Dostredivá sila. Ak sa častica pohybuje po zakrivenej dráhe, má dostredivé zrýchlenie a teda naň musí pôsobiť dostredivá sila

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Dostredivá sila. Ak sa častica pohybuje po zakrivenej dráhe, má dostredivé zrýchlenie a teda naň musí pôsobiť dostredivá sila"

Transcript

1 Dostredivá sila Ak sa častica pohybuje po zakrivenej dráhe, má dostredivé zrýchlenie a teda naň musí pôsobiť dostredivá sila kde r je polomer krivosti trajektórie. Keby nepôsobila dostredivá sila, častica by pokračovala zotrvačným rovnomerným priamočiarym pohybom v smere dotyčnice, ako to napríklad vidno na odbrúsených časticiach kovu pri brúsení: 1

2 Príklady dostredivej sily Dávid zabil Goliáša kameňom vrhnutým prakom. Prak rozkrúti nad hlavou, kameň sa pohybuje po kruhovej dráhe a v okamihu uvoľnenia je vymrštený po dotyčnici. Otázka je kto/čo pôsobí dostredivou silou, ktorá udržiava kameň na kruhovej dráhe. Odpoveď: napätie prakovej šnúry. Trochu zložitejšie je predumať si, ako to napätie šnúry vzniká. Použijeme trochu dadaistické vysvetlenie. Kameň chce pokračovať po dotyčnicovej priamej dráhe. Ale narazí pri tom na kožené vrecko, cez ktoré nemôže pokračovať v rovnej ceste. Prečo? Lebo by musel potlačiť molekuly vrecka. Kameň teda pôsobí silovo (medzimolekulovými silami) na molekuly vrecka. Molekuly vrecka podľa princípu akcie a reakcie pôsobia na kameň a vytvárajú dostredivú silu. Ale prečo molekuly vrecka proste neuhnú. Lebo na seba navzájom pôsobia silami a silové pôsobenie technikou akcie a reakcie prenáša až na tie molekuly vrecka, ktoré cítia molekuly šnúry. Tie sa snažia potiahnuť molekuly šnúry smerom von z kruhu a tie odpovedajú reakciu smerom dovnútra kruhu. Dostredivá sila. 2

3 Príklady dostredivej sily okolok Prečo vlak na koľajniciach v zákrute nevybehne z koľají? Úplná teória je dosť zložitá (všimnite si, že obvody kolies nie sú valcového ale kužeľového tvaru), ale dôležitú úlohu zohrávajú okolky na vnútorných stranách vlakových kolies. Okolky sa pri prejazde zákrutou opierajú o koľajnicu, chceli by sa pretlačiť cez koľajnicu aby vlak mohol pokračovať rovno, tlačia na koľajnicu a koľajnica rekciou tlačí na okolky dostredivou silou. V zákrute je to vonkajšia koľajnica, na ktorú tlačia okolky vonkajších kolies. Preto vnútorná stena vonkajšej koľajnice je viac vybrúsená ako vnútorná stena vnútornej koľajnice. 3

4 Príklady dostredivej sily Ak vidím vlak pohybujúci sa rýchlosťou, že prechádza zákrutou s polomerom krivosti r, potom viem, že naň pôsobí dostredivá sila. Vzniká otázka: Ako koľajnice vedia, že majú pôsobiť presne takto veľkou silou? Ani väčšou ani menšou. Poznajú vari rýchlosť vlaku? Čo by ste odpovedali decku na takú otázku? 4

5 Príklady dostredivej sily Ak vidím vlak pohybujúci sa rýchlosťou, že prechádza zákrutou s polomerom krivosti r, potom viem, že naň pôsobí dostredivá sila. Vzniká otázka: Ako koľajnice vedia, že majú pôsobiť presne takto veľkou silou? Ani väčšou ani menšou. Poznajú vari rýchlosť vlaku? Čo by ste odpovedali decku na takú otázku? Tu je pokus o odpoveď, stál v trochu dadaistickom štýle. Keď vlak vchádza do zákruty, koľajnice ešte nepôsobia žiadnou dostredivou silou. Kolesá sa teda pokúšajú vniknúť do koľajnice a prekonať ju, čo spôsobí reakciu koľajnice, zrejme na začiatku nie dosť veľkú ako je veľkosť potrebnej dostredivej sily. Koľajnica je už tlakom kolies čiastočne deformovaná. Ale kolesá nedajú pokoj a zatláčajú sa hlbšie, čo zvyšuje veľkosť reakcie koľajníc a teda veľkosť dostredivej sily. Keď sa postupne (za zlomok sekundy) dosiahne správna veľkosť sily, kolesá už vykresľujú správnu trajektóriu a nepokúšajú sa zatláčať hlbšie. Ustáli sa teda akurátna sila. V skutočnosti je to dynamická rovnováha. Koľajnica ani kolesá nie sú úplne homogénne, ani polomer krivosti nie je presne konštantný. Preto dostredivú sila je v krátkych okamihoch trochu menšia ako by mala byť a inokedy trochu väčšia. Kolesá nevykresľujú ideálnu trajektóriu s mikrónovou presnosťou. 5

6 Príklady dostredivej sily Pri jazde v zákrute na ceste dostredivú silu zabezpečuje trenie. K problému sa vrátime, až budeme preberať trenie. Teraz len krátky komentár. Ľudia na otázku: Prečo motocyklista vyletel zo zákruty? odpovedajú spravidla takto: Lebo odstredivá sila bola priveľká a trenie ju nedokázalo prekonať. V kontexte toho, čo sme doteraz diskutovali, správna odpoveď znie: Trenie nebolo dostatočné, aby poskytlo dostatočne veľkú dostredivú silu. Tá ľudová odpoveď sa dá šikovne interpretovať aj tak, aby sa dala považovať za správnu. Ale interpretácia vyžaduje rozumieť tomu, ako vyzerá zákon sily v neinerciálnych sústavách. O tom až neskôr. 6

7 Otočenia a otáčania 7

8 Opakovanie Vektor a otočený vektor v tej istej báze vektor vznikol z vektora rotáciou, ktorou vznikol vektor z vektora Kľúčový pojem na zapamätanie: rotačná matica 8

9 Transformácia: otočenie fyzikálneho systému Najme systém častíc, polohy ktorých v nejakom okamihu sú dané sústavou polohových vektorov poznamenajme, že symbol n nie je zložka vektora ale index vektora, teda čísluje jednotlivé častice. Predstavme si teraz, že celý systém častíc otočíme do nových polôh tak, že každý z polohových vektorov otočíme o rovnaký uhol voči zvolenej (rovnakej osi) otáčania. Po otočení sa častice budú nachádzať v nových (transformovaných) polohách Vykonaná transformácia sa volá otočenie fyzikálneho systému. Transformácia otočenia je zadaná rotačnou maticou (spoločnou pre všetky vektory) R ij 9

