ΜΕΤΡΗΣΗ ΜΙΑΣ ΠΛΕΥΡΑΣ ΤΡΙΓΩΝΟΥ ΣΥΝΑΡΤΗΣΕΙ ΤΩΝ ΑΛΛΩΝ ΠΛΕΥΡΩΝ ΤΟΥ ΚΑΙ ΤΩΝ ΠΡΟΒΟΛΩΝ ΤΗΣ ΣΕ ΑΥΤΕΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΜΕΤΡΗΣΗ ΜΙΑΣ ΠΛΕΥΡΑΣ ΤΡΙΓΩΝΟΥ ΣΥΝΑΡΤΗΣΕΙ ΤΩΝ ΑΛΛΩΝ ΠΛΕΥΡΩΝ ΤΟΥ ΚΑΙ ΤΩΝ ΠΡΟΒΟΛΩΝ ΤΗΣ ΣΕ ΑΥΤΕΣ"

Transcript

1 2 ΥΝ ΤΗ Υ Τ ΤΗΝ ΥΗ 363 ΜΤΗΗ Μ ΛΥ ΤΩΝΥ ΥΝΤΗ ΤΩΝ ΛΛΩΝ ΛΥΩΝ ΤΥ ΤΩΝ ΛΩΝ ΤΗ ΥΤ Μστροιάννης Ν. νάρυρος Μθημτικός πιμορφωτής Ν.Τ. ΛΗΗ Το θέμ προς διπρμάτευση νφέρετι στη σχέση των εμδών που σχημτίζοντι σε τρίωνο :1) πό το τετράωνο μις πλευράς έστω 2) το ορθοώνιο που σχημτίζετι με διστάσεις την δεύτερη πλευρά κι την προολή της πλευράς πάνω σε υτή κι 3) το ορθοώνιο που σχημτίζετι με διστάσεις την τρίτη πλευρά κι την προολή της σε υτή. Το λοισμικό που θ χρησιμοποιηθεί είνι το sketchpad.ι σχέσεις των εμδών διμορφώνοντι νάλο με το είδος της κάθε ωνίς του τριώνου. Με την κτάλληλη μετκίνηση της κορυφής του τριώνου κι το είδος της ωνίς το πρόλημ εξειδικεύετι στο πυθόρειο θεώρημ, όπως κι στη μετρική σχέση της μις κάθετης πλευράς, με την υποτείνουσ κι την προολή της σε υτή. πίσης πως διμορφώνετι η σχέση που υφίσττι μετξύ των εμδών ότν οι ωνίες ή ίνοντι μλείες ΛΞ Λ: Sketchpad, ισοδύνμ, πράλληλη μετφορά, είδος ωνίς, εμδόν. Τ ΛΗΜ ν κι είνι ύψη ενός οξυώνιου τριώνου, ν ποδείξετε ότι: 1) 2 = +. σχύει η σχέση υτή ότν η ωνί είνι ) ορθή ; ) μλεί ; 2) ως διμορφώνετι η πρπάνω σχέση ότν η ωνί είνι : 1) ορθή ; 2) μλεί; Τι προτάσεις θεμελικές συνάετι πό τ διάφορ είδη των ωνιών του τριώνου; Υπολοισμός της πλευράς σε τρίωνο ΤΥΗ ΞΥΩΝΥ ΤΩΝΥ : τσκευάζουμε τμήμ = κι με διάμετρο την κτσκευάζουμε κύκλο. τ σημεί κι φέρουμε κθέτους που τέμνουν τον κύκλο με κέντρο το (μέσον του ) κι κτίν /2 στ,.ότν το σημείο ρίσκετι εκτός του κύκλου (,/2) κι στην τινί των πρλλήλων το τρίωνο θ είνι

2 364 2 ΥΝ ΤΗ Υ Τ ΤΗΝ ΥΗ οξυώνιο. σχήμ 1 τσκευάζουμε εξωτερικά του τριώνου στην πλευρά ορθοώνιο με άση το κι ύψος την προολή της στην.μοίως στην πλευρά ορθοώνιο με άση το κι ύψος την προολή της στην κι τέλος τετράωνο με πλευρά την. ' ' σχήμ 2 ΜΥ ΤΥ ΜΤΥ ΤΗ ΛΥ Μετκινώντς το κι των τμημάτων μετκινούντι τ ορθοώνι έτσι ώστε τ ορθοώνι ν πρμένουν ισοδύνμ των ρχικών, ιτί η κάθε πλευρά μετκινείτι πράλληλ προς την πένντι. ρτηρούμε ότι τ δύο ορθοώνι συμπληρώνουν το τετράωνο πλευράς.

3 2 ΥΝ ΤΗ Υ Τ ΤΗΝ ΥΗ 365 ' ' ' ' Ζ σχήμ 3 σχήμ 4 ΜΤΤΗ ΤΥ ΤΩΝΥ ΩΝ ΤΗΝ ΥΗ Μετκινώντς το σημείο ώστε ν συμπέσει με τυχίο σημείου του κύκλου, το τρίωνο ίνετι ορθοώνιο κι οι προολές τυτίζοντι με τις πλευρές κι έτσι διμορφώνετι το υθόρειο θεώρημ. πνλμάνοντς τις μετκινήσεις των w κι διπιστώνουμε ότι ισχύει το πυθόρειο θεώρημ. ' Ζ ' ' ' Ζ σχήμ 5 σχήμ 6 ΜΤΤΗ ΤΥ ΤΩΝΥ ΜΛΥΩΝ ΤΗΝ ΩΝ Μετκινώντς το σημείο ώστε ν ρεθεί εντός του κύκλου, το τρίωνο ίνετι μλυώνιο κι πάλι διπιστώνετι ότι η πλευρά προσδιορίζετι όπως κι ότν η ωνί είνι οξεί ή μλεί.

4 366 2 ΥΝ ΤΗ Υ Τ ΤΗΝ ΥΗ ' ' Ζ ' ' σχήμ 7 σχήμ 8 ΜΤΤΗ ΤΥ ΤΩΝΥ ΜΛΥΩΝ ΤΗΝ ΩΝ η Ότν η κορυφή ρεθεί εκτός της τινίς των πρλλήλων, ν είνι προς το μέρος της κορυφής τότε το τρίωνο ίνετι μλυώνιο με μλεί ωνί την. Μετκινώντς τ σημεί w κι πρτηρούμε ότι η ρχική σχέση δεν ισχύει λλά μετμορφώνετι κι ισχύει : 2 = - ενώ ότν η κορυφή ρεθεί πλησιέστερ στην κορυφή κι εκτός της τινίς των πρλλήλων η σχέση ίνετι : 2 = - ' ' ' ' Ζ ' ' ' ' Ζ σχήμ 9 σχήμ 10 σχήμ 11 σχήμ 12 ΜΤΤΗ ΤΥ ΤΩΝΥ ΩΝ ΤΗ ΩΝ Ότν η κορυφή συμπέσει με το σημείο του τόξου τότε το τρίωνο ίνετι ορθοώνιο στη κορυφή κι ισχύει το θεώρημ : Το τετράωνο μις κάθετης πλευράς ορθοωνίου τριώνου είνι ίσο με το ινόμενο της υποτείνουσς με την προολή της σε υτή.

