, 0 < z < 20] Άρα, η Ε δίνει στο S z* = 20 και το αποτέλεσµα του κόµβου f γίνεται: (20δ 2, 0) Στον κόµβο d η Ε αποφασίζει µεταξύ αποδοχής και όχι Η στρατηγική της είναι: Ε : αποδέχοµαι y,δy > 20δ 2 => y > 20δ απορρίπτω y,δy < 20δ 2 => y < 20δ Άρα, το S δίνει στην Ε y* = 20δ και το αποτέλεσµα του κόµβου d γίνεται: (20δ 2, 20δ 20δ 2 ) Στον κόµβο b το S αποφασίζει µεταξύ αποδοχής και όχι Η στρατηγική του είναι: S : αποδέχοµαι x, 20 - x > 20δ(1 δ) απορρίπτω x, 20 - x < 20δ(1 δ) δ = ¼ Άρα η Ε δίνει στο S: x* = 20 20δ + 20δ2 ======>x* = 16, 25 Οπότε, το παίγνιο παίρνει την εξής µορφή: απόδοχή (16,25, 3,75) Άρα, (x* = 16,25, αποδοχή) είναι a b η πιθανή συµφωνία µεταξύ της εταιρίας και του συνδικάτου Ε x όχι (1,25, 3,75) Η τέλεια ισορροπία υποπαιγνίων γράφεται ως εξής: x* = 16,25 Αποδέχοµαι y, 1/4y > 20/16, z* = 20, Απορρίπτω y, 1/4y < 20/16 Αποδέχοµαι x, 20 x > 3,75, y* = 5, Αποδέχοµαι Απορρίπτω x, 20 x < 3,75 z, 0 < z < 20 (b) Για δ Ε = ¼ και δ S = ½ το παίγνιο παίρνει την εξής µορφή: 33

18 αποδοχή (x, 20 x) a b E x S (5/4, 15/2) (5/4, 15/2) αποδοχή [1/4y, ½(20 z)] όχι f d [1/16z, ¼(20-z)] S y E (20/16, 0) αποδοχ. Όχι e (20/16, 0) f Ε z S όχι (0, 0) Οι στρατηγικές των Ε και S εξελίσσονται διαδοχικά ως εξής: (κόµβος f): S: [Αποδέχοµαι z, 0 < z < 20] Άρα η Ε του δίνει z* = 20 (κόµβος d): E: Αποδέχοµαι y, ¼y > 20/16 Άρα, το S δίνει στην Ε Απορρίπτω y, ¼y < 20/16 y* = 4 (20/16) => y* = 5 (κόµβος b): S: Αποδέχοµαι x, 20 x > 15/2 Απορρίπτω x, 20 x < 15/2 Άρα, x* = 25/2 Άρα, (x* = 25/2, αποδοχή) είναι η πιθανή συµφωνία µεταξύ εταιρίας και συνδικάτου (c) εδοµένης της ορθολογικότητας της εταιρίας και του συνδικάτου, η ισορροπία στην αποδοχή της πρώτης προσφοράς είναι λογική, γιατί αυτή οδηγεί στα υψηλότερα κέρδη. Αυτή οφείλεται στην ύπαρξη του συντελεστή προεξόφλησης. Στην περίπτωση που δs >δ Ε (όταν δηλαδή το συνδικάτο είναι πιο υποµονετικό) τότε τα κέρδη του συνδικάτου είναι περισσότερα (7,5 > 3,75) και τα κέρδη της εταιρίας είναι λιγότερα (12,5 < 16,25) (d) To παίγνιο παίρνει την εξής µορφή: αποδοχή [x, 20 x] a b x [y, (20 y)] E S (20,0) αποδοχή όχι c (20, 0) d (z, 20 z) S E (20, 0) αποδοχή όχι e (20, 0) f E z S όχι 4ο στάδιο 34

19 Εάν η εταιρία και το συνδικάτο δεν συµφωνήσουν µέχρι το τρίτο στάδιο διαπραγµάτευσης, τότε περνούν στο τέταρτο στάδιο, όπου λαµβάνει µέρος ένα παιχνίδι το οποίο καθορίζει τον τρόπο διανοµής των κερδών. Η διανοµή των κερδών θα εξαρτηθεί από το άθροισµα των απαιτήσεων που κάνουν ταυτόχρονα η εταιρία και το συνδικάτο, δηλαδή απ την ισορροπία του 4 ου σταδίου. Στο 4 ο στάδιο το παίγνιο έχει άπειρες ισορροπίες της µορφής: (e 1, 20 e 1 ) ηλαδή, ισορροπίες κατά Nash θα είναι όλες εκείνες που δίνουν άθροισµα 20. Επειδή ισχύει δ = 1, η τέλεια ισορροπία υποπαιγνίων στην διαπραγµάτευση των 4 ων σταδίων, οδηγεί στο ίδιο αποτέλεσµα µε την ισορροπία κατά Nash του 4 ου σταδίου, δηλαδή (e 1, 20 e 1 ) Εάν το 4 ο στάδιο δεν υπήρχε οι στρατηγικές των S και Ε θα εξελίσσονταν ως εξής: (κόµβος f): S: [Αποδέχοµαι z, 0 < z < 20] Άρα, η Ε δίνει z* = 20 (κόµβος d): E: Αποδέχοµαι y, y > 2 Άρα, το S δίνει y* = 20 Απορρίπτω y, y < 20 (κόµβος b): S: Αποδέχοµαι x, 20 x > 0 Απορρίπτω x, 20 x < 0 Άρα, x* = 20 Αυτό σηµαίνει ότι όλα τα κέρδη τα παίρνει η εταιρία, αφού η πιθανή συµφωνία εταιρίας και συνδικάτου είναι η (x* = 20, αποδοχή) Όµως, µε την παρουσία του τέταρτου σταδίου τα τρία προηγούµενα στάδια δεν παίζουν κανένα ρόλο στο αποτέλεσµα της διαπραγµάτευσης, το οποίο ταυτίζεται µε την ισορροπία του τέταρτου σταδίου (x* = e 1, 1 e 1 ) Άρα συµφέρει και τις δύο πλευρές να συµφωνήσουν στο πρώτο στάδιο (Αυτά ισχύουν για δ = 1, εάν δ=1 το παίγνιο εξελίσσεται διαφορετικά) ΑΣΚΗΣΗ 20 Ας εξετάσουµε το ακόλουθο παίγνιο µεταξύ δύο παιχτών αθροίσµατος µηδέν (δηλ. το άθροισµα των κερδών των δύο παιχτών είναι µηδέν; όσο κερδίζει ο ένας χάνει ο άλλος) που έχει τρία στάδια: -στο πρώτο στάδιο, ο παίχτης Α εκλέγει a {-1, 2}. -στο δεύτερο στάδιο, η Τύχη εκλέγει b {1, -1}, µε αντίστοιχες πιθανότητες 1/3 και 2/3. -στο τρίτο στάδιο, ο παίχτης Β εκλέγει c {-1, 1} χωρίς να γνωρίζει την εκλογή της Τύχης, αλλά γνωρίζοντας την απόφαση του συµπαίχτη του. Τα κέρδη του παίχτη Α δίνονται από (ac) b. Παραστήσατε το παίγνιο σε αναλυτική και σε στρατηγική µορφή. Βρείτε τις ισορροπίες κατά Nash στην στρατηγική µορφή του παιγνίου. 35