10 Ako sme videli, prvky rotačnej matice sú vlastne skalárne súčiny nejakých jednotkových vektorov, teda vlastne kosínusy uhlov, ktoré tie jednotkové vektory zvierajú. Nazývame ich smerové kosínusy. Naša intuícia si spravidla nevie predstaviť ako vyzerá otočenie, zadané 9 smerovými kosínusmi. Každé otočenie sa ale dá vyjadriť ako otočenie okolo nejakej fixnej osi o nejaký uhol. To je intuitívne oveľa prijateľnejšie. Takže pohrajme sa s otočeniami okolo osí. Začneme otočením okolo osi z. Pri takom otočení sa z-ové súradnice častíc nemenia, menia sa len x-ové a y-ové súradnice, takže je to rovinný problém, na ktorý sa môžeme pozrieť v rovine xy. Sledujme jednu časticu ležiacu v rovine xy na obr. Os z smeruje od nákresnej roviny smerom k čitateľovi, kladný smer otočenia o uhol φ, je daný prstami pravej ruky ak palec ukazuje smer osi z. 10

11 Zapamätajte si, ako vyzerajú vzorce pre rotáciu v dvoch rozmeroch! Súradnice otočeného vektora sú zmiešaniny súradníc pôvodného vektora. Pomocou kosínusu a sínusu. Pri sínuse je jedno znamienko kladné druhé záporné. Na to, kde je sínus a kde kosínus prídete z úvahy o limite veľmi malého otočenia. Pri malom otočení sa súradnice moc nezmenia, takže v limite malého uhla musí byť x x, y y. Pre malé uhly cos φ 1, sin φ 0, taže je to jasné. To, pri ktorom sínuse je záporné znamienko vidím z obrázku: x < x. 11

12 Zapamätajte si, ako vyzerajú vzorce pre rotáciu v dvoch rozmeroch! Podumajte, ako sa vyjadria nečiarkované súradnice pomocou čiarkovaných! Súradnice otočeného vektora sú zmiešaniny súradníc pôvodného vektora. Pomocou kosínusu a sínusu. Pri sínuse je jedno znamienko kladné druhé záporné. Na to, kde je sínus a kde kosínus prídete z úvahy o limite veľmi malého otočenia. Pri malom otočení sa súradnice moc nezmenia, takže v limite malého uhla musí byť x x, y y. Pre malé uhly cos φ 1, sin φ 0, taže je to jasné. To, pri ktorom sínuse je záporné znamienko vidím z obrázku: x < x. 12

13 Zapamätajte si, ako vyzerajú vzorce pre rotáciu v dvoch rozmeroch! Inverzný vzťah vyzerá takto: lebo je to vlastne otočenie o φ. Prečo nemôžu byť obe znamienka pri sínusoch rovnaké? Neplatilo by Dĺžka vektora by sa pri otočení zmenila a to sa nesmie. Overte si, že s opačnými znamienkami je to v poriadku! Ak si to naozaj overíte, zistíte, že dôležitú úlohu okrem znamienok hrá aj vzťah Uvedomte si, že tento vzťah je vlastne Pytagorova veta pre trojuholník s preponou dĺžky 1. Tak preto tam musia byť sínusy a kosínusy. Aby sa otočením nezmršila Pytagorova veta. Keď si všetko predumáte, zistíte, že sa nič nemusíte učiť naspamäť. Vzorec pre otočenie napíšete z voleja, lebo mu budete rozumieť! 13

14 Ešte jeden argument bez počítania, prečo opačné znamienka pri sínusoch. Logika argumentu ide takto: pre veľmi malé uhly sa súradnice moc nemôžu zmeniť, len do x sa primieša trošku y a do y trošku x, čo zabezpečí sínus, lebo je malý, takže primieša len trošku kosínus je pre malé uhly veľmi blízky k 1, odchýlka je dokonca až druhého rádu sínus je síce malý, ale prvého rádu keby znamienka pri sínuse boli rovnaké, primiešaniny by mali rovnaké znamienko a otočením by sa zväčšili obe súradnice x aj y. Dĺžka vektora by sa otočením zväčšila. Fakt, že funkcia kosínus súradnice trochu zmenšuje to nezachráni, lebo je to oprava až druhého rádu, kým sínusová primiešanina je prvého rádu. Už vás možno urazím, ale vnímate takmer ako reflex že platí Dáte dokopy aj nejaký rýchly argument prečo? Načo všetky tieto reči na troch slajdoch? Chcem ukázať, že vytrvalým snažením sa dá porozumieť vzorcu. Trénujte sa v tom kladením si otázok prečo?. 14

15 Otočenie okolo osi z, častica neleží v rovine xy Častica má všeobecnú polohu r a pri otočení okolo osi z o uhol φ prejde do polohy r (na obr. zelené vektory). Priemety tých vektorov do roviny xy sú znázornené modro. Je zrejmé, že modré vektory sa pri otočení správajú tak, ako keby išlo o časticu, ležiacu v rovine xy, teda to, čo sme doteraz rozvažovali. Súčasne je zrejmé, že priemety zodpovedajúceho si modrého a zeleného vektora na osi x a y sú rovnaké a priemety zelených vektorov na os sa pri popisovanom otočení okolo osi z nemenia. Záver, transformácia súradníc všeobecného polohového vektora pri otočení okolo osi z bude 15

16 Rotačná matica pre otočenie okolo osi z Po nejakých pokusoch a omyloch by sa vám malo podariť napísať, ako vyzerá rotačná matica pre takúto transformáciu. Dostanete Overte si maticovým násobením, že je to dobre. 16

17 Vo Wikipédii si vygooglite, že rotačné matice pre otočenia okolo osí x, y, z vyzerajú takto (uhol otočenia je označený θ). 17

18 Skladanie otočení okolo tej istej osi Urobme najprv otočenie okolo osi z o uhol φ a následne ďalšie otočenie zase okolo osi z o uhol θ. Takže bude Dve po sebe nasledujúce otočenia, ktorým prislúchajú rotačné matice R a R sa dajú chápať ako jedna (výsledná) rotácia s rotačnou maticou R 18

19 Všimnime si štruktúru výrazu. Na ľavej strane je dvojindexová matica, teda vlastne je to 9 rovníc, každá pre nejakú kombináciu hodnôt indexov ij. V súčte je jeden nemý index, teda je to súčet troch súčinov. V súčinoch sú prvky z dvoch matíc, pričom sa sčíta tak že druhý index (stĺpcový) prvku prvej matice je rovnaký ako prvý index (riadkový) prvku druhej matice. V maticovom zápise je to Na obrázku konkrétne vidíme, ako sa vypočíta prvok R 23. Ukazujeme synchrónne ukazovákom ľavej ruky prvky v druhom riadku ľavej matice a ukazovákom pravej ruky prvky v treťom stĺpci pravej matice. Analogicky získame všetkých 9 prvkov výslednej matice. Spoľahlivo si nacvičte techniku násobenia dvoch matíc! 19

20 Rotácia a inverzná rotácia vektor vznikol z vektora rotáciou, ktorou vznikol vektor z vektora Vyrobme inú maticu Čo je toto za maticu? Stačí trocha porozmýšľať. Je to zjavne rotačná matica, kde naopak nečiarkované vektory vznikli z čiarkovaných nejakou rotáciou. Ide zrejme o inverznú rotáciu k pôvodnej rotácii, ktorou čiarkované vektory vznikli z nečiarkovaných. Keď vykonáme pôvodnú rotáciou a hneď po nej inverznú rotáciu, vrátime sa do pôvodného stavu. Teda zloženiu rotácie a inverznej rotácie zodpovedá výsledná rotácia, ktorá nič nerobí. Rotačná matica, ktorá nič nerobí je zjavne matica δ ij, lebo potom. Pre zloženie pôvodnej a inverznej rotácie teda platí 20