5 2 ΥΝ ΤΗ Υ Τ ΤΗΝ ΥΗ 367 ' 2 ' σχήμ 13 Το πρόλημ επεκτείνετι κι στον προσδιορισμό της δύνμης σημείου ως προς κύκλο ' ' ' ' Ζ σχήμ 14 σχήμ 15

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΓ ΓΔ

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΓ ΓΔ ΠΥΘΟΡΕΙΟ ΘΕΩΡΗΜ Στο διπλνό ορθοώνιο τρίωνο, έχουμε φέρει πλά το ύψος που κτλήει στην υποτείνουσ. Είνι προφνές ότι, με υτό τον τρόπο, το μεάλο ορθοώνιο τρίωνο χωρίστηκε σε δύο μικρότερ ορθοώνι, τ κι. Σε

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ Τ Ρ Ι Γ Ω Ν Ω Ν

ΣΤΟΙΧΕΙΑ Τ Ρ Ι Γ Ω Ν Ω Ν ΣΤΟΙΧΕΙ Τ Ρ Ι Ω Ν Ω Ν Θυμάμι ότι... ˆ + ˆ + ˆ = 180 ο ντί ν ράφουμε συνέχει «το τρίωνο» μπορούμε ν ράφουμε Δ. ΠΛΕΥΡΕΣ = = = ΩΝΙΕΣ = = = ν χωρίσουμε τ τρίων σε κτηορίες, με κριτήριο τ κύρι στοιχεί τους,

Διαβάστε περισσότερα

9.4. Ασκήσεις σχολικού βιβλίου σελίδας 194. Ερωτήσεις κατανόησης. Στο παρακάτω σχήµα να συµπληρώσετε τα κενά Λύση

9.4. Ασκήσεις σχολικού βιβλίου σελίδας 194. Ερωτήσεις κατανόησης. Στο παρακάτω σχήµα να συµπληρώσετε τα κενά Λύση 1 9.4 σκήσεις σχολικού βιβλίου σελίδς 194 Ερωτήσεις κτνόησης 1. Στο πρκάτω σχήµ ν συµπληρώσετε τ κενά Ε i) = + +. ii) = + +.Ε. Ν βρεθεί το είδος των ωνιών του τριώνου ότν i) β = + ii) = β iii) β = i) β

Διαβάστε περισσότερα

= ΑΓ, τότε τα σημεία Α, Β, Γ είναι συνευθειακά. Σ Λ 2. * Αν. = (- 2, 2) είναι παράλληλο με το

= ΑΓ, τότε τα σημεία Α, Β, Γ είναι συνευθειακά. Σ Λ 2. * Αν. = (- 2, 2) είναι παράλληλο με το Ερωτήσεις του τύπου «Σωστό-Λάθος» * Αν ΑΒ ΒΓ ΑΓ τότε τ σημεί Α Β Γ είνι συνευθεικά Σ Λ * Αν * Αν ΑΒ ΒΓ τότε ΓΔ 4 * Αν λ τότε // Σ Λ 5 * Αν ΑΒ ΒΑ τότε ΑΒ τότε ΑΔ Σ Λ Σ Λ Σ Λ 6 * Τ δινύσμτ ΑΒ κι ΟΑ - ΟΒ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Πηγή: KEE

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Πηγή: KEE ΚΕΦΑΛΑΙΟ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Πηγή: KEE 1. Το σηµείο Μ (-, ) νήκει στη γρµµή µε εξίσωση Α. = = - Γ. = 1. ( ) ( - ) = 1 Ε. = -. Το κέντρο του κύκλου που έχει διάµετρο ΑΒ µε Α

Διαβάστε περισσότερα

1. * Το σηµείο Μ (- 2, 3) ανήκει στη γραµµή µε εξίσωση Α. x = 3 Β. x = - 2 Γ. x 2 + y 2 = 1. (x + 2) 2 + (x - 3) 2 = 1 Ε.

1. * Το σηµείο Μ (- 2, 3) ανήκει στη γραµµή µε εξίσωση Α. x = 3 Β. x = - 2 Γ. x 2 + y 2 = 1. (x + 2) 2 + (x - 3) 2 = 1 Ε. Ερωτήσεις πολλπλής επιλογής 1. * Το σηµείο Μ (-, ) νήκει στη γρµµή µε εξίσωση Α. = Β. = - Γ. = 1. ( ) ( - ) = 1 Ε. = -. * Το κέντρο του κύκλου που έχει διάµετρο ΑΒ µε Α (1, -) κι Β (7, ), έχει συντετγµένες

Διαβάστε περισσότερα

9.4 9.6. Γενίκευση του Πυθαγόρειου και Θεωρήµατα ιαµέσων. Θεώρηµα αµβλείας γωνίας. Πυθαγόρειο Α = 90 ο α 2 = β 2 + γ 2. 2. Πορίσµατα α 2 > β 2 + γ 2

9.4 9.6. Γενίκευση του Πυθαγόρειου και Θεωρήµατα ιαµέσων. Θεώρηµα αµβλείας γωνίας. Πυθαγόρειο Α = 90 ο α 2 = β 2 + γ 2. 2. Πορίσµατα α 2 > β 2 + γ 2 1 9. 9.6 ενίκευση του Πυθόρειου κι Θεωρήτ ιέσων ΘΕΩΡΙ 1. Θεώρη οξείς ωνίς < 90 ο + Θεώρη λείς ωνίς > 90 ο + + Πυθόρειο 90 ο +. Πορίστ > + > 90 ο + 90 ο < + < 90 ο 3. Νόος συνηιτόνων Σε κάθε τρίωνο ισχύει

Διαβάστε περισσότερα

έλλειψη µε εστίες Ε (- γ, 0), Ε (γ, 0) και σταθερό άθροισµα 2α. 2. * Η εξίσωση

έλλειψη µε εστίες Ε (- γ, 0), Ε (γ, 0) και σταθερό άθροισµα 2α. 2. * Η εξίσωση Γ. ΕΛΛΕΙΨΗ Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. * Η εξίσωση x + y = µε = γ πριστάνει έλλειψη µε εστίες Ε (- γ, 0), Ε (γ, 0) κι στθερό άθροισµ.. * Η εξίσωση x + y = µε = γ πριστάνει έλλειψη µε εστίες

Διαβάστε περισσότερα

ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ ( ) = +. ( ) ( ) ( ) ( ) ( ) x x ( ) ( ) ΙΑΜΑΝΤΟΠΟΥΛΟΣ ΘΥΜΙΟΣ 1

ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ ( ) = +. ( ) ( ) ( ) ( ) ( ) x x ( ) ( ) ΙΑΜΑΝΤΟΠΟΥΛΟΣ ΘΥΜΙΟΣ 1 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ Υπενθυµίζουµε ότι ν στ σηµεί Α, Β ενός άξον ντιστοιχίζοντι οι πργµτικοί ριθµοί, ντίστοιχ τότε: ( ΑΒ) = Β Α Α Β Σχετικά µε την πόστση δύο σηµείων στο κρτεσινό

Διαβάστε περισσότερα

3. ** Στο επίπεδο δίνονται τα µη µηδενικά διανύσµατα α r,β r και γ r, τα οποία ανά δυο είναι µη συγγραµµικά. Να βρείτε το άθροισµά τους αν το διάνυσµα

3. ** Στο επίπεδο δίνονται τα µη µηδενικά διανύσµατα α r,β r και γ r, τα οποία ανά δυο είναι µη συγγραµµικά. Να βρείτε το άθροισµά τους αν το διάνυσµα Ερωτήσεις νάπτυξης 1 * Ν κτσκευάσετε το άθροισµ των δινυσµάτων + + 3 όπου 2 * ι ποιες τιµές του πρµτικού ριθµού λ ισχύει ( λ ) < 5 0 ; 3 ** Στο επίπεδο δίνοντι τ µη µηδενικά δινύσµτ, κι, τ οποί νά δυο