20 Λύση -1 (1, -1) p=1/3 1 B 1 (-1, 1) -1 T -1-1 (1, -1) p=2/3 1 (-1, 1) A -1 (-2, 2) p=1/ (2, -2) T -1 B -1 (-½, ½) p=2/3 1 ( ½,-½) Το παραπάνω παίγνιο είναι γνωστό ως παίγνιο µηδενικού αθροίσµατος. Η στρατηγική του µορφή έχει ως εξής: B (-1, -1) (-1, 1) (1, -1) (1, 1) A -1 1, -1 1, -1-1, -1, 2-1, 1, -1-1, 1, -1 Αξίζει να σηµειωθεί ότι τα ποσά που συµπληρώνουν τη µήτρα αποτελούν τα προσδοκώµενα κέρδη. Αυτό γιατί στο παραπάνω παίγνιο είναι ενεργός ο παράγοντας της τύχης. Για παράδειγµα το 1, +1 της αγκύλης υπολογίζεται ως εξής: {1/3(-1, 1) + 2/3(-1, 1)} => {-1/3 2/3, 1/3 + 2/3} = {-1, 1} Οι ισορροπίες κατά Nash που προκύπτουν είναι οι εξής: [-1 ; (1, -1)] και [-2 ; (1, -1)] Παρατήρηση: Κριτικό σηµείο στην παραπάνω ανάλυση είναι το γεγονός ότι η τύχη παίζει µεταξύ των παιχτών. Σε τέτοιες περιπτώσεις υπολογίζουµε τα αναµενόµενα κέρδη. 36

21 ΑΣΚΗΣΗ 21 Υποθέσατε ότι δύο κατασκευαστικές εταιρίες, UNOSA και DOSSA, λαµβάνουν µέρος σε µια δηµοπρασία για την απόκτηση ενός ηλιακού συστήµατος. Για απλοποίηση ας υποθέσουµε ότι και οι δύο σχεδιάζουν τρεις δυνατές προσφορές, που θα τις καλέσουµε, υψηλή, µέση και χαµηλή. Το σύστηµα δίνεται στην εταιρία που θα κάνει την υψηλότερη προσφορά, και σε περίπτωση ισοπαλίας, θα δοθεί για ιστορικούς λόγους στην UNOSA. Τα προσδοκόµενα κέρδη της εταιρίας που έχει το ηλιακό σύστηµα εξαρτώνται προφανώς από την προσφορά που έκανε και είναι ίσα µε 10 αν η προσφορά είναι υψηλή, 30 αν είναι µέση και 40 αν είναι χαµηλή. Αν δεν κερδίσει την δηµοπρασία, τα κέρδη της εταιρίας είναι µηδέν. Υποθέσατε ότι κάθε εταιρία κάνει την προσφορά της µυστικά και τη στέλνει µέσα σε ένα σφραγισµένο φάκελο. (α) Προσδιορίσατε τη στρατηγική µορφή του παιγνίου. (β) Βρείτε την ισορροπία του παιγνίου απαλοίφοντας διαδοχικά τις κυριαρχούµενες στρατηγικές, δείχνοντας την ακριβή σειρά µε την οποία κάνετε την απαλοιφή. (γ) είξατε αν οι στρατηγικές που προσδιορίσατε στο (β) µια κατά Nash ισορροπία. (δ) Υπάρχει κάποιος άλλος συνδυασµός στρατηγικών που να οδηγεί σε καλύτερα αποτελέσµατα για τον νικητή της διαπραγµάτευσης; Είναι ισορροπία κατά Nash; (ε) είξατε αν η ισορροπία αυτή είναι αποτελεσµατική κατά Pareto ή όχι. Αν όχι, δείξατε ποιος συνδυασµός στρατηγικών θα οδηγούσε σε µια αποτελεσµατική κατανοµή των πόρων. (στ) Υποθέσατε τώρα ότι η εταιρία DOSSA έχει την δυνατότητα να µάθει αν η προσφορά που έκανε η αντίπαλός της είναι χαµηλή ή όχι, άλλα δεν µπορεί να έχει πληροφόρηση που να µπορεί να διακρίνει µεταξύ µέσης και υψηλής προσφοράς. Σχεδιάσατε την αναλυτική µορφή του παιγνίου. (ζ) Προσδιορίσατε πόσες στρατηγικές έχει τώρα κάθε µία από τις εταιρίες, εξηγώντας µε λεπτοµέρειες όλα τα απαιτούµενα βήµατα. (θ) Προσδιορίσατε αν οι συνδυασµοί στρατηγικών (Υψηλή, Υψηλή, Χαµηλή) και (Μέση, Μέση, Χαµηλή) αποτελούν µια επιχειρηµατική συµπεριφορά που δεν είναι πιστευτή. Είναι κανένας από τους δύο συνδυασµούς τέλεια ισορροπία κατά Nash υποπαιγνίων; Λύση α) Η στρατηγική µορφή του παιγνίου έχει ως εξής: DOSSA Υψηλή Μέση Χαµηλή UNOSA Υψηλή 10, 0 10, 0 10, 0 Μέση 0, 10 30, 0 30, 0,, Μορφή 1 Χαµηλή 0, 10 0, 30 40, 0 37

22 β) Στο συγκεκριµένο παίγνιο δεν υπάρχουν αυστηρά κυριαρχούµενες στρατηγικές, συνεπώς απαλείφουµε τις ασθενώς κυριαρχούµενες. Με τον τρόπο αυτό όµως, η ισορροπία µας εξαρτάται από τον δρόµο που θα ακολουθήσουµε. Επίσης είναι πιθανόν να χαθούν κάποιες ισορροπίες κατά Nash. Συγκεκριµένα έχουµε: Η χαµηλή στρατηγική για την Dossa είναι ασθενώς κυριαρχούµενη από τις υψηλή και µέση. Συνεπώς µπορεί να παραλειφθεί. Η χαµηλή για την Unosa είναι ασθενώς κυριαρχούµενη από τις υψηλή και µέση. Συνεπώς µπορεί και αυτή µε τη σειρά της να παραλειφθεί. Η µέση για την Dossa είναι ασθενώς κυριαρχούµενη από την υψηλή. Η µέση για την Unosa είναι αυστηρά κυριαρχούµενη από την υψηλή. Το παίγνιο δηλαδή εξελίσσεται ως εξής: DOSSA Υψηλή Μέση Υψηλή 10, 0 10, 0 UNOSA Μέση 0, 10 30, 0, Μορφή 2 Χαµηλή 0, 10 0, 30 DOSSA Υψηλή Μέση Υψηλή 10, 0 10, 0 UNOSA Μέση 0, 10 30, 0, Μορφή 3 DOSSA Υψηλή Υψηλή 10, 0 UNOSA Μέση 0, 10, Μορφή 4 Άρα η ισορροπία που προκύπτει απ την απαλειφή των ασθενώς κυριαρχούµενων στρατηγικών είναι η (Υψηλή, Υψηλή) (10, 0) γ) Από τη µορφή 1 του παιγνίου προκύπτει ότι η λύση (Υψηλή, Υψηλή) αποτελεί ισορροπία κατά Nash. 38