21 Rotácia a inverzná rotácia Pre lepšiu predstavu zapíšme všetky matice vo vzťahu maticovom tvare. Porovnaním vzťahov a vidno že platí v Matica R T teda zjavne vznikne z matice R jej preklopením okolo uhlopriečky. Taká maticová operácia sa volá transpozícia matice a matica, ktorá tak vznikne sa volá transponovaná matica. Matica δ vyzerá takto Taká matica sa volá jednotková, často sa symbolicky značí takto. Platí teda Zapamätajte si: inverzná matica rotačnej matice je jej transponovaná matica. 21

22 Výsledkom je rotačná matica zodpovedajúca otočeniu o uhol θ + φ. To sme, samozrejme, čakali, lebo dve rotácie po sebe o uhly φ a θ okolo tej istej osi, je to isté ako jedna rotácia okolo tej osi o uhol θ + φ. Keďže sme výsledok vedeli dopredu, môžeme sa na náš postup pozerať ako na šikovný spôsob odvodenia súčtových vzorcov pre goniometrické funkcie. 22

23 Infinitezimálne otočenie okolo osi z Veľmi malý uhol otočenia označme pre názornosť δφ. Do prvého rádu malosti potom máme 23

24 Otočenie ako zloženie množstva infinitezimálnych otočení Otočenie o (konečný) uhol θ okolo osi z je zjavne možné vykonať ako postupnosť veľkého množstva otočení o maličký uhol (v limite infinitezimálny) okolo osi z. Majme teda uhol otočenia θ a veľmi veľké číslo N, takže uhol dθ = θ/n je prakticky infinitezimálny. Potom rotačnú maticu otočenia o uhol θ je zjavne možné vyjadriť ako postupný súčin N matíc infinitezimálnych rotácií o uhol dθ = θ/n. Teda: Táto rovnosť sa dá v limite N dá dokázať čisto matematickou technológiou násobenia matíc. Nebudeme to robiť, pretože sme ju dokázali fyzikálne. Ľahko si môžeme predstaviť, že tie infinitezimálne otočenia sa konajú ako postupnosť v čase, vždy každé infinitezimálne otočenie za malý (infinitezimálny) čas dt. Zvoľme dt = T/N, kde T je nejaký konečný čas a zvoľme konštantu ω = θ/t. Potom infinitezimálny uhol otočenia bude dθ = ω dt a význam ω je zrejmý: je to rýchlosť narastania uhla otočenia v čase 24

25 Vektorový súčin Definícia Pravidlo pravej ruky: prsty pravej ruky postavíme tak, aby ukázali stáčanie vektora A smerom k vektoru B a palec potom ukáže smer vektorového súčinu A B 25

26 Platí v pravotočivej báze Osi x,y,z nemôžeme pomenovať ľubovoľne, ale tak, aby toto platilo Prsty otáčajú od "x" k "y", palec ukáže "z". Tu sme využili distributívnosť vektorového súčinu, ktorá z definície, ktorú sme uviedli triviálne nevyplýva. Záujemcov od dôkaz odkazujeme na doplnkovú 26 Powerpoint prezentáciu o vektorovom súčine

27 prirodzené poradie - neprirodzené poradie Levi-Civitov antisymetrický ε-symbol ε-symbol je totálne antisymetrický všetky hodnoty s aspoň dvoma rovnakými indexami musia byť nulové Toto je konvencia: pre prirodzené poradie je hodnota 1, pre neprirodzené -1 27

28 Nápad: uhlová rýchlosť a uhol otočenia ako vektory Infinitezimálne otočenia sa konajú ako postupnosť v čase okolo fixnej osi, vždy každé infinitezimálne otočenie za malý (infinitezimálny) čas dt. Infinitezimálny uhol otočenia bude dφ = ω dt a význam ω je zrejmý: je to rýchlosť narastania uhla otočenia v čase Vyrobme teraz vektor ω tak, aby v ňom bola zakódovaná nielen uhlová rýchlosť otáčania ale aj smer osi, okolo ktorej sa otáča. Kódovanie je jednoduché: Vektor ω má smer osi otáčania a takú orientáciu, aby prsty pravej ruky ukazovali smer otáčania ak palec ukazuje orientáciu vektora ω. Veľkosť toho vektora je veľkosť uhlovej rýchlosti Potom je prirodzené zaviesť aj infinitezimálny uhol otočenia ako vektor δφ Je to vektor v smere osi otáčania a jeho veľkosť je uhol otočenia 28

29 Nápad: uhlová rýchlosť a uhol otočenia ako vektory Infinitezimálne otočenia sa konajú ako postupnosť v čase okolo fixnej osi, vždy každé infinitezimálne otočenie za malý (infinitezimálny) čas dt. Infinitezimálny Poznámka uhol otočenia (pre hĺbavejších): bude dφ = ω dt a význam ω je zrejmý: je to rýchlosť narastania uhla Z čírej otočenia opatrnosti v čase sme použili označenie a nie jednoducho. Dôvod je veľmi subtílny. Označenie je jeden nedeliteľný hieroglyf a má význam vektor malého otočenia. Označenie je Vyrobme teraz rozštiepiteľný vektor ω tak, hieroglyf. aby v ňom Subsymbol bola zakódovaná d sa v ňom nielen dá chápať uhlová tak, rýchlosť že otáčania ale ide aj o smer (infinitezimálny) osi, okolo ktorej rozdiel sa dvoch otáča. veľkých Kódovanie vektorov. je jednoduché: Zatiaľ nevieme, Vektor či ωa kedy má smer sa vektor osi otáčania malého a otočenia takú orientáciu, dá chápať aby prsty ako rozdiel dvoch pravej (infinitezimálne ruky ukazovali blízkych) smer otáčania veľkých ak vektorov palec ukazuje otočenia. Budeme to orientáciu rozoberať vektora podrobnejšie, ω. Veľkosť ale varujme toho vektora už teraz, je veľkosť že uhlovej všeobecne rýchlosti nie je pravdou, že neinfinitezimálne vektory otočenia majú dobre definovaný zmysel a možno ich jednoducho odčítať. Potom je prirodzené zaviesť aj infinitezimálny uhol otočenia ako vektor δφ Je to vektor v smere osi otáčania a jeho veľkosť je uhol otočenia 29

30 Zmena polohového vektora pri infinitezimálnom otočení Zistili sme, že súradnice polohového vektora sa pri infinitezimálnom otočení okolo osi z menia takto: Infinitezimálny vektor otočenia má zložky Zmena polohového vektora má zložky Overte si explicitným výpočtom podľa pravidla pre počítanie zložiek vektorového súčinu že platí 30