Διαβάστε περισσότερα

Κίνηση σε Μαγνητικό πεδίο

Κίνηση σε Μαγνητικό πεδίο Κίνηση σε γνητικό πεδίο 4.1. Ακτίν κι Περίοδος στο ΟΠ. Από έν σημείο Α μέσ σε ομογενές μγνητικό πεδίο έντσης Β=2Τ, εκτοξεύοντι δύο σωμτίδι Σ 1 κι Σ 2 ίδις μάζς m=10-10 kg κι ντίθετων φορτίων, με τχύτητες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΣΚΗΣΕΙΣ Πηγή: KEE

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΣΚΗΣΕΙΣ Πηγή: KEE 1. Ν ρεθεί η εξίσωση του κύκλου σε κθεµιά πό τις πρκάτω περιπτώσεις: ) έχει κέντρο την ρχή των ξόνων κι κτίν ) έχει κέντρο το σηµείο (3, - 1) κι κτίν 5 γ) έχει κέντρο το σηµείο (-, 1) κι διέρχετι πό το

Διαβάστε περισσότερα

ΠΟΤΕ ΔΥΟ ΤΡΙΓΩΝΑ ΕΙΝΑΙ IΣΑ

ΠΟΤΕ ΔΥΟ ΤΡΙΓΩΝΑ ΕΙΝΑΙ IΣΑ ΠΟΤ ΥΟ ΤΡΙΩΝ ΙΝΙ IΣ Πότ δύο Τρίων ίνι ίσ; ύο τρίων ίνι ίσ ότν τυτίζοντι! (μ μτφορά, στροφή, νάκλση ή κάποιο συνδυσμό π υτά) Στροφή νάκλση Μτφορά Τ τρίων που έχουν το ίδιο σχήμ κι μέθος ίνι ΙΣ Τρίων. ντίστοιχ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ. γ < ΟΑ + ΟΒ ΜΓ< ΟΜ + ΟΓ γ + ΜΓ < ΟΑ + ΟΒ + ΟΜ + ΟΓ γ + ΜΓ < (ΟΑ + ΟΓ) + (ΟΜ + ΟΒ) γ + ΜΓ < ΑΓ + ΜΒ γ + ΜΓ < β + ΜΒ

ΑΣΚΗΣΕΙΣ. γ < ΟΑ + ΟΒ ΜΓ< ΟΜ + ΟΓ γ + ΜΓ < ΟΑ + ΟΒ + ΟΜ + ΟΓ γ + ΜΓ < (ΟΑ + ΟΓ) + (ΟΜ + ΟΒ) γ + ΜΓ < ΑΓ + ΜΒ γ + ΜΓ < β + ΜΒ 3.0 3. ΘΕΩΡΙ. νισοτικές σχέσεις σε τρίωνο Κάθε εξωτερική ωνί τριώνου είνι µελύτερη πό τις πένντι εσωτερικές. πένντι πό άνισες πλευρές βρίσκοντι άνισες ωνίες κι ντίστροφ. Τριωνική νισότητ : β < < β + (υποτίθετι

Διαβάστε περισσότερα

Μετρικές σχέσεις στο ορθογώνιο τρίγωνο. γ Αν δίνονται δύο οποιαδήποτε από τα τµήµατα του σχήµατος, µπορούµε να υπολογίζουµε τα υπόλοιπα.

Μετρικές σχέσεις στο ορθογώνιο τρίγωνο. γ Αν δίνονται δύο οποιαδήποτε από τα τµήµατα του σχήµατος, µπορούµε να υπολογίζουµε τα υπόλοιπα. 1 9.1 9. Μετρικές σχέσεις στο ορθογώνιο τρίγωνο ΘΕΩΡΙ 1. προβολή του στην ε προβολή του στην ε προβολή του στην ε ε. Τρίγωνο ορθογώνιο στο κι ύψος. Τότε = = = = β + γ κι ντίστροφ = 1 υ = 1 β + 1 γ ν δίνοντι

Διαβάστε περισσότερα

ν ν = α 0 α β = ( ) β α = α ( α β)( α β)

ν ν = α 0 α β = ( ) β α = α ( α β)( α β) Γ ΓΥΜΝΑΣΙΟΥ ν 0 ν = 1 = β β ν 1= ν µ = ν + µ ν ν µ 1 µ = ν = ν ( ν ) µ ν ν = ν µ β = β ( β) ν = ν βν ν > 0 τότε 2 = β = β β = β Ιδιότητες υνάµεων ν > β τότε + γ > β+ γ. ν > β κι γ > δ τότε + γ > β+ δ.

Διαβάστε περισσότερα

3.4 Η ΥΠΕΡΒΟΛΗ. Ορισμός Υπερβολής

3.4 Η ΥΠΕΡΒΟΛΗ. Ορισμός Υπερβολής 6 3. Η ΥΠΕΡΒΟΛΗ Ορισμός Υπερολής Έστω E κι Ε δύο σημεί ενός επιπέδου. Ονομάζετι υπερολή με εστίες τ σημεί E κι Ε ο εωμετρικός τόπος C των σημείων του επιπέδου των οποίων η πόλυτη τιμή της διφοράς των ποστάσεων

Διαβάστε περισσότερα

3.3 Η ΕΛΛΕΙΨΗ. Ορισμός Έλλειψης

3.3 Η ΕΛΛΕΙΨΗ. Ορισμός Έλλειψης 0 33 Η ΕΛΛΕΙΨΗ Ορισμός Έλλειψης Έστω E κι Ε δύο σημεί ενός επιπέδου Ονομάζετι έλλειψη με εστίες τ σημεί E κι Ε ο εωμετρικός τόπος C των σημείων του επιπέδου των οποίων το άθροισμ των ποστάσεων πό τ E κι

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999 Θέµτ Μθηµτικών Θετικής Κτεύθυνσης Β Λυκείου 999 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµ ο Α. Έστω a, ) κι, ) δύο δινύσµτ του κρτεσινού επιπέδου Ο. ) Ν εκφράσετε χωρίς πόδειξη) το εσωτερικό γινόµενο των δινυσµάτων a κι συνρτήσει

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου AΣΚΗΣΕΙΣ ΣΤΙΣ ΙΣΟΤΗΤΕΣ ΤΡΙΓΩΝΩΝ

Μαθηματικά Γ Γυμνασίου AΣΚΗΣΕΙΣ ΣΤΙΣ ΙΣΟΤΗΤΕΣ ΤΡΙΓΩΝΩΝ ε ω μ ε τ ρ ί AΣΚΗΣΕΙΣ ΣΤΙΣ ΙΣΟΤΗΤΕΣ ΤΡΙΩΝΩΝ 1. Σε ισοσκελές τρίγωνο ΑΒ (ΑΒ=Α) προεκτείνουμε τη βάση Β κτά ίσ τμήμτ Β=Ε. Ν δείξετε ότι το τρίγωνο ΑΕ είνι ισοσκελές. 2. Ν κτσκευάσετε σε ισοσκελές τρίγωνο

Διαβάστε περισσότερα

Σχεδίαση µε τη χρήση Η/Υ

Σχεδίαση µε τη χρήση Η/Υ Σχεδίση µε τη χρήση Η/Υ Κ Ε Φ Λ Ι 1 Γ Ε Ω Μ Ε Τ Ρ Ι Κ Ε Σ Κ Τ Σ Κ Ε Υ Ε Σ Ρ Λ Ε Ω Ν Ι Σ Ν Θ Π Υ Λ Σ, Ε Π Ι Κ Υ Ρ Σ Κ Θ Η Γ Η Τ Η Σ Τ Μ Η Μ Ι Ι Κ Η Σ Η Σ Κ Ι Ι Χ Ε Ι Ρ Ι Σ Η Σ Ε Ρ Γ Ω Ν Τ Ε Ι Λ Ρ Ι Σ Σ

Διαβάστε περισσότερα

2. ** Να βρείτε την εξίσωση του κύκλου που διέρχεται από το σηµείο (1, 0) και εφάπτεται στις ευθείες 3x + y + 6 = 0 και 3x + y - 12 = 0.