23 δ) Στο σηµείο ισορροπίας (Υψηλή, Υψηλή) νικητής της διαπραγµάτευσης είναι η εταιρία Unosa. Ωστόσο, οι συνδυασµοί (Μέση, Μέση), (Μέση, Χαµηλή) και (Χαµηλή, Χαµηλή) δίνουν καλύτερα αποτελέσµατα για την Unosa, αν και καµία από τις στρατηγικές αυτές δεν αποτελεί ισορροπία κατά Nash. ε) Η ισορροπία (Υψηλή, Υψηλή) δεν είναι άριστη κατά Pareto γιατί υπάρχουν άλλες ισορροπίες {όπως οι : (Μέση, Μέση), (Μέση, Χαµηλή) και (Χαµηλή, Χαµηλή)}, που βελτιώνουν τη θέση του ενός χωρίς να ζηµιώνεται η θέση του άλλου. Οι στρατηγικές που αναφέραµε δηλαδή καθιστούν τουλάχιστον τον νικητή better-off. Το Pareto optimum είναι η στρατηγική (Χαµηλή, Χαµηλή) (40, 0) στ) Η αναλυτική µορφή του παιγνίου σε αυτήν την περίπτωση έχει ως εξής: (10, 0) b Υψηλή d Μέση (10, 0) Υψηλή Χαµηλή (10, 0) (0, 10) a Μέση e Υψηλή Μέση (30, 0) UNOSSA Χαµηλή (30, 0) Χαµηλή c Υψηλή (0, 10) DOSSA Μέση (0, 30) Χαµηλή (40, 0) Στην παραπάνω περίπτωση το πλεονέκτηµα της Dossa είναι το γεγονός ότι κινείται δεύτερη και συνεπώς γνωρίζει αν η προσφορά της Unosa είναι υψηλή ή χαµηλή. ζ) Η Unosa αποφασίζει σε έναν κόµβο, συνεπώς οι στρατηγικές της είναι 3 (3 1 = 3), οι εξής : (Υψηλή, Μέση, Χαµηλή) Η Dossa αντίθετα αποφασίζει ουσιαστικά σε 3 κόµβους, συνεπώς οι στρατηγικές της είναι 9 (3 3 = 3), οι εξής: {(Υψηλή, Υψηλή), (Υψηλή, Μέση), (Υψηλή, Χαµηλή), (Μέση, Υψηλή), (Μέση, Μέση), (Μέση, Χαµηλή), (Χαµηλή, ), (Χαµηλή, Μέση), ( Χαµηλή, Χαµηλή ) Για να ακριβολογούµε όµως οι κόµβοι d και l αποτελούν ένα σύνολο πληροφόρρησης το b, άρα η DOSSA ουσιαστικά αποφασίζει στους κόµβους πληροφόρησης b και c µε τις πιο πάνω στρατηγικές. θ). Η στρατηγική ( Υψηλή ; Υψηλή, Χαµηλή) είναι µη ορθολογική γιατί η DOSSA επιλέγει στον κόµβο C τη στρατηγική χαµηλή που τις δίνει π=0, ενώ αν επέλεγε Μέση θα έπαιρνε π=30. Συνεπώς η στρατηγική Υψηλή, Χαµηλή δεν είναι πιστευτή απειλή από τη DOSSA. 39

24 Η στρατηγική Mέση ; Μέση, Χαµηλή είναι µη ορθολογική γιατί η Dossa επιλέγει στον κόµβο c τη χαµηλή που της δίνει π = 0, ενώ θα ήταν σε καλύτερη θέση αν επέλεγε τη µέση στρατηγική. Στη συγκεκριµένη άσκηση η µοναδική περίπτωση υποπαιγνίου είναι η µορφή 5, η οποία όµως δεν αποτελεί τέλεια ισορροπία κατά Nash υποπαιγνίων για τον εξής λόγο: Στον τελευταίο κόµβο η καλύτερη επιλογή της DOSSA είναι η µέση. Αφού το χαµηλή στον κόµβο c δεν είναι πιστευτή απειλή δεν µπορεί να είναι ισορροπία κατά Nash. Υψηλή (0, 10) C Μέση (0, 30), Μορφή 5 DOSSA Χαµηλή (40, 0). 40

ΑΣΚΗΣΗ 1 Βρείτε την ισορροπία των ακόλουθων παιγνίων απαλείφοντας διαδοχικά τις κυριαρχούµενες στρατηγικές.

ΑΣΚΗΣΗ 1 Βρείτε την ισορροπία των ακόλουθων παιγνίων απαλείφοντας διαδοχικά τις κυριαρχούµενες στρατηγικές. ΑΣΚΗΣΗ 1 Βρείτε την ισορροπία των ακόλουθων παιγνίων απαλείφοντας διαδοχικά τις κυριαρχούµενες στρατηγικές. Α 1 Α 2 Α 3 Β 1 Β 2 Β 3 1, -1 0, 0-1, 0 0, 0 0, 6 10, -1 2, 0 10, -1-1, -1 Α 1 Α 2 Α 3 Β 1 Β

Διαβάστε περισσότερα

Κεφάλαιο 5 R (2, 3) R (3, 0)

Κεφάλαιο 5 R (2, 3) R (3, 0) Κεφάλαιο 5 Θα ξεκινήσουµε το κεφάλαιο αυτό βλέποντας ένα ακόµη παράδειγµα αναφορικά µε την ισορροπία που προκύπτει από την οπισθογενή επαγωγή (backwards induction) και την ισορροπία κατά Nash στην στρατηγική

Διαβάστε περισσότερα

3 ΙΣΟΡΡΟΠΙΕΣ 3 ΙΣΟΡΡΟΠΙΕΣ

3 ΙΣΟΡΡΟΠΙΕΣ 3 ΙΣΟΡΡΟΠΙΕΣ Kεφάλαιο 11 Θα επαναλάβουµε αυτά που είχαµε πει την προηγούµενη φορά. Παραστατικά αν έχουµε το εξής παίγνιο όπου οι δύο παίχτες παίρνουν ταυτόχρονα τις αποφάσεις τους αφού αποφασίσει ο Ι, θα δούµε πόσα

Διαβάστε περισσότερα

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ Κεφάλαιο ο Μεικτές Στρατηγικές Τώρα θα δούµε ένα παράδειγµα στο οποίο κάθε παίχτης έχει τρεις στρατηγικές. Αυτό θα µπορούσε να είναι η µορφή που παίρνει κάποιος µετά που έχει απαλείψει όλες τις αυστηρά

Διαβάστε περισσότερα

Kεφάλαιο 10. Πόσα υποπαίγνια υπάρχουν εδώ πέρα; 2 υποπαίγνια.

Kεφάλαιο 10. Πόσα υποπαίγνια υπάρχουν εδώ πέρα; 2 υποπαίγνια. Kεφάλαιο 10 Θα δούµε ένα δύο παραδείγµατα να ορίσουµε/ µετρήσουµε τα υποπαίγνια και µετά θα λύσουµε και να βρούµε αυτό που λέγεται τέλεια κατά Nash ισορροπία. Εδώ θα δούµε ένα παίγνιο όπου έχουµε µια επιχείρηση

Διαβάστε περισσότερα

3. Παίγνια Αλληλουχίας

3. Παίγνια Αλληλουχίας 3. Παίγνια Αλληλουχίας Τα παίγνια αλληλουχίας πραγµατεύονται περιπτώσεις όπου οι κινήσεις των παικτών διαδέχονται η µια την άλλη, σε αντίθεση µε τα παίγνια όπου οι αποφάσεις των παικτών γίνονται ταυτόχρονα

Διαβάστε περισσότερα

Κεφάλαιο 4. Στο προηγούµενο κεφάλαιο ορίσαµε την ισορροπία κατά Nash και είδαµε ότι µια ισορροπία

Κεφάλαιο 4. Στο προηγούµενο κεφάλαιο ορίσαµε την ισορροπία κατά Nash και είδαµε ότι µια ισορροπία Κεφάλαιο 4 Στο προηγούµενο κεφάλαιο ορίσαµε την ισορροπία κατά Nash και είδαµε ότι µια ισορροπία κατά Nash είναι: (α) ένα διάνυσµα από στρατηγικές, έτσι ώστε δεδοµένων των υπολοίπων στρατηγικών, ο παίκτης

Διαβάστε περισσότερα

Κεφάλαιο 7ο. max(p 1 c)(α bp 1 +dp 2 )

Κεφάλαιο 7ο. max(p 1 c)(α bp 1 +dp 2 ) Κεφάλαιο 7ο Μιλήσαµε στο προηγούµενο κεφάλαιο για το τι θα συµβεί αν οι επιχειρήσεις ανταγωνίζονται σε τιµές. Επιπλέον µιλήσαµε για το πως αποδεικνύεται το παράδοξο του Bertrand και καθώς επίσης και για

Διαβάστε περισσότερα

* τη µήτρα. Κεφάλαιο 1o

* τη µήτρα. Κεφάλαιο 1o Κεφάλαιο 1o Θεωρία Παιγνίων Η θεωρία παιγνίων εξετάζει καταστάσεις στις οποίες υπάρχει αλληλεπίδραση µεταξύ ενός µικρού αριθµού ατόµων. Άρα σε οποιαδήποτε περίπτωση, αν ο αριθµός των ατόµων που συµµετέχουν

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ EKΤΟ ΔΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ II ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ EKΤΟ ΔΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ II ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ EKΤΟ ΔΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ II ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 Προηγούμενα Μαθήματα: Παίχτες: είναι αυτοί που λαμβάνουν τις αποφάσεις. Ένα παίγνιο πρέπει