31 Zmena polohového vektora pri infinitezimálnom otočení Tento vzťah sme si odvodili pre rotáciu okolo osi z, teda vektor mal smer osi z. Ale dostali sme vzťah medzi vektormi, ktorý nemôže záležať na to, ako sú zvolené osi. Teda je to univerzálne platný vzťah. Hovorí toto: Ak je vektor infinitezimálnej rotácie okolo ľubovoľnej osi (teda má smer osi rotácie a veľkosť infinitezimálneho rotačného uhla), potom zmena polohového vektora je určená takto resp. 31

32 Infinitezimálny vektor rotácie okolo ľubovoľnej osi Prvý problém: čím sa dá jednoznačne špecifikovať os rotácie Využijeme tu triky známe z používania sférických súradníc. Máme napísať jednotkový vektor ľubovoľného smeru. Najprv skonštruujeme jednotkový vektor v smere osi z (už ho tam aj máme, volá sa k). Potom ho sklopíme tak, aby jeho nový smer bol daný sférickými uhlami θ, φ a sklopený ho nazveme n. Definíciu sférických uhlov najlepšie vidno na obrázku. Jednotkový vektor n určuje os rotácie. Jeho priemet do osi z je n z = cos(θ). Jeho priemet do roviny xy je sin(θ). Priemet toho priemetu do osi x je určený uhlom φ, takže celkovo dostaneme Infinitezimálny vektor rotácie δψ má mať smer osi rotácie, teda n, a veľkosť rovnú infinitezimálnemu uhlu rotácie δψ. Bude teda 32

33 Zmena polohového vektora pri infinitezimálnom otočení Odvodíme tento vzťah ešte raz, aby sme lepšie vnikli do toho prečo to vyšlo tak, ako to vyšlo. Pri akejkoľvek rotácii sa dĺžka polohového vektora zjavne nemení, teda pre transformáciu platí Pri akejkoľvek rotácii je teda zmena polohového vektora kolmá na samotný vektor r. Koncové body polohových vektorov r a r zjavne ležia v rovine kolmej na os rotácie, teda vektor d r, zjavne tiež leží v tej rovine a je teda kolmý na os rotácie Vektor d r je teda kolmý na vektor r aj na vektor Preto je vektor d r paralelný s vektorom 33

34 Zmena polohového vektora pri infinitezimálnom otočení Je teda: Ešte treba predumať, či ide o paralelnosť alebo antiparalelnosť a vyšetriť vzťah veľkostí tých dvoch vektorov. Pohľad na obrázok spolu s pravidlom pravej ruky pre vektorový súčin hovorí, že ide o paralelizmus, teda rovnakú orientáciu vektorov Koncové body polohových vektorov r a r ležia v rovine kolmej na os rotácie, a to v rovnakej vzdialenosti od osi rotácie, teda na kružnici so stredom na osi rotácie. Polomer tej kružnice je zjavne rovný a pohľad na kružnicu hovorí, že platí (pre veľkosť uhla definovanú v radiánoch!) Všetko dokopy to znamená 34

35 Infinitezimálne otočenie a jeho rotačná matica Každé otočenie sa dá vyjadriť pomocou rotačnej matice, teda aj infinitezimálne otočenie zadané vektorom δφ. Nájdeme tú maticu.zmena polohového vektora pri takom otočení je Vyjadrené v zložkách je to Toto má byť ekvivalentné aplikácii rotačnej matice δr: Porovnaním posledných dvoch vzťahov dostaneme rotačnú maticu, ktorá sa len infinitezimálne líši od jednotkovej matice 35

36 Čo mám garantovane vedieť vyjadrite rotačnú maticu pre infinitezimálne otočenie okolo osi z definícia vektorového súčinu vyjadrite zložky vektora vektorového súčinu pomocou zložiek násobených vektorov ako je definovaný vektor infinitezimálneho otočenia a ako sa pomocou neho vyjadrí otočenie ľubovoľného vektora vyjadrite vektor infinitezimálneho otočenia okolo osi danej sférickými uhlami

Prechod z 2D do 3D. Martin Florek 3. marca 2009

Prechod z 2D do 3D. Martin Florek 3. marca 2009 Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica

Διαβάστε περισσότερα

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010. 14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12

Διαβάστε περισσότερα

Súčtové vzorce. cos (α + β) = cos α.cos β sin α.sin β cos (α β) = cos α.cos β + sin α.sin β. tg (α β) = cotg (α β) =.

Súčtové vzorce. cos (α + β) = cos α.cos β sin α.sin β cos (α β) = cos α.cos β + sin α.sin β. tg (α β) = cotg (α β) =. Súčtové vzorce Súčtové vzorce sú goniometrické hodnoty súčtov a rozdielov dvoch uhlov Sem patria aj goniometrické hodnoty dvojnásobného a polovičného uhla a pridám aj súčet a rozdiel goniometrických funkcií

Διαβάστε περισσότερα

Matematika Funkcia viac premenných, Parciálne derivácie

Matematika Funkcia viac premenných, Parciálne derivácie Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x

Διαβάστε περισσότερα

Matematika 2. časť: Analytická geometria

Matematika 2. časť: Analytická geometria Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové

Διαβάστε περισσότερα

Komplexné čísla, Diskrétna Fourierova transformácia 1

Komplexné čísla, Diskrétna Fourierova transformácia 1 Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené

Διαβάστε περισσότερα

Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich

Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich Tuesday 15 th January, 2013, 19:53 Základy tenzorového počtu M.Gintner Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich násobenie reálnym číslom tak, že platí:

Διαβάστε περισσότερα

Obvod a obsah štvoruholníka

Obvod a obsah štvoruholníka Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka

Διαβάστε περισσότερα

Cvičenie č. 4,5 Limita funkcie

Cvičenie č. 4,5 Limita funkcie Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(

Διαβάστε περισσότερα

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop 1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s

Διαβάστε περισσότερα

MIDTERM (A) riešenia a bodovanie

MIDTERM (A) riešenia a bodovanie MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude

Διαβάστε περισσότερα

x x x2 n

x x x2 n Reálne symetrické matice Skalárny súčin v R n. Pripomeniem, že pre vektory u = u, u, u, v = v, v, v R platí. dĺžka vektora u je u = u + u + u,. ak sú oba vektory nenulové a zvierajú neorientovaný uhol

Διαβάστε περισσότερα

Goniometrické funkcie

Goniometrické funkcie Goniometrické funkcie Oblúková miera Goniometrické funkcie sú funkcie, ktoré sa používajú pri meraní uhlov (Goniometria Meranie Uhla). Pri týchto funkciách sa uvažuje o veľkostiach uhlov udaných v oblúkovej

Διαβάστε περισσότερα

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej . Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny

Διαβάστε περισσότερα

Ekvačná a kvantifikačná logika

Ekvačná a kvantifikačná logika a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných

Διαβάστε περισσότερα

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami

Διαβάστε περισσότερα

2 Základy vektorového počtu

2 Základy vektorového počtu 21 2 Základy vektorového počtu Fyzikálne veličíny sa dajú rozdeliť do dvoch skupín. Prvú skupinu fyzikálnych veličín tvoria tie, pre ktorých jednoznačné určenie postačí poznať veľkosť danej fyzikálnej