2. ** Να βρείτε την εξίσωση του κύκλου που διέρχεται από το σηµείο (1, 0) και εφάπτεται στις ευθείες 3x + y + 6 = 0 και 3x + y - 12 = 0. Ερωτήσεις νάπτυξης 1. ** Ν ρεθεί η εξίσωση του κύκλου σε κθεµιά πό τις πρκάτω περιπτώσεις: ) έχει κέντρο την ρχή των ξόνων κι κτίν ) έχει κέντρο το σηµείο (3, - 1) κι κτίν 5 γ) έχει κέντρο το σηµείο (-,

Διαβάστε περισσότερα

τριγώνου ΑΒΓ είναι κυκλώστε το γράµµα της σωστής απάντησης και αιτιολογήστε την απάντηση σας. Με βάση την τριγωνική ανισότητα για

τριγώνου ΑΒΓ είναι κυκλώστε το γράµµα της σωστής απάντησης και αιτιολογήστε την απάντηση σας. Με βάση την τριγωνική ανισότητα για 3.0 3. σκήσεις σχολικού βιβλίου σελίδς 57-58 Ερωτήσεις Κτνόησης. Χρκτηρίστε ( Σ ) σωστή ή λάθος ( ) κάθε µί πό τις επόµενες προτάσεις i) Η εξωτερική γωνί ˆ εξ τριγώνου είνι µεγλύτερη πό την ˆ ii) Η εξωτερική

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Β ΓΕΛ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ -ΚΕΦΑΛΑΙΑ:7 ο -8 ο -9 ο -10 ο. 2_19005 ΘΕΜΑ Β (7 ο -9 ο )

ΓΕΩΜΕΤΡΙΑ Β ΓΕΛ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ -ΚΕΦΑΛΑΙΑ:7 ο -8 ο -9 ο -10 ο. 2_19005 ΘΕΜΑ Β (7 ο -9 ο ) 0 05 ΓΕΩΜΕΤΡΙΑ Β ΓΕΛ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ -ΚΕΦΑΛΑΙΑ:7 ο -8 ο -9 ο -0 ο _9005 ΘΕΜΑ Β (7 ο -9 ο ) Σε τρίγωνο ΑΒΓ η διχοτόµος της γωνίς Αˆ τέµνει την πλευρά ΒΓ σε σηµείο, τέτοιο ώστε Β 3 =

Διαβάστε περισσότερα

10.4. Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις κατανόησης

10.4. Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις κατανόησης 0.4 σκήσεις σχολικού ιλίου σελίδς 0 Ερωτήσεις κτνόησης. Με την οήθει του τύπου Ε = ηµ, ν ποδείξετε ότι Ε Ε = ηµ = Η ισότητ ισχύει ότν ηµ =, δηλδή ˆ = 90 ο, δηλδή σε ορθοώνιο τρίωνο. Σε τρίωνο είνι () =

Διαβάστε περισσότερα

Γ. κινηθούµε 3 µονάδες κάτω και 4 µονάδες δεξιά. κινηθούµε 3 µονάδες κάτω και 4 µονάδες αριστερά Ε. κινηθούµε 3 µονάδες δεξιά και 4 µονάδες πάνω

Γ. κινηθούµε 3 µονάδες κάτω και 4 µονάδες δεξιά. κινηθούµε 3 µονάδες κάτω και 4 µονάδες αριστερά Ε. κινηθούµε 3 µονάδες δεξιά και 4 µονάδες πάνω Ερωτήσεις πολλπλής επιλογής 1. ** Αν η εξίσωση µε δύο γνώστους f (, ) = 0 (1) είνι εξίσωση µις γρµµής C, τότε Α. οι συντετγµένες µόνο µερικών σηµείων της C επληθεύουν την (1) Β. οι συντετγµένες των σηµείων

Διαβάστε περισσότερα

Άλλοι τύποι για το εµβαδόν τριγώνου και λόγος εµβαδών

Άλλοι τύποι για το εµβαδόν τριγώνου και λόγος εµβαδών 0. 0.5 Άλλοι τύποι γι το εµβδόν τριγώνου κι λόγος εµβδών ΘΕΩΡΙ. Ε= τ( τ )( τ β)( τ γ ) Ε = τ ρ Ε = β γ R Ε = β γ ηµ = γ ηµ = β ηµ ηµ = β ηµ = γ ηµ = R. ν δύο τρίγων έχουν ίσες βάσεις, τότε ο λόγος των

Διαβάστε περισσότερα

Γενικές ασκήσεις σελίδας

Γενικές ασκήσεις σελίδας Γενικές σκσεις σελίδς 9 3. ίνετι η εξίσωση + λ 0 (), όπου λ R. Ν ποδείξετε ότι γι κάθε τιµ του λ, η () πριστάνει κύκλο, του οποίου ζητείτι ν ρεθεί το κέντρο κι η κτίν. (ii) Ν ποδείξετε ότι όλοι οι κύκλοι

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΚΑΙ ΘΕΩΡΗΜΑΤΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΚΑΙ ΘΕΩΡΗΜΑΤΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΚΑΙ ΘΕΩΡΗΜΑΤΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ. Από τη κορυφή Β τριγώνου Γ φέρουµε ευθεί κάθετη στη διχοτόµο της Aεξ, η οποί τέµνει τη διχοτόµο υτή στο κι την προέκτση της ΓΑ στο Ε. Αν Μ µέσον της ΒΓ ν δειχθεί

Διαβάστε περισσότερα

Καρτεσιανές Συντεταγµένες

Καρτεσιανές Συντεταγµένες Γρφική Πράστση Συνάρτησης Κρτεσινές Συντετγµένες Κρτεσινό σύστηµ συντετγµένων ή ορθογώνιο σύστηµ ξόνων O είνι έν σύστηµ δύο κθέτων ξόνων O κι O ( 0 0) µε κοινή ρχή το σηµείο O,. O Ορθοκνονικό σύστηµ ξόνων

Διαβάστε περισσότερα

2.1 ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ

2.1 ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ ΜΕΡΟΣ Α. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ 7. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ ΟΡΙΣΜΟΣ Ονομάζουμε τετργωνική ρίζ ενός θετικού ριθμού τον θετικό ριθμό (ΣΥΜΒΟΛΙΣΜΟΣ: ) που ότν υψωθεί στο τετράγωνο μς δίνει

Διαβάστε περισσότερα

Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις Κατανόησης

Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις Κατανόησης 4. -4.5 σκήσεις σχολικού βιβλίου σελίδς 8 83 ρωτήσεις Κτνόησης. i) Πώς ονοµάζοντι οι γωνίες κι β του πρκάτω σχήµτος κι τι σχέση έχουν µετξύ τους; ii) Tι ισχύει γι τις γωνίες γ κι δ ; ε δ ε ε ε γ β ε πάντηση

Διαβάστε περισσότερα

3 η δεκάδα θεµάτων επανάληψης

3 η δεκάδα θεµάτων επανάληψης 1 η δεκάδ θεµάτων επνάληψης 1. Ν ποδείξετε ότι το εµβδόν κάθε τριγώνου δίνετι πό τον τύπο Ε τρ, όπου τ η ηµιπερίµετρος του τριγώνου κι ρ η κτίν του εγγεγρµµένου κύκλου Ν χρκτηρίσετε τις πρκάτω προτάσεις