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜ ΕΦΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙ ΠΙΓΝΙΩΝ Εξετάσεις 13 Φεβρουαρίου 2004 ιάρκεια εξέτασης: 2 ώρες (13:00-15:00) ΘΕΜ 1 ο (2.5) α) Για δύο στρατηγικές

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις Τρίτη 15 Ιανουαρίου 2008 ιάρκεια εξέτασης: 3 ώρες (13:00-16:00) ΘΕΜΑ 1 ο (2,5

Διαβάστε περισσότερα

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων - Στο υπόδειγμα ertrand, οι επιχειρήσεις, παράγουν ένα ομοιογενές αγαθό, οπότε η τιμή είναι η μοναδική μεταβλητή που ενδιαφέρει τους καταναλωτές και οι καταναλωτές

Διαβάστε περισσότερα

B 1 A 1 B 2 A 2. t 1. t 3 w. t 2 A 3 B 3. t 4. t 5

B 1 A 1 B 2 A 2. t 1. t 3 w. t 2 A 3 B 3. t 4. t 5 Κεφάλαιο 3 Δυναμικά παίγνια 3.1 Εισαγωγή Μέχρι στιγμής έχουμε αναλύσει παίγνια στα οποία όλοι οι παίκτες επιλέγουν τις στρατηγικές τους ταυτόχρονα. Αυτή η υπόθεση όμως δεν είναι πάντα κατάλληλη. Σε πολλές

Διαβάστε περισσότερα

Λήψη απόφασης σε πολυπρακτορικό περιβάλλον. Θεωρία Παιγνίων

Λήψη απόφασης σε πολυπρακτορικό περιβάλλον. Θεωρία Παιγνίων Λήψη απόφασης σε πολυπρακτορικό περιβάλλον Θεωρία Παιγνίων Αβεβαιότητα παρουσία άλλου πράκτορα Μια άλλη πηγή αβεβαιότητας είναι η παρουσία άλλου πράκτορα στο περιβάλλον, ακόμα κι όταν ένας πράκτορας είναι

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 7: Τέλεια ισορροπία Nash για υποπαίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 7: Τέλεια ισορροπία Nash για υποπαίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 7: Τέλεια ισορροπία Nash για υποπαίγνια Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Ολιγοπωλιακή Ισορροπία

Ολιγοπωλιακή Ισορροπία Ολιγοπωλιακή Ισορροπία - Χρησιμοποιούμε τις βασικές αρχές της θεωρίας παιγνίων για να εξετάσουμε τη στρατηγική αλληλεπίδραση των επιχειρήσεων σε ατελώς ανταγωνιστικές αγορές, εστιάζοντας την προσοχή μας

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Βfi 1 2 Αfl 1 1, 2 0, 1 2 2, 1 1, 0

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Βfi 1 2 Αfl 1 1, 2 0, 1 2 2, 1 1, 0 ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Παίγνιο: Συμμετέχουν τουλάχιστον δύο παίκτες με τουλάχιστον δύο στρατηγικές ο καθένας και αντίθετα συμφέροντα. Το αποτέλεσμα για κάθε παίκτη καθορίζεται από τις συνδυασμένες επιλογές όλων

Διαβάστε περισσότερα

Διάλεξη 7. Θεωρία παιγνίων VA 28, 29

Διάλεξη 7. Θεωρία παιγνίων VA 28, 29 Διάλεξη 7 Θεωρία παιγνίων VA 28, 29 Θεωρία παιγνίων Στη θεωρία παιγνίων χρησιμοποιούμε υποδείγματα για τη στρατηγική συμπεριφορά των οικονομικών μονάδων που καταλαβαίνουν ότι οι ενέργειές τους επηρεάζουν

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις Παρασκευή 16 Οκτωβρίου 2007 ιάρκεια εξέτασης: 3 ώρες (15:00-18:00) ΘΕΜΑ 1

Διαβάστε περισσότερα

Κεφάλαιο 13ο Eπαναλαµβανόµενα παίγνια (Repeated Games)

Κεφάλαιο 13ο Eπαναλαµβανόµενα παίγνια (Repeated Games) Κεφάλαιο 13ο Eπαναλαµβανόµενα παίγνια (Repeated Gaes) Το δίληµµα των φυλακισµένων, όπως ξέρουµε έχει µια και µοναδική ισορροπία η οποία είναι σε αυστηρά κυρίαρχες στρατηγικές. C N C -8, -8 0, -10 N -10,

Διαβάστε περισσότερα

ΜΟΝΟΠΩΛΙΑΚΟΣ ΑΝΤΑΓΩΝΙΣΜΟΣ, ΟΛΙΓΟΠΩΛΙΑ, ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΜΟΝΟΠΩΛΙΑΚΟΣ ΑΝΤΑΓΩΝΙΣΜΟΣ, ΟΛΙΓΟΠΩΛΙΑ, ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΜΟΝΟΠΩΛΙΑΚΟΣ ΑΝΤΑΓΩΝΙΣΜΟΣ, ΟΛΙΓΟΠΩΛΙΑ, ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Κεφάλαιο 7 Ε. Σαρτζετάκης Μονοπωλιακός ανταγωνισμός Η μορφή αγοράς του μονοπωλιακού ανταγωνισμού περιέχει στοιχεία πλήρους ανταγωνισμού (ελεύθερη

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΠΕΜΠΤΟ ΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΠΕΜΠΤΟ ΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΠΕΜΠΤΟ ΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 Προηγούµενα Μαθήµατα: Παίχτες: είναι αυτοί που λαµβάνουν τις αποφάσεις. Ένα παίγνιο πρέπει

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις 8 Σεπτεµβρίου 005 ιάρκεια εξέτασης: 3 ώρες (:00-4:00 ΘΕΜΑ ο (.5 Το παράδοξο

Διαβάστε περισσότερα

3. Ανταγωνισμός ως προς τις Τιμές: Το Υπόδειγμα Bertrand

3. Ανταγωνισμός ως προς τις Τιμές: Το Υπόδειγμα Bertrand 3. Ανταγωνισμός ως προς τις Τιμές: Το Υπόδειγμα ertrand - To υπόδειγμα Cournot υποθέτει ότι κάθε επιχείρηση επιλέγει την παραγόμενη ποσότητα προϊόντος, ενώ στην πραγματικότητα οι επιχειρήσεις ανταγωνίζονται

Διαβάστε περισσότερα

www.onlineclassroom.gr

www.onlineclassroom.gr ΑΣΚΗΣΗ 3 (ΜΟΝΑΔΕΣ 25) Σε ένα αγώνα ποδοσφαίρου οι προπονητές των δύο αντίπαλων ομάδων αποφάσισαν ότι έχουν 4 και 3 επιλογές συστήματος, αντίστοιχα. Η αναμενόμενη διαφορά τερμάτων δίνεται από τον παρακάτω

Διαβάστε περισσότερα

- Παράδειγμα 2. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να

- Παράδειγμα 2. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να - Παράδειγμα. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να αποκρούσει ένας τερματοφύλακας. - Αν οι δύο παίκτες επιλέξουν

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 1 Δύο επιχειρήσεις Α και Β, μοιράζονται το μεγαλύτερο μερίδιο της αγοράς για ένα συγκεκριμένο προϊόν. Καθεμία σχεδιάζει τη νέα της στρατηγική για τον επόμενο χρόνο, προκειμένου να αποσπάσει πωλήσεις

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 2: Ισορροπία Nash. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 2: Ισορροπία Nash. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 2: Ισορροπία Nash Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας

Διαβάστε περισσότερα

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας Θεωρία Παιγνίων Μελέτη στοιχείων που χαρακτηρίζουν καταστάσεις ανταγωνιστικής άλληλεξάρτησης με έμφαση στη διαδικασία λήψης αποφάσεων περισσοτέρων από ένα ληπτών απόφασης (αντιπάλων). Παίγνια δύο παικτών