Διαβάστε περισσότερα

7. FUNKCIE POJEM FUNKCIE

7. FUNKCIE POJEM FUNKCIE 7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje

Διαβάστε περισσότερα

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x

Διαβάστε περισσότερα

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu 6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis

Διαβάστε περισσότερα

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov

Διαβάστε περισσότερα

1. písomná práca z matematiky Skupina A

1. písomná práca z matematiky Skupina A 1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi

Διαβάστε περισσότερα

AFINNÉ TRANSFORMÁCIE

AFINNÉ TRANSFORMÁCIE AFINNÉ TRANSFORMÁCIE Definícia0..Zobrazenie f: R n R m sanazývaafinné,ak zachováva kolinearitu(t.j. priamka sa zobrazí buď na priamku alebo na jeden bod), zachovávadeliacipomer(t.j.akprekolineárnebody

Διαβάστε περισσότερα

23. Zhodné zobrazenia

23. Zhodné zobrazenia 23. Zhodné zobrazenia Zhodné zobrazenie sa nazýva zhodné ak pre každé dva vzorové body X,Y a ich obrazy X,Y platí: X,Y = X,Y {Vzdialenosť vzorov sa rovná vzdialenosti obrazov} Medzi zhodné zobrazenia patria:

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

Motivácia pojmu derivácia

Motivácia pojmu derivácia Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)

Διαβάστε περισσότερα

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné

Διαβάστε περισσότερα

24. Základné spôsoby zobrazovania priestoru do roviny

24. Základné spôsoby zobrazovania priestoru do roviny 24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá

Διαβάστε περισσότερα

Tomáš Madaras Prvočísla

Tomáš Madaras Prvočísla Prvočísla Tomáš Madaras 2011 Definícia Nech a Z. Čísla 1, 1, a, a sa nazývajú triviálne delitele čísla a. Cele číslo a / {0, 1, 1} sa nazýva prvočíslo, ak má iba triviálne delitele; ak má aj iné delitele,

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

3. Striedavé prúdy. Sínusoida

3. Striedavé prúdy. Sínusoida . Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa

Διαβάστε περισσότερα

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,

Διαβάστε περισσότερα

Úvod do lineárnej algebry. Monika Molnárová Prednášky

Úvod do lineárnej algebry. Monika Molnárová Prednášky Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 3 17 marca 2006 4 24 marca 2006 c RNDr Monika Molnárová, PhD Obsah 2 Sústavy lineárnych rovníc 25 21 Riešenie sústavy lineárnych rovníc

Διαβάστε περισσότερα

Goniometrické substitúcie

Goniometrické substitúcie Goniometrické substitúcie Marta Kossaczká S goniometrickými funkciami ste sa už určite stretli, pravdepodobne predovšetkým v geometrii. Ich použitie tam ale zďaleka nekončí. Nazačiatoksizhrňme,čoonichvieme.Funkciesínusakosínussadajúdefinovať

Διαβάστε περισσότερα

7 Derivácia funkcie. 7.1 Motivácia k derivácii

7 Derivácia funkcie. 7.1 Motivácia k derivácii Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických

Διαβάστε περισσότερα

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18

Διαβάστε περισσότερα

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny

Διαβάστε περισσότερα

Ján Buša Štefan Schrötter

Ján Buša Štefan Schrötter Ján Buša Štefan Schrötter 1 KOMPLEXNÉ ČÍSLA 1 1.1 Pojem komplexného čísla Väčšine z nás je známe, že druhá mocnina ľubovoľného reálneho čísla nemôže byť záporná (ináč povedané: pre každé x R je x 0). Ako

Διαβάστε περισσότερα

ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3

ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3 ZDNIE _ ÚLOH 3_Všeobecná rovinná silová sústv ZDNIE _ ÚLOH 3 ÚLOH 3.: Vypočítjte veľkosti rekcií vo väzbách nosník zťženého podľ obrázku 3.. Veľkosti známych síl, momentov dĺžkové rozmery sú uvedené v

Διαβάστε περισσότερα

Súradnicová sústava (karteziánska)

Súradnicová sústava (karteziánska) Súradnicová sústava (karteziánska) = sú to na seba kolmé priamky (osi) prechádzajúce jedným bodom, na všetkých osiach sú jednotky rovnakej dĺžky-karteziánska sústava zavedieme ju nasledovne 1. zvolíme

Διαβάστε περισσότερα

doc. Ing. František Palčák, PhD., Ústav aplikovanej mechaniky a mechatroniky, Strojnícka fakulta STU v Bratislave,

doc. Ing. František Palčák, PhD., Ústav aplikovanej mechaniky a mechatroniky, Strojnícka fakulta STU v Bratislave, -550 Technická mechanika I 9. rednáška Kinematika bodu, translačný, rotačný a všeobecný pohyb telesa Ciele v kinematike. remiestňovanie súradnicovej sústavy po priestorovej krivke. riamočiary pohyb bodu.

Διαβάστε περισσότερα

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH

Διαβάστε περισσότερα

VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR. Michal Zajac. 3 T b 1 = T b 2 = = = 2b

VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR. Michal Zajac. 3 T b 1 = T b 2 = = = 2b VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR Michal Zajac Vlastné čísla a vlastné vektory Pripomeňme najprv, že lineárny operátor T : L L je vzhl adom na bázu B = {b 1, b 2,, b n } lineárneho priestoru L určený

Διαβάστε περισσότερα

Deliteľnosť a znaky deliteľnosti

Deliteľnosť a znaky deliteľnosti Deliteľnosť a znaky deliteľnosti Medzi základné pojmy v aritmetike celých čísel patrí aj pojem deliteľnosť. Najprv si povieme, čo znamená, že celé číslo a delí celé číslo b a ako to zapisujeme. Nech a

Διαβάστε περισσότερα

Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus

Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus 1. prednáška Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus Matematickým základom kvantovej mechaniky je teória Hilbertových

Διαβάστε περισσότερα

ELEKTRICKÉ POLE. Elektrický náboj je základná vlastnosť častíc, je viazaný na častice látky a vyjadruje stav elektricky nabitých telies.

ELEKTRICKÉ POLE. Elektrický náboj je základná vlastnosť častíc, je viazaný na častice látky a vyjadruje stav elektricky nabitých telies. ELEKTRICKÉ POLE 1. ELEKTRICKÝ NÁBOJ, COULOMBOV ZÁKON Skúmajme napr. trenie celuloidového pravítka látkou, hrebeň suché vlasy, mikrotén slabý prúd vody... Príčinou spomenutých javov je elektrický náboj,

Διαβάστε περισσότερα

Zložené funkcie a substitúcia

Zložené funkcie a substitúcia 3. kapitola Zložené funkcie a substitúcia Doteraz sme sa pri funkciách stretli len so závislosťami medzi dvoma premennými. Napríklad vzťah y=x 2 nám hovoril, ako závisí premenná y od premennej x. V praxi

Διαβάστε περισσότερα

Einsteinove rovnice. obrázkový úvod do Všeobecnej teórie relativity. Pavol Ševera. Katedra teoretickej fyziky a didaktiky fyziky