Διαβάστε περισσότερα

Βασικά γεωμετρικά σχήματα- Μέτρηση γωνίας μέτρηση μήκους - κατασκευές ΑΣΚΗΣΕΙΣ

Βασικά γεωμετρικά σχήματα- Μέτρηση γωνίας μέτρηση μήκους - κατασκευές ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙ: Κεφάλιο 1 ο σικά γεωμετρικά σχήμτ- Μέτρηση γωνίς μέτρηση μήκους - κτσκευές ΣΚΗΣΕΙΣ 1. Πάνω στο ευθύγρμμο τμήμ = 6cm, ν πάρετε έν σημείο Γ, τέτοιο ώστε Γ = 2cm κι έν σημείο Δ, τέτοιο ώστε Δ =

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o ΜΑΘΗΜΑΤΙΚΑ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 006 ΕΚΦΩΝΗΣΕΙΣ A Έστω µι συνάρτηση, η οποί είνι συνεχς σε έν διάστηµ Ν ποδείξετε ότι: Αν >0 σε κάθε εσωτερικό σηµείο του, τότε η είνι γνησίως

Διαβάστε περισσότερα

Εμβαδόν τετραγώνου: Ε = α 2. Εμβαδόν ορθογωνίου παραλληλογράμμου: Ε = α β. β Εμβαδόν πλάγιου παραλληλογράμμου: Ε = υ β. α υ

Εμβαδόν τετραγώνου: Ε = α 2. Εμβαδόν ορθογωνίου παραλληλογράμμου: Ε = α β. β Εμβαδόν πλάγιου παραλληλογράμμου: Ε = υ β. α υ Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η ποτελεσμτική μάθηση δεν θέλει κόπο λλά τρόπο, δηλδή ma8eno.gr Συνοπτική Θεωρί Μθημτικών Α Γυμνσίου Αριθμητική - Άλγερ Γεωμετρί Αριθμητική πράστση ονομάζετι

Διαβάστε περισσότερα

γεωμετρικών καμπύλων. Επειδή από τις αναλογίες (1) προκύπτει x y y (4), συμπεραίνουμε ότι τα μήκη των x y 2

γεωμετρικών καμπύλων. Επειδή από τις αναλογίες (1) προκύπτει x y y (4), συμπεραίνουμε ότι τα μήκη των x y 2 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ Εισωή Η μελέτη της έλλειψης, της προλής κι της υπερολής πό τους Αρχίους Έλληνες μθημτικούς φίνετι ότι είχε φετηρί τη σχέση υτών των κμπύλων με ορισμέν προλήμτ εωμετρικών κτσκευών, όπως,

Διαβάστε περισσότερα

Θέµατα Γεωµετρίας Γενικής Παιδείας Β Λυκείου 2000

Θέµατα Γεωµετρίας Γενικής Παιδείας Β Λυκείου 2000 Ζήτηµ 1ο Θέµτ Γεωµετρίς Γενικής Πιδείς Β Λυκείου 000 Α.1. Σε κάθε τρίγωνο ΑΒΓ µε διάµεσο ΑΜ ν ποδείξετε ότι το άθροισµ των τετργώνων δύο πλευρών του ισούτι µε το διπλάσιο του τετργώνου της διµέσου που

Διαβάστε περισσότερα

1 και β = 0,001 να υπολογίσετε την παράσταση: 2 3(2α 3β) 4[ 3α + 2(α + 2β 1)]

1 και β = 0,001 να υπολογίσετε την παράσταση: 2 3(2α 3β) 4[ 3α + 2(α + 2β 1)] Γι ποιες τιμές του ορίζοντι οι πρστάσεις ; δ 9 7 ε Ν υπολογιστούν οι πρκάτω πρστάσεις : Α = 7 Ν γίνουν οι πράξεις: Β = 7 γ στ [ ( ) ( ) ] [ ( ) ] [ ( ) ] [ ( ) ] Αν = 9 0 8 κι = 0,00 ν υπολογίσετε την

Διαβάστε περισσότερα

Θέµατα Γεωµετρίας Γενικής Παιδείας Β Λυκείου 2000

Θέµατα Γεωµετρίας Γενικής Παιδείας Β Λυκείου 2000 Θέµτ Γεωµετρίς Γενικής Πιδείς Β Λυκείου 000 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµ 1ο Α.1. Σε κάθε τρίγωνο ΑΒΓ µε διάµεσο ΑΜ ν ποδείξετε ότι το άθροισµ των τετργώνων δύο πλευρών του ισούτι µε το διπλάσιο του τετργώνου της διµέσου

Διαβάστε περισσότερα

Γ.3. Εξισώσεις 2ου βαθμού. Απαραίτητες γνώσεις Θεωρίας 3.3. Θεωρία 5. θεωρία 6.

Γ.3. Εξισώσεις 2ου βαθμού. Απαραίτητες γνώσεις Θεωρίας 3.3. Θεωρία 5. θεωρία 6. Γ.3 3.3 Εξισώσεις ου θμού Απρίτητες νώσεις Θεωρίς Θεωρί 5. Τι ονομάζουμε εξίσωση δευτέρου θμού (ή δευτεροάθμι εξίσωση) μ ένν άνωστο κι τι δικρινουσά της; Ονομάζουμε εξίσωση δευτέρου θμού μ ένν άνωστο κάθε

Διαβάστε περισσότερα

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 0 Υπερολή Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Oρισµός Υπερολή ονοµάζετι ο γεωµετρικός τόπος των σηµείων του επιπέδου, των οποίων η διφορά των ποστάσεων πό δύο στθερά σηµεί Ε κι Ε είνι στθερή κι µικρότερη πο

Διαβάστε περισσότερα

(iii) Ο συντελεστής διεύθυνσης λ κάθε ευθείας κάθετης προς την ΓΔ έχει με. τον συντελεστή διεύθυνσης της ΓΔ γινόμενο ίσο με -1. Αρα θα είναι.

(iii) Ο συντελεστής διεύθυνσης λ κάθε ευθείας κάθετης προς την ΓΔ έχει με. τον συντελεστή διεύθυνσης της ΓΔ γινόμενο ίσο με -1. Αρα θα είναι. ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ Α ΟΜΑΔΑΣ (i Ο συντεεστής διεύθυνσης της ευθείς ΑΒ είνι: 6 ( (ii Ο συντεεστής διεύθυνσης της ευθείς ΓΔ είνι: ( (iii Ο συντεεστής διεύθυνσης κάθε ευθείς κάθετης προς την ΓΔ έχει

Διαβάστε περισσότερα

Αν ο λόγος των καθέτων πλευρών ενός ορθογωνίου τριγώνου είναι 4, τότε ο λόγος των προβολών τους στην υποτείνουσα είναι α.2 β.4 γ. 16 δ.