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 8: Πεπερασμένα επαναλαμβανόμενα παίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 8: Πεπερασμένα επαναλαμβανόμενα παίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 8: Πεπερασμένα επαναλαμβανόμενα παίγνια Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Κίνηση σε φθηνότερη διαδροµή µε µη γραµµικό κόστος

Κίνηση σε φθηνότερη διαδροµή µε µη γραµµικό κόστος υποδο?ών?εταφράζεταισε?ίαγενικότερηεξοικονό?ησηπαραγωγικώνπόρωνγιατηκοινωνία. τεχνικέςυποδο?ές,όπωςείναιαυτοκινητόδρο?οι,γέφυρεςκ.λ.π.ηκατασκευήτέτοιων Μιααπ τιςβασικέςλειτουργίεςτουκράτουςείναιοεφοδιασ?όςτηςκοινωνίας?εβασικές

Διαβάστε περισσότερα

Λύσεις Τέταρτου Πακέτου Ασκήσεων

Λύσεις Τέταρτου Πακέτου Ασκήσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Θεωρία Ι 2015-16 Λύσεις Τέταρτου Πακέτου Ασκήσεων 1. Πρώτη άσκηση 2. Δεύτερη άσκηση 3. α) Για τη συνάρτηση κέρδους έχουµε Π=P f(x)

Διαβάστε περισσότερα

Διάλεξη 10. Γενική Ισορροπία VA 30

Διάλεξη 10. Γενική Ισορροπία VA 30 Διάλεξη 10 Γενική Ισορροπία V 30 1 Μερική & Γενική Ισορροπία Μέχρι τώρα εξετάζαμε γενικά την αγορά ενός αγαθού μεμονωμένα. Το πώς δηλαδή η προσφορά και η ζήτηση επηρεάζονται από την τιμή του συγκεκριμένου

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 3 (θεωρία παιγνίων) Οι δύο μεγαλύτερες τράπεζες μιας χώρας, Α και Β, εκτιμούν ότι μια άλλη τράπεζα, η Γ, θα κλείσει στο προσεχές διάστημα και πρόκειται να προχωρήσουν σε διαφημιστικές εκστρατείες

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 11: Σχεδίαση μηχανισμών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 11: Σχεδίαση μηχανισμών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 11: Σχεδίαση μηχανισμών Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου

Διαβάστε περισσότερα

Σηματοδοτικά Παίγνια και Τέλεια Μπεϊζιανή Ισορροπία

Σηματοδοτικά Παίγνια και Τέλεια Μπεϊζιανή Ισορροπία Σηματοδοτικά Παίγνια και Τέλεια Μπεϊζιανή Ισορροπία - Ορισμός. Ένα παίγνιο ονομάζεται παίγνιο πλήρους πληροφόρησης (game of complete information) όταν κάθε παίκτης διαθέτει πλήρη πληροφόρηση για τις συναρτήσεις

Διαβάστε περισσότερα

Στατικά Παίγνια Ελλιπούς Πληροφόρησης

Στατικά Παίγνια Ελλιπούς Πληροφόρησης ΣΤΑΤΙΚΑ ΠΑΙΓΝΙΑ ΕΛΛΙΠΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ 67 Στατικά Παίγνια Ελλιπούς Πληροφόρησης ΣΤΟ ΠΑΡOΝ ΚΕΦAΛΑΙΟ ξεκινά η ανάλυση των παιγνίων ελλιπούς πληροφόρησης, τα οποία ονομάζονται και μπεϋζιανά παίγνια (bayesa

Διαβάστε περισσότερα

Εφαρμογές οικονομικών συναρτήσεων

Εφαρμογές οικονομικών συναρτήσεων Εφαρμογές οικονομικών συναρτήσεων Μεγιστοποίηση κερδών Διάθεση προϊόντος με δύο συναρτήσεις ζήτησης Οριακά έσοδα σε σχέση με ελαστικότητα Εύρεση πεδίου ορισμού Επιβολή φόρου Σημείο μεγιστοποίησης κερδών

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 6 ης διάλεξης

Ασκήσεις μελέτης της 6 ης διάλεξης Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 6 ης διάλεξης 6.1. (α) Το mini-score-3 παίζεται όπως το score-4,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2012-2013 Τμήμα Οικονομικών Επιστημών Εξέταση στο μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2012-2013 Τμήμα Οικονομικών Επιστημών Εξέταση στο μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2012-2013 Τμήμα Οικονομικών Επιστημών Εξέταση στο μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου Εξεταστική περίοδος Φεβρουαρίου Η εξέταση αποτελείται από

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΡΙΤΟ-ΙΣΟΡΡΟΠΙΑ ΚΑΤΑ NASH ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΡΙΤΟ-ΙΣΟΡΡΟΠΙΑ ΚΑΤΑ NASH ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΡΙΤΟ-ΙΣΟΡΡΟΠΙΑ ΚΑΤΑ NASH ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 Συνέχεια από πριν.. Στο προηγούμενο μάθημα είδαμε ότι μπορούμε να επιλύσουμε παίγνια με την μέθοδο της απαλοιφής

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 9: Λύσεις παιγνίων δύο παικτών

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 9: Λύσεις παιγνίων δύο παικτών Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 9: Λύσεις παιγνίων δύο παικτών Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΕΙΣ ΚΑΙ ΑΝΤΑΓΩΝΙΣΤΙΚΕΣ ΑΓΟΡΕΣ

ΕΠΙΧΕΙΡΗΣΕΙΣ ΚΑΙ ΑΝΤΑΓΩΝΙΣΤΙΚΕΣ ΑΓΟΡΕΣ ΕΠΙΧΕΙΡΗΣΕΙΣ ΚΑΙ ΑΝΤΑΓΩΝΙΣΤΙΚΕΣ ΑΓΟΡΕΣ Κεφάλαιο 11 Τα χαρακτηριστικά των ανταγωνιστικών αγορών! Τα κύρια χαρακτηριστικά των ανταγωνιστικών αγορών είναι: " Στην αγορά συµµετέχουν πολλοί αγοραστές και πωλητές

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ Μονάδες ΟΜΑ Α Α Στις προτάσεις από Α µέχρι και Α, να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

Βασικές Αρχές της Θεωρίας Παιγνίων

Βασικές Αρχές της Θεωρίας Παιγνίων Βασικές Αρχές της Θεωρίας Παιγνίων - Ορισμός. Αν οι επιλογές μιας επιχείρησης εξαρτώνται από την αναμενόμενη αντίδραση των υπόλοιπων επιχειρήσεων που συμμετέχουν στην αγορά, τότε υπάρχει στρατηγική αλληλεπίδραση

Διαβάστε περισσότερα

ηµόσια Οικονοµική Βασίλης Ράπανος, Γεωργία Καπλάνογλου µόνο Τµήµα Ι.

ηµόσια Οικονοµική Βασίλης Ράπανος, Γεωργία Καπλάνογλου µόνο Τµήµα Ι. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδηµαϊκό έτος 2013-2014 Τµήµα Οικονοµικών Επιστηµών Εξεταστική περίοδος Απριλίου Εξέταση στο µάθηµα: ηµόσια Οικονοµική ιδασκαλία: Βασίλης Ράπανος, Γεωργία Καπλάνογλου Η εξέταση αποτελείται

Διαβάστε περισσότερα

1 ου πακέτου. Βαθµός πακέτου

1 ου πακέτου. Βαθµός πακέτου ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδηµαϊκό έτος 2011-2012 Τµήµα Οικονοµικών Επιστηµών Χειµώνας-Άνοιξη Μάθηµα: ηµόσια Οικονοµική ιδασκαλία: Βασίλης Θ. Ράπανος Γεωργία Καπλάνογλου Μετά και το 4 ο πακέτο, πρέπει να στείλετε

Διαβάστε περισσότερα

Επιχειρησιακά Μαθηματικά (1)