Einsteinove rovnice. obrázkový úvod do Všeobecnej teórie relativity. Pavol Ševera. Katedra teoretickej fyziky a didaktiky fyziky Einsteinove rovnice obrázkový úvod do Všeobecnej teórie relativity Pavol Ševera Katedra teoretickej fyziky a didaktiky fyziky (Pseudo)historický úvod Gravitácia / Elektromagnetizmus (Pseudo)historický

Διαβάστε περισσότερα

MATEMATICKÁ OLYMPIÁDA

MATEMATICKÁ OLYMPIÁDA S MATEMATICÁ OLYMPIÁDA skmo.sk 2008/2009 58. ročník Matematickej olympiády Riešenia úloh IMO. Nech n je kladné celé číslo a a,..., a k (k 2) sú navzájom rôzne celé čísla z množiny {,..., n} také, že n

Διαβάστε περισσότερα

Integrovanie racionálnych funkcií

Integrovanie racionálnych funkcií Integrovanie racionálnych funkcií Tomáš Madaras 2009-20 Z teórie funkcií už vieme, že každá racionálna funkcia (t.j. podiel dvoch polynomických funkcií) sa dá zapísať ako súčet polynomickej funkcie a funkcie

Διαβάστε περισσότερα

Gramatická indukcia a jej využitie

Gramatická indukcia a jej využitie a jej využitie KAI FMFI UK 29. Marec 2010 a jej využitie Prehľad Teória formálnych jazykov 1 Teória formálnych jazykov 2 3 a jej využitie Na počiatku bolo slovo. A slovo... a jej využitie Definícia (Slovo)

Διαβάστε περισσότερα

Analytická geometria

Analytická geometria Analytická geometria Analytická geometria je oblasť matematiky, v ktorej sa študujú geometrické útvary a vzťahy medzi nimi pomocou ich analytických vyjadrení. Praktický význam analytického vyjadrenia je

Διαβάστε περισσότερα

Ústav aplikovanej mechaniky a mechatroniky, SjF STU Bratislava;

Ústav aplikovanej mechaniky a mechatroniky, SjF STU Bratislava; Ústav aplikovanej mechaniky a mechatroniky, SjF SU Bratislava; wwwatcsjfstubask echnická mechanika 0 3 BEK, 0 0 BDS pre bakalárov, zimný sem docingfrantišek Palčák, PhD, ÚAMM 000 7 Cvičenie: Dynamika všeobecného

Διαβάστε περισσότερα

Matematický model robota s diferenciálnym kolesovým podvozkom

Matematický model robota s diferenciálnym kolesovým podvozkom Matematický model robota s diferenciálnym kolesovým podvozkom Demonštračný modul Úlohy. Zostavte matematický model robota s diferenciálnym kolesovým podvozkom 2. Vytvorte simulačný model robota v simulačnom

Διαβάστε περισσότερα

Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8

Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8 Obsah 1 Číselné obory 7 1.1 Reálne čísla a ich základné vlastnosti............................ 7 1.1.1 Komplexné čísla................................... 8 1.2 Číselné množiny.......................................

Διαβάστε περισσότερα

1. Trojuholník - definícia

1. Trojuholník - definícia 1. Trojuholník - definícia Trojuholník ABC sa nazýva množina takých bodov, ktoré ležia súčasne v polrovinách ABC, BCA a CAB, kde body A, B, C sú body neležiace na jednej priamke.. Označenie základných

Διαβάστε περισσότερα

FUNKCIE N REÁLNYCH PREMENNÝCH

FUNKCIE N REÁLNYCH PREMENNÝCH FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE FUNKCIE N REÁLNYCH PREMENNÝCH RNDr. Kristína Rostás, PhD. PREDMET: Matematická analýza ) 2010/2011 1. DEFINÍCIA REÁLNEJ FUNKCIE

Διαβάστε περισσότερα

Logaritmus operácie s logaritmami, dekadický a prirodzený logaritmus

Logaritmus operácie s logaritmami, dekadický a prirodzený logaritmus KrAv11-T List 1 Logaritmus operácie s logaritmami, dekadický a prirodzený logaritmus RNDr. Jana Krajčiová, PhD. U: Najprv si zopakujme, ako znie definícia logaritmu. Ž: Ja si pamätám, že logaritmus súvisí

Διαβάστε περισσότερα

Matematika 2. Lineárna algebra. (ver )

Matematika 2. Lineárna algebra. (ver ) Matematika 2 Lineárna algebra (ver.01.03.2011) 1 Úvod Prehľad. Tieto poznámky obsahujú podklady k prednáške Matematika 2 na špecializácii Aplikovaná informatika: jedná sa o 12 dvojhodinových prednášok

Διαβάστε περισσότερα

Úvod 2 Predhovor... 2 Sylaby a literatúra... 2 Označenia... 2

Úvod 2 Predhovor... 2 Sylaby a literatúra... 2 Označenia... 2 Obsah Úvod Predhovor Sylaby a literatúra Označenia Euklidovské vektorové priestory 3 Skalárny súčin 3 Gram-Schmidtov ortogonalizačný proces 8 Kvadratické formy 6 Definícia a základné vlastnosti 6 Kanonický

Διαβάστε περισσότερα

Riadenie elektrizačných sústav

Riadenie elektrizačných sústav Riaenie elektrizačných sústav Paralelné spínanie (fázovanie a kruhovanie) Pomienky paralelného spínania 1. Rovnaký sle fáz. 2. Rovnaká veľkosť efektívnych honôt napätí. 3. Rovnaká frekvencia. 4. Rovnaký

Διαβάστε περισσότερα

DOMÁCE ZADANIE 1 - PRÍKLAD č. 2

DOMÁCE ZADANIE 1 - PRÍKLAD č. 2 Mechanizmy s konštantným prevodom DOMÁCE ZADANIE - PRÍKLAD č. Príklad.: Na obrázku. je zobrazená schéma prevodového mechanizmu tvoreného čelnými a kužeľovými ozubenými kolesami. Určte prevod p a uhlovú

Διαβάστε περισσότερα

16. Základne rovinné útvary kružnica a kruh

16. Základne rovinné útvary kružnica a kruh 16. Základne rovinné útvary kružnica a kruh Kružnica k so stredom S a polomerom r nazývame množinou všetkých bodov X v rovine, ktoré majú od pevného bodu S konštantnú vzdialenosť /SX/ = r, kde r (patri)

Διαβάστε περισσότερα

Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008)

Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008) ermodynamika nútorná energia lynov,. veta termodynamická, Izochorický dej, Izotermický dej, Izobarický dej, diabatický dej, Práca lynu ri termodynamických rocesoch, arnotov cyklus, Entroia Dolnkové materiály

Διαβάστε περισσότερα

3 Kinematika hmotného bodu

3 Kinematika hmotného bodu 29 3 Kinematika hmotného bodu Pohyb vo všeobecnosti zahŕňa všetky zmeny a procesy, ktoré prebiehajú vo vesmíre. Je neoddeliteľnou vlastnosťou hmoty. Časť fyziky, ktorá sa zaoberá popisom pohybu telies,

Διαβάστε περισσότερα

Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014

Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014 Matematika 2 časť: Funkcia viac premenných Letný semester 2013/2014 RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk

Διαβάστε περισσότερα

FYZIKA DUSˇAN OLCˇA K - ZUZANA GIBOVA - OL GA FRICˇOVA Aprı l 2006

FYZIKA DUSˇAN OLCˇA K - ZUZANA GIBOVA - OL GA FRICˇOVA Aprı l 2006 FYZIKA DUŠAN OLČÁK - ZUZANA GIBOVÁ - OL GA FRIČOVÁ Apríl 2006 2 Obsah 1 o-g-f:mechanický pohyb tuhého telesa 5 1.1 Kinematika hmotného bodu......................... 6 1.1.1 Rýchlost a zrýchlenie pohybu....................