Αν ο λόγος των καθέτων πλευρών ενός ορθογωνίου τριγώνου είναι 4, τότε ο λόγος των προβολών τους στην υποτείνουσα είναι α.2 β.4 γ. 16 δ. 1 9.1 9. σκήσεις σχολικού ιλίου σελίδς 185-186 ρωτήσεις κτνόησης 1. Έν ορθοώνιο τρίωνο ( ˆ ο 90 ) έχει 6 κι 8. Ποιο είνι το µήκος της διµέσου Μ ; + 6 + 6 100 10 κι Μ 5. ν ο λόος των κθέτων πλευρών ενός

Διαβάστε περισσότερα

ίνονται οι πραγµατικές συναρτήσεις f, g που έχουν πεδίο ορισµού το σύνολο

ίνονται οι πραγµατικές συναρτήσεις f, g που έχουν πεδίο ορισµού το σύνολο 996 ΘΕΜΑΤΑ. ίνοντι οι πργµτικές συνρτήσεις f, g που έχουν πεδίο ορισµού το σύνολο. Αν οι f κι g έχουν συνεχείς πρώτες πργώγους κι συνδέοντι µετξύ τους µε τις σχέσεις f = g, g = - f τότε ν ποδείξετε ότι:

Διαβάστε περισσότερα

Παρουσίαση 1 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΤΡΙΓΩΝΑ

Παρουσίαση 1 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΤΡΙΓΩΝΑ Προυσίση ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΤΡΙΓΩΝΑ Προυσίση. Μετρικές σχέσεις στ τρίγων Α Μετρικές σχέσεις σε ορθογώνιο τρίγωνο Α Προβολή σηµείου σε ευθεί Ορθή προβολή Α ονοµάζετι το ίχνος της κάθετης που φέρνουµε

Διαβάστε περισσότερα

ENA ΣΧΗΜΑ ΜΕ ΕΝΔΙΑΦΕΡΟΥΣΕΣ ΠΡΟΕΚΤΑΣΕΙΣ. Κόσυβας Γιώργος. 1ο Πειραματικό Γυμνάσιο Αθηνών

ENA ΣΧΗΜΑ ΜΕ ΕΝΔΙΑΦΕΡΟΥΣΕΣ ΠΡΟΕΚΤΑΣΕΙΣ. Κόσυβας Γιώργος. 1ο Πειραματικό Γυμνάσιο Αθηνών Σ ENA ΣΧΗΜ ΜΕ ΕΝΙΦΕΡΟΥΣΕΣ ΠΡΟΕΚΤΣΕΙΣ Κόσυβς ιώργος ο Πειρμτικό υμνάσιο θηνών ε υτή την εργσί προυσιάζοντι ορισμένες ξιοσημείωτες πρτηρήσεις πάνω σε έν πλούσιο σχήμ, το οποίο επιτρέπει ποικίλες προσεγγίσεις

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΗ: Παρουσίασα τις αποδείξεις κάπως αναλυτικά ώστε να γίνουν πιο κατανοητές.εσείς μπορείτε να τις παρουσιάσετε πιο λιτά.

ΣΗΜΕΙΩΣΗ: Παρουσίασα τις αποδείξεις κάπως αναλυτικά ώστε να γίνουν πιο κατανοητές.εσείς μπορείτε να τις παρουσιάσετε πιο λιτά. ΣΗΜΕΙΩΣΗ: Προυσίσ τις ποδείξεις κάπως νλυτικά ώστε ν γίνουν πιο κτνοητές.εσείς μπορείτε ν τις προυσιάσετε πιο λιτά. Δίνετι τυχόν ορθογώνιο τρίγωνο ΑΒΓ( ˆΑ=1 =1 ορθή) κι Δ η προβολή της κορυφής Α στην υποτείνουσ.ν

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 30 ΜΑΪΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 30 ΜΑΪΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 3 ΜΑΪΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ o A. Έστω µι συνεχής συνάρτηση σ' έν διάστηµ [, ]. Αν G είνι µι πράγουσ

Διαβάστε περισσότερα

ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΒΟΛΗ -- ΕΛΛΕΙΨΗ -- ΥΠΕΡΒΟΛΗ

ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΒΟΛΗ -- ΕΛΛΕΙΨΗ -- ΥΠΕΡΒΟΛΗ ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΒΟΛΗ -- ΕΛΛΕΙΨΗ -- ΥΠΕΡΒΟΛΗ II.ΠΑΡΑΒΟΛΗ ΕΛΛΕΙΨΗ - ΥΠΕΡΒΟΛΗ Α. ΘΕΩΡΙΑ ΜΕΘΟ ΟΛΟΓΙΑ 1. Εύρεση Εξίσωσης Προλής

Διαβάστε περισσότερα

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 3ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 3ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» Κεφάλιο ο: ΚΩΝΙΚΕ ΤΟΜΕ Ερωτήσεις του τύπου «ωστόάθος» 1. * Η εξίσωση + = ( > 0) πριστάνει κύκλο.. * Η εξίσωση + + κ + λ = 0 µε κ, λ 0 πριστάνει πάντ κύκλο.. * Ο κύκλος µε κέντρο Κ (1, 1) που περνά πό το

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ -8 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑ Αν η συνάρτηση f είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της, ν γρφεί η εξίσωση της εφπτομένης της γρφικής πράστσης της f στο σημείο Α(,f( ))

Διαβάστε περισσότερα

, οπότε α γ. y x. y y άξονες. τα σημεία της υπερβολής C βρίσκονται έξω από την ταινία των ευθειών x α

, οπότε α γ. y x. y y άξονες. τα σημεία της υπερβολής C βρίσκονται έξω από την ταινία των ευθειών x α YΠΡΒΛΗ ρισμός: Υπερολή με εστίες κι λέγετι ο γεωμ. τόπος των σημείων του επιπέδου των οποίων η πόλυτη τιμή της διφοράς των ποστάσεων πό τ κι είνι στθερή κι μικρότερη του Έ. Τη στθερή υτή διφορά τη συμολίζουμε

Διαβάστε περισσότερα

Δηλαδή, α ν = α α α α ν παράγοντες. Για δυνάμεις, με εκθέτες γενικά ακέραιους αριθμούς, ισχύουν οι επόμενες ιδιότητες. μ+ν. μ ν. α = μ ν. ν ν.

Δηλαδή, α ν = α α α α ν παράγοντες. Για δυνάμεις, με εκθέτες γενικά ακέραιους αριθμούς, ισχύουν οι επόμενες ιδιότητες. μ+ν. μ ν. α = μ ν. ν ν. 367 ΡΩΤΗΣΙΣ ΘΩΡΙΣ ΠΟ ΤΗΝ ΥΛΗ ΤΗΣ! ΤΞΗΣ 368 ΡΩΤΗΣΙΙΣ ΘΩΡΙΙΣ ΠΟ ΤΗΝ ΥΛΗ ΤΗΣ!! ΤΞΗΣ 1. Τι ονομάζετε δύνμη ν ; Ονομάζετι δύνμη ν με άση τον ριθμό κι εκθέτη το φυσικό ν > 1, το γινόμενο πό ν πράγοντες ίσους

Διαβάστε περισσότερα

Άλλοι τύποι για το εµβαδόν τριγώνου Λόγος εµβαδών οµοίων τριγώνων - πολυγώνων

Άλλοι τύποι για το εµβαδόν τριγώνου Λόγος εµβαδών οµοίων τριγώνων - πολυγώνων 8 Άλλοι τύποι γι το εµβδόν τριγώνου Λόγος εµβδών οµοίων τριγώνων - πολυγώνων Α ΑΠΑΡΑΙΤΗΤΣ ΓΝΩΣΙΣ ΘΩΡΙΑΣ Άλλοι τύποι γι το εµβδόν τριγώνου Με τη βοήθει του βσικού τύπου γι το εµβδόν τριγώνου, µε µήκη πλευρών,

Διαβάστε περισσότερα

Τάξη Β Θετική και Τεχνολογική Κατεύθυνση Ερωτήσεις Θεωρίας και απαντήσεις από το σχολικό βιβλίο Καθηγητής: Ν.Σ. Μαυρογιάννης

Τάξη Β Θετική και Τεχνολογική Κατεύθυνση Ερωτήσεις Θεωρίας και απαντήσεις από το σχολικό βιβλίο Καθηγητής: Ν.Σ. Μαυρογιάννης Τάξη Β Θετική κι Τεχνολογική Κτεύθυνση Ερωτήσεις Θεωρίς κι πντήσεις πό το σχολικό ιλίο Κθηγητής: ΝΣ Μυρογιάννης Πότε δύο µη µηδενικά δινύσµτ AB κι Γ λέγοντι πράλληλ ή συγγρµµικά; Απάντηση: Ότν έχουν τον

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Αόριστο & Ορισμένο Ολοκλήρωμα

ΚΕΦΑΛΑΙΟ 1 Αόριστο & Ορισμένο Ολοκλήρωμα Ορισμό ΚΕΦΑΛΑΙΟ Αόριστ & Ορισμέν Ολκλήρωμ Αρχική-Πράγυσ Πράγυσ ή Αρχική ή Αντιπράγωγ μι συνάρτηση f, σε έν διάστημ Δ νμάζετι η πργωγίσιμη συνάρτηση F γι την πί ισχύει F ( ) = f ( ) γι κάθε Ξ D π.χ. π.χ.