Επιχειρησιακά Μαθηματικά (1) Τηλ:10.93.4.450 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Α Επιχειρησιακά Μαθηματικά (1) ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 01 Τηλ:10.93.4.450 ΚΕΦΑΛΑΙΟ 1 Ο Συνάρτηση μιας πραγματικής μεταβλητής Ορισμός : Συνάρτηση f μιας πραγματικής

Διαβάστε περισσότερα

ΟΛΙΓΟΠΩΛΙΟ. Ολιγοπώλιο Κλωνάρης Στάθης

ΟΛΙΓΟΠΩΛΙΟ. Ολιγοπώλιο Κλωνάρης Στάθης ΟΛΙΓΟΠΩΛΙΟ Ονομάζεται η δομή της αγοράς που χαρακτηρίζεται από την ύπαρξη σχετικά μικρού αριθμού επιχειρήσεων αλλά μεγάλες σε μέγεθος σχετικά με την αγορά που εξυπηρετούν. Οι ολιγοπωλιακές επιχειρήσεις

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΕΙ ΠΑΤΡΑΣ ΤΕΙ ΠΑΤΡΑΣ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΏΝ ΠΑΙΓΝΙΩΝ- ΠΡΟΓΡΑΜΜΑ GAMBIT

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΕΙ ΠΑΤΡΑΣ ΤΕΙ ΠΑΤΡΑΣ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΏΝ ΠΑΙΓΝΙΩΝ- ΠΡΟΓΡΑΜΜΑ GAMBIT ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Α Κ Α Η Μ Α Ι Κ Ο Ε Τ Ο Σ 2 0 1 1-2 0 1 2 ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΏΝ ΠΑΙΓΝΙΩΝ- ΠΡΟΓΡΑΜΜΑ GAMBIT Ο συγκεκριµένος οδηγός για το πρόγραµµα

Διαβάστε περισσότερα

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις ΔΕΟ - Επαναληπτικές Εξετάσεις Λύσεις ΘΕΜΑ () Το Διάγραμμα Διασποράς εμφανίζεται στο επόμενο σχήμα. Από αυτό προκύπτει καταρχήν μία θετική σχέση μεταξύ των δύο μεταβλητών. Επίσης, από το διάγραμμα φαίνεται

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 Λύσεις 1ης σειράς ασκήσεων Προθεσμία παράδοσης: 22 Απριλίου 2015 Πρόβλημα 1.

Διαβάστε περισσότερα

(2B) Επιλογή Προϊόντος της Μονοπωλιακής Επιχείρησης

(2B) Επιλογή Προϊόντος της Μονοπωλιακής Επιχείρησης (2B) Επιλογή Προϊόντος της Μονοπωλιακής Επιχείρησης - Αν η αγορά του προϊόντος είναι µονοπωλιακή, η επιχείρηση επιλέγει την τιµή (p) του προϊόντος κατά τρόπο ώστε να µεγιστοποιεί τα κέρδη της θεωρώντας

Διαβάστε περισσότερα

Η επιστήμη της επιλογής υπό περιορισμούς

Η επιστήμη της επιλογής υπό περιορισμούς ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΙΙ ΓΡΗΓΟΡΗ ΕΠΑΝΑΛΗΨΗ 26/2/2010 1 ΟΙΚΟΝΟΜΙΚΗ Η επιστήμη της επιλογής υπό περιορισμούς 26/2/2010 2 ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Η μελέτη των επιλογών τις οποίες κάνουν οι μικρο-μονάδες μιας οικονομίας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. ΜΕΡΟΣ Α: «Τέλειος» ανταγωνισµός

ΚΕΦΑΛΑΙΟ 2. ΜΕΡΟΣ Α: «Τέλειος» ανταγωνισµός ΚΕΦΑΛΑΙΟ 2 ΤΟ ΝΕΟΚΛΑΣΙΚΟ ΥΠΟ ΕΙΓΜΑ ΑΚΡΑΙΩΝ ΑΓΟΡΩΝ ΜΕΡΟΣ Α: «Τέλειος» ανταγωνισµός A1. Το υπόδειγµα των εγχειριδίων Στον Πλούτο των Εθνών (1776) ο Adam Smith παρουσίασε το φηµισµένο πλέον επιχείρηµά του

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 6η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2011 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Σε ένα διαγωνισμό για την κατασκευή μίας καινούργιας γραμμής του

Διαβάστε περισσότερα

1. Επιλογή Ποιότητας στην Ολιγοπωλιακή Αγορά: Κάθετη Διαφοροποίηση Προϊόντος

1. Επιλογή Ποιότητας στην Ολιγοπωλιακή Αγορά: Κάθετη Διαφοροποίηση Προϊόντος . Επιλογή Ποιότητας στην Ολιγοπωλιακή Αγορά: Κάθετη Διαφοροποίηση Προϊόντος - Ορισμός. Αν η αύξηση του επιπέδου ενός χαρακτηριστικού που διαφοροποιεί τα προϊόντα των επιχειρήσεων ωφελεί κάποιους καταναλωτές

Διαβάστε περισσότερα

Πακέτο Επιχειρησιακή Έρευνα #02 ==============================================================

Πακέτο Επιχειρησιακή Έρευνα #02 ============================================================== Πακέτο Επιχειρησιακή Έρευνα #0 www.maths.gr www.facebook.com/maths.gr Tηλ.: 69790 e-mail: maths@maths.gr Μαθηµατική Υποστήριξη Φοιτητών : Ιδιαίτερα Μαθήµατα Λυµένες Ασκήσεις Βοήθεια στη λύση Εργασιών ==============================================================

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών Θεματική Ενότητα Διοίκηση Επιχειρήσεων & Οργανισμών ΔΕΟ 13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος 008-009 ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα) Να απαντηθούν 5

Διαβάστε περισσότερα

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 Ν. ΠΑΝΤΕΛΗ ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ ΤΥΠΟΛΟΓΙΟ & ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 2012 1 ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 ΚΟΣΤΗ Ν.

Διαβάστε περισσότερα

(α) Από τους κανόνες σύνθετης παραγώγισης δύναμης συναρτήσεως και λογαρίθμου συναρτήσεως:

(α) Από τους κανόνες σύνθετης παραγώγισης δύναμης συναρτήσεως και λογαρίθμου συναρτήσεως: http://elearn.maths.gr/, maths@maths.gr, Τηλ: 6979 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΔΕΟ -: Άσκηση I. (α) Από τους κανόνες σύνθετης παραγώγισης δύναμης συναρτήσεως και λογαρίθμου συναρτήσεως:

Διαβάστε περισσότερα

Μελέτη πάνω στην εφαρμογή της θεωρίας παιγνίων σε θέματα πολεμικών τακτικών και στρατηγικής.

Μελέτη πάνω στην εφαρμογή της θεωρίας παιγνίων σε θέματα πολεμικών τακτικών και στρατηγικής. Μελέτη πάνω στην εφαρμογή της θεωρίας παιγνίων σε θέματα πολεμικών τακτικών και στρατηγικής. Ιστορική αναδρομή 1713 Ο Francis Waldegrave, σε ένα γράμμα του, παρουσίασε την πρώτη μικτή στρατηγική μεγίστου

Διαβάστε περισσότερα

Α5. Όταν η ζήτηση για ένα αγαθό είναι ελαστική, τότε πιθανή αύξηση της τιµής του, θα οδηγήσει σε µείωση της καταναλωτικής δαπάνης για αυτό το αγαθό

Α5. Όταν η ζήτηση για ένα αγαθό είναι ελαστική, τότε πιθανή αύξηση της τιµής του, θα οδηγήσει σε µείωση της καταναλωτικής δαπάνης για αυτό το αγαθό ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ ΙΑΓΩΝΙΣΜΑ 1 (για άριστα διαβασµένους) ΟΜΑ Α Α Να απαντήσετε στις επόµενες ερωτήσεις πολλαπλής επιλογής A1. Σε γραµµική ΚΠ της µορφής Y =

Διαβάστε περισσότερα

ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι

ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι Ενότητα 3: Εργαλεία Κανονιστικής Ανάλυσης Κουτεντάκης Φραγκίσκος Γαληνού Αργυρώ Τμήμα Οικονομικών Επιστημών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