Διαβάστε περισσότερα

Vzorové riešenia 3. kola zimnej série 2014/2015

Vzorové riešenia 3. kola zimnej série 2014/2015 riesky@riesky.sk Riešky matematický korešpondenčný seminár Vzorové riešenia. kola zimnej série 04/05 Príklad č. (opravovali Tete, Zuzka): Riešenie: Keďže číslo má byť deliteľné piatimi, musí končiť cifrou

Διαβάστε περισσότερα

Planárne a rovinné grafy

Planárne a rovinné grafy Planárne a rovinné grafy Definícia Graf G sa nazýva planárny, ak existuje jeho nakreslenie D, v ktorom sa žiadne dve hrany nepretínajú. D sa potom nazýva rovinný graf. Planárne a rovinné grafy Definícia

Διαβάστε περισσότερα

,Zohrievanie vody indukčným varičom bez pokrievky,

,Zohrievanie vody indukčným varičom bez pokrievky, Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť

Διαβάστε περισσότερα

STATIKA STAVEBNÝCH KONŠTRUKCIÍ I Doc. Ing. Daniela Kuchárová, PhD. Priebeh vnútorných síl na prostom nosníku a na konzole od jednotlivých typov

STATIKA STAVEBNÝCH KONŠTRUKCIÍ I Doc. Ing. Daniela Kuchárová, PhD. Priebeh vnútorných síl na prostom nosníku a na konzole od jednotlivých typov Priebeh vnútorných síl na prostom nosníku a na konzole od jednotlivých typov zaťaženia Prostý nosník Konzola 31 Príklad č.14.1 Vypočítajte a vykreslite priebehy vnútorných síl na nosníku s previslými koncami,

Διαβάστε περισσότερα

Technická univerzita v Košiciach. Zbierka riešených a neriešených úloh. z matematiky. pre uchádzačov o štúdium na TU v Košiciach

Technická univerzita v Košiciach. Zbierka riešených a neriešených úloh. z matematiky. pre uchádzačov o štúdium na TU v Košiciach Technická univerzita v Košiciach Zbierka riešených a neriešených úloh z matematiky pre uchádzačov o štúdium na TU v Košiciach Martin Bača Ján Buša Andrea Feňovčíková Zuzana Kimáková Denisa Olekšáková Štefan

Διαβάστε περισσότερα

PageRank algoritmus. Univerzita Komenského v Bratislave Fakulta Matematiky, Fyziky a Informatiky

PageRank algoritmus. Univerzita Komenského v Bratislave Fakulta Matematiky, Fyziky a Informatiky Univerzita Komenského v Bratislave Fakulta Matematiky, Fyziky a Informatiky PageRank algoritmus Bakalárska práca Študijný program: Informatika Študijný odbor: 9.2.1 Informatika Školiace pracovisko: Katedra

Διαβάστε περισσότερα

1 Úvod Predhovor Sylaby a literatúra Základné označenia... 3

1 Úvod Predhovor Sylaby a literatúra Základné označenia... 3 Obsah 1 Úvod 3 1.1 Predhovor...................................... 3 1.2 Sylaby a literatúra................................. 3 1.3 Základné označenia................................. 3 2 Množiny a zobrazenia

Διαβάστε περισσότερα

Povrch a objem ihlana

Povrch a objem ihlana Povrch a objem ihlana D. Daný je mnohouholník (riadiaci alebo určujúci útvar) a jeden bod (vrchol), ktorý neleží v rovine mnohouholníka. Ak hraničnými bodmi mnohouholníka (stranami) vedieme polpriamky

Διαβάστε περισσότερα

p(α 1 ) = u 1. p(α n ) = u n. Definícia (modulárna reprezentácia polynómu). Zobrazenie

p(α 1 ) = u 1. p(α n ) = u n. Definícia (modulárna reprezentácia polynómu). Zobrazenie 1. Rychlá Fourierová transformácia Budeme značiť teleso T a ω jeho prvok. Veta 1.1 (o interpolácií). Nech α 0, α 1,..., α n sú po dvoch rôzne prvky telesa T[x]. Potom pre každé u 0, u 1,..., u n T existuje

Διαβάστε περισσότερα

Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla

Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti príloha č. 7 k vyhláške č. 428/2010 Názov prevádzkovateľa verejného : Spravbytkomfort a.s. Prešov Adresa: IČO: Volgogradská 88, 080 01 Prešov 31718523

Διαβάστε περισσότερα

Zobrazenia v rovine. Každé zhodné zobrazenie v rovine je prosté a existuje k nemu inverzné zobrazenie.

Zobrazenia v rovine. Každé zhodné zobrazenie v rovine je prosté a existuje k nemu inverzné zobrazenie. Zobrazenia v rovine Zobrazením Z z množiny A do množiny B nazývame predpis, ktorý každému prvku x množiny A priraďuje práve jeden prvok y množiny B. Zobrazenie v rovine priraďuje každému bodu X danej roviny

Διαβάστε περισσότερα

Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita.

Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita. Teória prednáška č. 9 Deinícia parciálna deriácia nkcie podľa premennej Nech nkcia Ak eistje limita je deinoaná okolí bod [ ] lim. tak túto limit nazýame parciálno deriácio nkcie podľa premennej bode [

Διαβάστε περισσότερα

Quaternióny Pomocný učebný text (len pre interné použitie)

Quaternióny Pomocný učebný text (len pre interné použitie) Spracoval: Štefan Maďar Editor: Branislav Sobota Pomocný učebný text (len pre interné použitie) 998-0 Obsah. ÚVOD.... SÚRADNICOVÝ SYSTÉM.... SMER ROTÁCIE....3 EULEROVE UHLY.... GEOMETRICKÉ TRANSFORMÁCIE....

Διαβάστε περισσότερα

5 Trecie sily. 5.1 Šmykové trenie

5 Trecie sily. 5.1 Šmykové trenie 79 5 Trecie sily S trením sa stretávame doslova na každom kroku. Bez trenia by nebola možná naša chôdza, pohyb auta či bicykla, nemohli by sme písať perom, prípadne ho držať v ruke. Skrutky by nespĺňali

Διαβάστε περισσότερα

Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky

Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky Chí kvadrát test dobrej zhody Metódy riešenia úloh z pravdepodobnosti a štatistiky www.iam.fmph.uniba.sk/institute/stehlikova Test dobrej zhody I. Chceme overiť, či naše dáta pochádzajú z konkrétneho pravdep.