Διαβάστε περισσότερα

7. Κωνικές τομές Τύποι - Βσικές έννοιες ΚΩΝΙΚΕΣ ΤΟΜΕΣ: Τύποι - Βσικές έννοιες Α. ΚΥΚΛΟΣ Εξίσωση κύκλου με κέντρο Ο( 0, 0 ) κι κτίν ρ : + =ρ Εξίσωση εφ

7. Κωνικές τομές Τύποι - Βσικές έννοιες ΚΩΝΙΚΕΣ ΤΟΜΕΣ: Τύποι - Βσικές έννοιες Α. ΚΥΚΛΟΣ Εξίσωση κύκλου με κέντρο Ο( 0, 0 ) κι κτίν ρ : + =ρ Εξίσωση εφ Ο μθητής που έχει μελετήσει τo κεφάλιο των κονικών τομών θ πρέπει ν είνι σε θέση: Ν προσδιορίζει την εξίσωση του κύκλου με κέντρο την ρχή των ξόνων. Με τη μέθοδο της συμπλήρωσης τετργώνου υπολογίζοντι

Διαβάστε περισσότερα

Β ΒΕ=ΒΑ Β ( Β + Ε ) =ΒΑ. Β + α Β = = = x 2. x α x. α α + x

Β ΒΕ=ΒΑ Β ( Β + Ε ) =ΒΑ. Β + α Β = = = x 2. x α x. α α + x ξισώσις ου θµού ωµτρική ϖίλυση ξισώσων ου θµού Οι ρχίοι Έλληνς µθηµτικοί κθιέρωσν την κτσκυή γωµτρικών σχηµάτων µ κνόν κι ιήτη. Τρις τέτοις κτσκυές θ µλτήσουµ στη συνέχι. Κάθ µι ϖό υτές τις κτσκυές ίνι

Διαβάστε περισσότερα

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 9 Έλλειψη Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισµός Έλλειψη ονοµάζετι ο γεωµετρικός τόπος των σηµείων του επιπέδου, των οποίων το άθροισµ των ποστάσεων πό δύο στθερά σηµεί Ε κι Ε είνι στθερό κι µεγλύτερο

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ

ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ Μθηµτικά Γ Γυµνσίου ** Άρης Νικολΐδης ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. ίνετι η εξίσση Πόσες λύσεις έχει η εξίσση υτή; Σε ποι σηµεί η ευθεί, τέµνει τους άξονες; Ν κάνετε τη ρφική πράστση της προηούµενης ευθείς..

Διαβάστε περισσότερα

1. Να σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους παρακάτω ισχυρισμούς:

1. Να σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους παρακάτω ισχυρισμούς: 1. Ν σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους πρκάτω ισχυρισμούς: 1. Αν γι την συνεχή στο συνάρτηση f ισχύουν: f(0) f(2) 0 κι f(0) f(5) 0 τότε η εξίσωση ( ) 0 f έχει τουλάχιστον δύο ρίζες. 2. Αν ισχύει

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ - ΤΥΠΟΛΟΓΙΟ

ΕΠΑΝΑΛΗΨΗ - ΤΥΠΟΛΟΓΙΟ ΕΠΑΝΑΛΗΨΗ - ΤΥΠΟΛΟΓΙΟ ΚΕΦΑΛΑΙΟ Ο : ΙΑΝΥΣΜΑΤΑ Ιδιότητες πρόσθεσης δινυσµάτων () + = + () ( + ) + γ = + ( + γ) (3) + = (4) + ( ) =. Αν Ο είνι έν σηµείο νφοράς, τότε γι κάθε διάνυσµ ΑΒ έχουµε: AB = OB OA

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΥΝΕΧΕΙΑ ΕΠΙΜΕΛΕΙΑ: ΧΡΑΣ ΓΙΑΝΝΗΣ ΚΕΝΤΡΙΚΟ Ν. ΣΜΥΡΝΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΥΝΕΧΕΙΑ ΕΠΙΜΕΛΕΙΑ: ΧΡΑΣ ΓΙΑΝΝΗΣ ΚΕΝΤΡΙΚΟ Ν. ΣΜΥΡΝΗΣ Φ4 ΣΥΝΕΧΕΙΑ ΕΠΙΜΕΛΕΙΑ: ΧΡΑΣ ΓΙΑΝΝΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΛΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΥ ΚΕΝΤΡΙΚ 3ο ΓΕΝΙΚ ΛΥΚΕΙ Ν. ΣΜΥΡΝΗΣ ΘΕΩΡΙΑ ΣΩΣΤ-ΛΑΘΣ ΠΛΛΑΠΛΗΣ ΕΠΙΛΓΗΣ ΣΥΜΠΛΗΡΩΣΗΣ ΚΕΝΥ ΠΑΡΑΤΗΡΗΣΕΙΣ ΑΣΚΗΣΕΙΣ Α &

Διαβάστε περισσότερα

Μ' ένα καλά µελετηµένο κτύπηµα, σκότωσε τον κύκλο, την εφαπτόµενη

Μ' ένα καλά µελετηµένο κτύπηµα, σκότωσε τον κύκλο, την εφαπτόµενη 255 ΕΡΩΤΗΣΕΙΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣΣ Α! ΤΑΞΗΣΣ Ο Ρωµίος που µχίρωσσε ε τον Αρχιµήδη Μ' έν κλά µελετηµένο κτύπηµ, σκότωσε τον κύκλο, την εφπτόµενη κι το σηµείο τοµής στο άπειρο. "'Επί ποινή" διµελισµού εξόρισε

Διαβάστε περισσότερα

Γ ε ω μ ε τ ρ ι α. Β Λ υ κ ε ι ο υ

Γ ε ω μ ε τ ρ ι α. Β Λ υ κ ε ι ο υ ε ω μ ε τ ρ ι Λ υ κ ε ι ο υ Ε π ι μ ε λ ε ι : Τ κ η ς Τ σ κ λ κ ο ς ε ω μ ε τ ρ ι Λ υ κ ε ι ο υ ε ω μ ε τ ρ ι Λ υ κ ε ι ο υ νλογιες Ομοιοτητ Μετρικες Σχεσεις Εμβδ Μετρηση Κυκλου Με πολυ μερκι ι τους κλους

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ η ΜΟΡΦΗ ΑΣΚΗΣΕΩΝ: Μς ζητούν ν βρούμε την εξίσωση ενός κύκλου Ν βρεθεί η εξίσωση του κύκλου που έχει κέντρο το σημείο: Κ (3, 3) κι τέμνει πό την ευθεί

Διαβάστε περισσότερα

Μαθηµατικά Κατεύθυνσης Β Λυκείου Κωνικές Τοµές. Ασκήσεις Παραβολή

Μαθηµατικά Κατεύθυνσης Β Λυκείου Κωνικές Τοµές. Ασκήσεις Παραβολή Μθηµτικά Κτεύθυνσης Β Λυκείου Κωνικές Τοµές Ασκήσεις Προλή 1. Ν ρεθεί η εστί κι η διευθετούσ των προλών: i) = - ii) = 8 iii) = 1 (Απ.: i) E(-1, 0), = 1 ii) E(, 0), = - iii) E(0, 3), = -3). Ν ρεθεί η εξίσωση

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής. 1. * Αν η γραφική παράσταση µιας συνάρτησης f είναι αυτή που φαίνεται στο σχήµα, τότε λάθος είναι

Ερωτήσεις πολλαπλής επιλογής. 1. * Αν η γραφική παράσταση µιας συνάρτησης f είναι αυτή που φαίνεται στο σχήµα, τότε λάθος είναι Ερωτήσεις πολλπλής επιλογής 1. * Αν η γρφική πράστση µις συνάρτησης f είνι υτή που φίνετι στο σχήµ, τότε λάθος είνι Α. lim f () = 4 B. lim f () = 1 1 1 Γ. lim f () =. f ( 1) = 1 4 0 1 1 1 E. f (1) = 4.