250! (250 m)!m! 0.4m (1 0.4) 250 m

250! (250 m)!m! 0.4m (1 0.4) 250 m ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2013 ιδάσκων : Π. Τραχανιάς ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΠΡΟΟ ΟΥ Θέµα 1: Μια ϕυλή Βεδουίνων ψάχνουν να ϐρουν νερό στην έρηµο. Για

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΔΗΜΟΣΙΑ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΔΗΜΟΣΙΑ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΔΗΜΟΣΙΑ 1. Στην περίπτωση των εξωτερικών επιβαρύνσεων στην παραγωγή, η επιβολή ενός φόρου ανά µονάδα προϊόντος ίσου µε το µέγεθος της οριακής εξωτερικής επιβάρυνσης µπορεί να οδηγήσει:

Διαβάστε περισσότερα

Τέλειος ανταγωνισμός είναι μια ακραία συμπεριφορά της αγοράς, όπου πολλές εταιρίες ανταγωνίζονται με τις παρακάτω προϋποθέσεις :

Τέλειος ανταγωνισμός είναι μια ακραία συμπεριφορά της αγοράς, όπου πολλές εταιρίες ανταγωνίζονται με τις παρακάτω προϋποθέσεις : Κεφάλαιο 1. ΤΕΛΕΙΟΣ ΑΝΤΑΓΩΝΙΣΜΟΣ Εισαγωγή Τέλειος ανταγωνισμός είναι μια ακραία συμπεριφορά της αγοράς, όπου πολλές εταιρίες ανταγωνίζονται με τις παρακάτω προϋποθέσεις : α) Υπάρχουν πολλές εταιρίες οι

Διαβάστε περισσότερα

Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους.

Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους. Μάθηµα 1 Κεφάλαιο 1o: Συστήµατα Θεµατικές Ενότητες: A. Συστήµατα Γραµµικών Εξισώσεων B. Συστήµατα 3x3 Α. ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Ορισµοί Κάθε εξίσωση της µορφής α x+β =γ, µε α, β, γ R παριστάνει

Διαβάστε περισσότερα

Εισαγωγή στην Οικονομική Ανάλυση

Εισαγωγή στην Οικονομική Ανάλυση ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΠΟΛΙΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ Εισαγωγή στην Οικονομική Ανάλυση Εξετάσεις περιόδου Ιουνίου-Ιουλίου 011 1 Ιουλίου 011 Νίκος Θεοχαράκης

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΕΥΤΕΡΟ- ΚΥΡΙΑΡΧΟΥΜΕΝΗ ΣΤΡΑΤΗΓΙΚΗ- PRISONER S DILLEMA ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΕΥΤΕΡΟ- ΚΥΡΙΑΡΧΟΥΜΕΝΗ ΣΤΡΑΤΗΓΙΚΗ- PRISONER S DILLEMA ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΕΥΤΕΡΟ- ΚΥΡΙΑΡΧΟΥΜΕΝΗ ΣΤΡΑΤΗΓΙΚΗ- PRISONER S DILLEMA ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 ΚΟΙΝΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ Players-Παίκτες Rules- Κανόνες. Τιµωρείσαι εάν τους παραβιάσεις.

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

(2) Χωροθετικά Υποδείγματα Διαφοροποιημένου Προϊόντος

(2) Χωροθετικά Υποδείγματα Διαφοροποιημένου Προϊόντος () Χωροθετικά Υποδείγματα Διαφοροποιημένου Προϊόντος - Στα χωροθετικά υποδείγματα διαφοροποιημένου προϊόντος, οι καταναλωτές είναι ετερογενείς (δηλαδή έχουν διαφορετικές προτιμήσεις μεταξύ τους ή βρίσκονται

Διαβάστε περισσότερα

Η θεωρία Weber Προσέγγιση του ελάχιστου κόστους

Η θεωρία Weber Προσέγγιση του ελάχιστου κόστους Η θεωρία Weber Προσέγγιση του ελάχιστου κόστους Ο θεμελιωτής της θεωρίας χωροθέτησης της βιομηχανίας ήταν ο Alfred Weber, την οποία αρχικά παρουσίασε ο μαθηματικός Laundhart (1885). Ο A. Weber (1868-1958)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος Τμήμα Οικονομικών Επιστημών Εξέταση στο μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος Τμήμα Οικονομικών Επιστημών Εξέταση στο μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2015-2016 Τμήμα Οικονομικών Επιστημών Εξέταση στο μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ Εξεταστική περίοδος Σεπτεμβρίου Η

Διαβάστε περισσότερα

1 ης εργασίας ΕΟ13 2013-2014. Υποδειγματική λύση

1 ης εργασίας ΕΟ13 2013-2014. Υποδειγματική λύση ης εργασίας ΕΟ3 03-04 Υποδειγματική λύση (όπως θα παρατηρήσετε η εργασία περιέχει και κάποια επιπλέον σχόλια, για την καλύτερη κατανόηση της μεθοδολογίας, τα οποία φυσικά μπορούν να παραλειφθούν) Άσκηση.

Διαβάστε περισσότερα

ΚΑΜΠΥΛΗ ENGEL ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΖΗΤΗΣΗΣ ΚΑΤΑ MARSHALL ΚΑΙ HICKS. 1. Η καµπύλη Engel

ΚΑΜΠΥΛΗ ENGEL ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΖΗΤΗΣΗΣ ΚΑΤΑ MARSHALL ΚΑΙ HICKS. 1. Η καµπύλη Engel ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΘΗΓΗΤΗΣ ΚΩΣΤΑΣ ΒΕΛΕΝΤΖΑΣ ΚΑΜΠΥΛΗ ENGEL ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΖΗΤΗΣΗΣ ΚΑΤΑ ARSALL ΚΑΙ ICKS. Η καµπύλη Egel Η καµπύλη Egel παράγεται από την

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 0-0 Δεύτερη Γραπτή Εργασία Επιχειρησιακά Μαθηματικά Γενικές

Διαβάστε περισσότερα

www.onlineclassroom.gr

www.onlineclassroom.gr ΜΕΡΟΣ Β Ερωτήσεις πολλαπλών επιλογών Στις παρακάτω 10 ερωτήσεις, να γράψετε τον αριθμό της κάθε ερώτησης στην εργασία σας και δίπλα του το γράμμα που αντιστοιχεί στη σωστή απάντηση. Η κάθε σωστή απάντηση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος Τμήμα Οικονομικών Επιστημών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος Τμήμα Οικονομικών Επιστημών ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2012-2013 Τμήμα Οικονομικών Επιστημών Χειμώνας-Άνοιξη Μάθημα: Δημόσια Οικονομική Διδασκαλία: Βασίλης Θ. Ράπανος Γεωργία Καπλάνογλου Μετά και το 4 ο πακέτο, πρέπει να

Διαβάστε περισσότερα

ΖΗΤΗΣΗ, ΠΡΟΣΦΟΡΑ ΚΑΙ ΙΣΣΟΡΟΠΙΑ ΑΓΟΡΑΣ

ΖΗΤΗΣΗ, ΠΡΟΣΦΟΡΑ ΚΑΙ ΙΣΣΟΡΟΠΙΑ ΑΓΟΡΑΣ 1 ΚΦΑΛΑΙΟ 6 ΖΗΤΗΣΗ, ΠΡΟΣΦΟΡΑ ΚΑΙ ΙΣΣΟΡΟΠΙΑ ΑΓΟΡΑΣ Οι καµπύλες ζήτησης και προσφοράς είναι αναγκαίες για να προσδιορίσουν την τιµή στην αγορά. Η εξοµοίωσή τους καθορίζει την τιµή και τη ποσότητα ισορροπίας,