Διαβάστε περισσότερα

stereometria - študuje geometrické útvary v priestore.

stereometria - študuje geometrické útvary v priestore. Geometria Geometria (z gréckych slov Geo = zem a metro = miera, t.j. zememeračstvo) je disciplína matematiky prvýkrát spopularizovaná medzi starovekými grékmi Tálesom (okolo 624-547 pred Kr.), ktorý sa

Διαβάστε περισσότερα

22 Špeciálne substitúcie, postupy a vzorce používané pri výpočte

22 Špeciálne substitúcie, postupy a vzorce používané pri výpočte Špeciálne substitúcie, postupy vzorce používné pri výpočte niektorých ďlších typov neurčitých integrálov. Pomocou vhodnej substitúcie tvru t = n + b (potom = tn b, = n tn dt) vypočítjte neurčitý integrál

Διαβάστε περισσότερα

4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti

4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti 4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti Výroková funkcia (forma) ϕ ( x) je formálny výraz (formula), ktorý obsahuje znak x, pričom x berieme z nejakej množiny M. Ak za x zvolíme

Διαβάστε περισσότερα

Príklady na precvičovanie Fourierove rady

Príklady na precvičovanie Fourierove rady Príklady na precvičovanie Fourierove rady Ďalším významným typom funkcionálnych radov sú trigonometrické rady, pri ktorých sú jednotlivé členy trigonometrickými funkciami. Konkrétne, jedná sa o rady tvaru

Διαβάστε περισσότερα

1. Komplexné čísla. Doteraz ste pracovali s číslami, ktoré pochádzali z nasledovných množín:

1. Komplexné čísla. Doteraz ste pracovali s číslami, ktoré pochádzali z nasledovných množín: 1. Komplexné čísla Po preštudovaní danej kapitoly by ste mali byť shopní: poznať použitie a význam komplexnýh čísel v elektrikýh obvodoh rozumieť pojmom reálna a imaginárna časť, imaginárna jednotka, veľkosť,

Διαβάστε περισσότερα

4 Dynamika hmotného bodu

4 Dynamika hmotného bodu 61 4 Dynamika hmotného bodu V predchádzajúcej kapitole - kinematike hmotného bodu sme sa zaoberali pohybom a pokojom telies, čiže formou pohybu. Neriešili sme príčiny vzniku pohybu hmotného bodu. A práve

Διαβάστε περισσότερα

Mocniny : 1. časť. A forma. B forma. 1. Kontrolná práca z matematiky 8. ročník

Mocniny : 1. časť. A forma. B forma. 1. Kontrolná práca z matematiky 8. ročník 1. Kontrolná práca z matematiky 8. ročník Mocniny : 1. časť 1. Vypočítajte pomocou tabuliek : a) 100 ; 876 ; 15,89 ; 1, ; 0,065 ; b) 5600 ; 16 ; 0,9 ;,64 ; 1,4 ; c) 1,5 ; 170 ; 0,01 ; 148 0, 56 ; 64, 5

Διαβάστε περισσότερα

UNIVERZITA KOMENSKE HO V BRATISLAVE Fakulta matematiky, fyziky a informatiky. Dua lne c ı sla. Bakala rska pra ca. S tudijny odbor: Matematika

UNIVERZITA KOMENSKE HO V BRATISLAVE Fakulta matematiky, fyziky a informatiky. Dua lne c ı sla. Bakala rska pra ca. S tudijny odbor: Matematika UNIVERZITA KOMENSKE HO V BRATISLAVE Fakulta matematiky, fyziky a informatiky Dua lne c ı sla Bakala rska pra ca S tudijny odbor: Matematika Vedu ci bakala rskej pra ce: RNDr. Pavel Chalmoviansky, PhD.

Διαβάστε περισσότερα

Metódy vol nej optimalizácie

Metódy vol nej optimalizácie Metódy vol nej optimalizácie Metódy vol nej optimalizácie p. 1/28 Motivácia k metódam vol nej optimalizácie APLIKÁCIE p. 2/28 II 1. PRÍKLAD: Lineárna regresia - metóda najmenších štvorcov Na základe dostupných

Διαβάστε περισσότερα

PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz

PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz KATEDRA APLIKOVANEJ MATEMATIKY A INFORMATIKY STROJNÍCKA FAKULTA TU KOŠICE PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY Pomôcka pre prípravný kurz 8 ZÁKLADNÉ ALGEBRAICKÉ VZORCE ) (a±b)

Διαβάστε περισσότερα

Východ a západ Slnka

Východ a západ Slnka Východ a západ Slnka Daniel Reitzner februára 27 Je všeobecne známe, že v našich zemepisných šírkach dĺžka dňa závisí od ročného obdobia Treba však o čosi viac pozornosti na to, aby si človek všimol, že

Διαβάστε περισσότερα

Numerické metódy matematiky I

Numerické metódy matematiky I Prednáška č. 7 Numerické metódy matematiky I Riešenie sústav lineárnych rovníc ( pokračovanie ) Prednáška č. 7 OBSAH 1. Metóda singulárneho rozkladu (SVD) Úvod SVD štvorcovej matice SVD pre menej rovníc

Διαβάστε περισσότερα

1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2

1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2 1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2 Rozdiel LMT medzi dvoma miestami sa rovná rozdielu ich zemepisných dĺžok. Pre prevod miestnych časov platí, že

Διαβάστε περισσότερα

STRIEDAVÝ PRÚD - PRÍKLADY

STRIEDAVÝ PRÚD - PRÍKLADY STRIEDAVÝ PRÚD - PRÍKLADY Príklad0: V sieti je frekvencia 50 Hz. Vypočítajte periódu. T = = = 0,02 s = 20 ms f 50 Hz Príklad02: Elektromotor sa otočí 50x za sekundu. Koľko otáčok má za minútu? 50 Hz =

Διαβάστε περισσότερα

Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R

Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R Ako nadprirodzené stretnutie s murárikom červenokrídlym naformátovalo môj profesijný i súkromný život... Osudové stretnutie s murárikom

Διαβάστε περισσότερα

Pevné ložiská. Voľné ložiská

Pevné ložiská. Voľné ložiská SUPPORTS D EXTREMITES DE PRECISION - SUPPORT UNIT FOR BALLSCREWS LOŽISKA PRE GULIČKOVÉ SKRUTKY A TRAPÉZOVÉ SKRUTKY Výber správnej podpory konca uličkovej skrutky či trapézovej skrutky je dôležité pre správnu

Διαβάστε περισσότερα

Definícia funkcie sínus a kosínus

Definícia funkcie sínus a kosínus a-go-0-t List Definícia funkcie sínus a kosínus RNDr. arián acko U: Dnešnú podobu goniometrickým funkciám dal až v 8. storočí Leonard Euler. Skúmal ich hodnot ako čísla, nie ako úsečk, ako sa to robilo

Διαβάστε περισσότερα

AerobTec Altis Micro

AerobTec Altis Micro AerobTec Altis Micro Záznamový / súťažný výškomer s telemetriou Výrobca: AerobTec, s.r.o. Pionierska 15 831 02 Bratislava www.aerobtec.com info@aerobtec.com Obsah 1.Vlastnosti... 3 2.Úvod... 3 3.Princíp

Διαβάστε περισσότερα