Διαβάστε περισσότερα

Οικονομίες κλίμακας, ατελής ανταγωνισμός και διεθνές εμπόριο 6-1

Οικονομίες κλίμακας, ατελής ανταγωνισμός και διεθνές εμπόριο 6-1 Οικονομίες κλίμακας, ατελής ανταγωνισμός και διεθνές εμπόριο 6-1 Επισκόπηση Τύποι οικονομιών κλίμακας Τύποι ατελούς ανταγωνισμού Ολιγοπώλιο και μονοπώλιο Μονοπωλιακός ανταγωνισμός Μονοπωλιακός ανταγωνισμός

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 2007 ιδάσκων : Ηλίας Κουτσουπιάς

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 2007 ιδάσκων : Ηλίας Κουτσουπιάς ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 007 ιδάσκων : Ηλίας Κουτσουπιάς Μάθηµα : Overview Of The Algorithmic Game Theory Ηµεροµηνία : 007/04/19 Σηµειώσεις : Ελενα Χατζηγιωργάκη,

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΚΑΙ ΑΠΟΤΥΧΙΕΣ ΤΗΣ ΑΓΟΡΑΣ. (Συνέχεια)

ΔΥΝΑΜΙΚΗ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΚΑΙ ΑΠΟΤΥΧΙΕΣ ΤΗΣ ΑΓΟΡΑΣ. (Συνέχεια) ΔΥΝΑΜΙΚΗ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΚΑΙ ΑΠΟΤΥΧΙΕΣ ΤΗΣ ΑΓΟΡΑΣ (Συνέχεια) Πηγές αποτυχίας των αγορών Δημόσια αγαθά Είναι τα αγαθά των οποίων η χρήση δεν μπορεί να αποκλειστεί και ως εκ τούτου είναι ελευθέρα για

Διαβάστε περισσότερα

1. Κατανομή πόρων σε συνθήκες στατικής αποτελεσματικότητας

1. Κατανομή πόρων σε συνθήκες στατικής αποτελεσματικότητας Εφαρμογές Θεωρίας 1. Κατανομή πόρων σε συνθήκες στατικής αποτελεσματικότητας Έστω ότι η συνάρτηση ζήτησης για την κατανάλωση του νερού ενός φράγματος (εκφρασμένη σε ευρώ) είναι q = 12-P και το οριακό κόστος

Διαβάστε περισσότερα

2. Σε ένα κλάδο που υπάρχει μονοπώλιο, το βάρος από την επιβολή ενός φόρου μετακυλύεται ολόκληρο στους καταναλωτές.

2. Σε ένα κλάδο που υπάρχει μονοπώλιο, το βάρος από την επιβολή ενός φόρου μετακυλύεται ολόκληρο στους καταναλωτές. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2011-2012 Τμήμα Οικονομικών Επιστημών Εξεταστική περίοδος Ιουλίου Εξέταση στο μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου Βασίλης Θ. Ράπανος Η εξέταση

Διαβάστε περισσότερα

Προτεινόμενο διαγώνισμα στις Αρχές Οικονομικής Θεωρίας. Ομάδα Α ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ- ΛΑΘΟΥΣ

Προτεινόμενο διαγώνισμα στις Αρχές Οικονομικής Θεωρίας. Ομάδα Α ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ- ΛΑΘΟΥΣ Προτεινόμενο διαγώνισμα στις Αρχές Οικονομικής Θεωρίας Ομάδα Α ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ- ΛΑΘΟΥΣ 1. Για ένα αγαθό όταν η σταθερά γ είναι ίση με το μηδέν τότε η καμπύλη προσφοράς διέρχεται από την αρχή των αξόνων.

Διαβάστε περισσότερα

Επιλογή Ποιότητας και Κάθετη Διαφοροποίηση Προϊόντος

Επιλογή Ποιότητας και Κάθετη Διαφοροποίηση Προϊόντος Επιλογή Ποιότητας και Κάθετη Διαφοροποίηση Προϊόντος - Τα προϊόντα που παράγουν οι επιχειρήσεις μπορούν να διαφοροποιούνται ως προς ένα πλήθος χαρακτηριστικών. Παράδειγμα: Τα αυτοκίνητα διαφοροποιούνται

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2008-2009 Δεύτερη Γραπτή Εργασία Επιχειρησιακά Μαθηματικά

Διαβάστε περισσότερα

Μοντέλα των Cournotκαι Bertrand

Μοντέλα των Cournotκαι Bertrand Μοντέλα των Cournotκαι Bertrand Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τι θα πούμε Θα εξετάσουμε αναλυτικά το μοντέλο Cournot

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Μέρος Β. Καθ. Π. Κάπρος ΕΜΠ 2003

ΣΗΜΕΙΩΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Μέρος Β. Καθ. Π. Κάπρος ΕΜΠ 2003 ΣΗΜΕΙΩΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Μέρος Β Καθ. Π. Κάπρος ΕΜΠ 2003 ΑΘΡΟΙΣΤΙΚΗ ΖΗΤΗΣΗ & ΠΡΟΣΦΟΡΑ 1. Αθροιστική Καµπύλη Ζήτησης 2. Ειδικές Περιπτώσεις 3. Ελαστικότητα τιµής της ζήτησης 4. Εισόδηµα, απάνη, Έσοδο

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλών επιλογών

Ερωτήσεις πολλαπλών επιλογών Ερωτήσεις πολλαπλών επιλογών Β1) Υποθέστε ότι στη θέση ισορροπίας της αγοράς ενός αγαθού η ζήτησή του ως προς την τιμή του είναι ελαστική. Μία μείωση της προσφοράς του αγαθού, με όλους τους άλλους παράγοντες

Διαβάστε περισσότερα

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Η πλέον γνωστή και περισσότερο χρησιµοποιηµένη µέθοδος για την επίλυση ενός γενικού προβλήµατος γραµµικού προγραµµατισµού, είναι η µέθοδος Simplex η οποία αναπτύχθηκε

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΣΜΟΣ ΤΙΜΩΝ. Κεφάλαιο 8. Οικονομικά των Επιχειρήσεων. Ε. Σαρτζετάκης 1

ΔΙΑΦΟΡΙΣΜΟΣ ΤΙΜΩΝ. Κεφάλαιο 8. Οικονομικά των Επιχειρήσεων. Ε. Σαρτζετάκης 1 ΔΙΑΦΟΡΙΣΜΟΣ ΤΙΜΩΝ Κεφάλαιο 8 Ε. Σαρτζετάκης Διαφορισμός τιμών Τιμολόγησηότανηεπιχείρησηέχειισχυρήθέσηστηναγορά: διαφορισμός τιμών Οι επιχειρήσεις οι οποίες έχουν σε κάποιο βαθμό δύναμη σε κάποια αγορά

Διαβάστε περισσότερα

ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ

ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ Κάθε εξίσωση της µορφής α + β = γ όπου α + β 0 ( α, β όχι συγχρόνως 0) παριστάνει ευθεία. (Η εξίσωση λέγεται : ΓΡΑΜΜΙΚΗ) ΕΙ ΙΚΑ γ Αν α = 0 και β 0έχουµε =. ηλαδή µορφή = c.

Διαβάστε περισσότερα

η αποδοτική κατανοµή των πόρων αποδοτική κατανοµή των πόρων Οικονοµική αποδοτικότητα Οικονοµία των µεταφορών Η ανεπάρκεια των πόρων &

η αποδοτική κατανοµή των πόρων αποδοτική κατανοµή των πόρων Οικονοµική αποδοτικότητα Οικονοµία των µεταφορών Η ανεπάρκεια των πόρων & 5 η αποδοτική κατανοµή των πόρων Οικονοµική αποδοτικότητα: Η αποτελεί θεµελιώδες πρόβληµα σε κάθε σύγχρονη οικονοµία. Το πρόβληµα της αποδοτικής κατανοµής των πόρων µπορεί να εκφρασθεί µε 4 βασικά ερωτήµατα

Διαβάστε περισσότερα

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 15/1/2008

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 15/1/2008 Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 5//008 Πρόβληµα ο Στα παρακάτω ερωτήµατα επισηµαίνουµε ότι perceptron είναι ένας νευρώνας και υποθέτουµε, όπου χρειάζεται, τη χρήση δικτύων

Διαβάστε περισσότερα