Διαβάστε περισσότερα

f(x) dx ή f(x) dx f(x) dx

f(x) dx ή f(x) dx f(x) dx ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Ορισμός. Αν η f είνι ολοκληρώσιμη στο διάστημ [ a, ) ή στο διάστημ (,], τότε ονομάζουμε γενικευμένο ολοκλήρωμ είδους το ολοκλήρωμ της μορφής f() d ή - f() d Ορισμός. Το σημείο

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» Η συνάρτηση f() =, 0 Υπερβολή Δύο ποσά λέγοντι ντιστρόφως νάλογ, εάν μετβάλλοντι με τέτοιο τρόπο, που ότν οι τιμές του ενός πολλπλσιάζοντι με ένν ριθμό, τότε κι οι ντίστοιχες τιμές του άλλου ν διιρούντι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3.1 Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3.1 Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3. Μέρος Β του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Πράγουσ συνάρτηση ΟΡΙΣΜΟΣ Έστω f μι συνάρτηση ορισμένη σε έν διάστημ.

Διαβάστε περισσότερα

Σχήµα 1. ιατάξεις πρισµάτων που προσοµοιώνουν τη λειτουργία των φακών. (α) Συγκλίνων. (β) Αποκλίνων

Σχήµα 1. ιατάξεις πρισµάτων που προσοµοιώνουν τη λειτουργία των φακών. (α) Συγκλίνων. (β) Αποκλίνων Ο3 Γενικά περί φκών. Γενικά Φκός ονοµάζετι κάθε οµογενές, ισότροπο κι διφνές οπτικό µέσο που διµορφώνετι πό δυο σφιρικές επιφάνειες (ή πό µι σφιρική κι µι επίπεδη). Βσική () () Σχήµ. ιτάξεις πρισµάτων

Διαβάστε περισσότερα

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΘΕΩΡΙΑ

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΘΕΩΡΙΑ ΚΩΝΙΚΕΣ ΤΜΕΣ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Ποι είνι η εξίσωση του κύκλου με κέντρο το (0,0); ρ (0,0) M(,) C Έστω έν σύστημ συντετγμένων στο επίπεδο κι C ο κύκλος με κέντρο το σημείο (0,0) κι κτίν ρ. Γνωρίζουμε πό

Διαβάστε περισσότερα

Ασκήσεις σχ. βιβλίου σελίδας

Ασκήσεις σχ. βιβλίου σελίδας 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ( ΟΜΑ ΑΣ) Ασκήσεις σχ. ιλίου σελίδς 19 19 1. Ν λύσετε την η εξίσωση ηµ ηµσυν συν ηµ ηµσυν συν ηµ ηµσυν συν (ηµ + συν ) ηµ ηµσυν συν + ηµ + συν 0 (1 + )ηµ ηµσυν + ( 1)συν 0 Αν συν

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Γ! ΤΑΞΗΣ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Γ! ΤΑΞΗΣ 78 ΡΩΤΗΣΙΣ ΘΩΡΙΣ ΠΟ ΤΗΝ ΥΛΗ ΤΗΣ! ΤΞΗΣ 1. Τι ονοµάζετε δύνµη ν ; Ονοµάζετι δύνµη ν µε άση τον ριθµό κι εκθέτη το φυσικό ν > 1, το γινό- µενο πό ν πράγοντες ίσους µε. Ορίζουµε κόµ ότι: 1 0 1 µε 0 - ν. Ποιες

Διαβάστε περισσότερα

Ενότητα Να βρεθούν οι ευθείες οι οποίες διέρχονται από το σημείο Α(1,2) και απέχει από το σημείο Β(3,1) απόσταση d=2.

Ενότητα Να βρεθούν οι ευθείες οι οποίες διέρχονται από το σημείο Α(1,2) και απέχει από το σημείο Β(3,1) απόσταση d=2. Ευθεί Ενότητ 7. Απόστση σημείου πό ευθεί Εμβδόν τριγώνου Εφρμογές 7.1 Ν βρεθεί η πόστση: i) του σημείου Μ(1,3) πό την ευθεί (ε) με εξίσωση 3x-4y- 11=0, ii) του σημείου Ρ(,-3) πό την (η) με εξίσωση 5x+1y-=0.

Διαβάστε περισσότερα

Κεφάλαιο 2 ο. Γραμμικά Δικτυώματα

Κεφάλαιο 2 ο. Γραμμικά Δικτυώματα Κεφάλιο 2 ο Γρμμικά Δικτυώμτ Έν ηλεκτρικό κύκλωμ ή δικτύωμ ποτελείτι πό ένν ριθμό πλών κυκλωμτικών στοιχείων, όπως υτά που νφέρθηκν στο Κεφ.1, συνδεδεμένων μετξύ τους. Το κύκλωμ θ περιέχει τουλάχιστον

Διαβάστε περισσότερα

ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ

ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ - ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Σ Η Μ Ε Ι Ω Σ Ε Ι Σ Σ Τ Ο Μ Α Θ Η Μ Α «Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Ι Α Μ Η Χ Α Ν Ι Κ Ο Υ Σ Ι» Κ Α Θ Η Γ Η Τ Η Σ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Στις ερωτήσεις -4 ν γράψετε στο τετράδιό σς τον ριθµό της ερώτησης κι δίπλ σε κάθε ριθµό το γράµµ που ντιστοιχεί

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. Ενότητα 6 ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. Ενότητα 6 ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ ΜΙΓΑ ΙΚΟΙ Ενότητ 6 ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΟΛΟΚΛΗΡΩΜΑΤΩΝ Ορισµό ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ Έστω f µί συνάρτηση ορισµένη σε έν διάστηµ. Αρχιή συνάρτηση ή πράουσ f στο ονοµάζετι άθε συνάρτηση F που είνι πρωίσιµη στο ι ισχύει

Διαβάστε περισσότερα

Θέµα 7 ο. Τρίγωνο ΑΒΓ είναι ισοσκελές (ΑΒ = ΑΓ). Φέρνουµε Ε // ΒΓ ( ΒΓ, Ε ΑΓ). Να δειχθεί ότι: ΒΕ 2 = ΕΓ Ε

Θέµα 7 ο. Τρίγωνο ΑΒΓ είναι ισοσκελές (ΑΒ = ΑΓ). Φέρνουµε Ε // ΒΓ ( ΒΓ, Ε ΑΓ). Να δειχθεί ότι: ΒΕ 2 = ΕΓ Ε 0 ΓΕΝΙΚΕΣ Θέµ ο Τρίγωνο ΑΒΓ είνι ισοσκελές (ΑΒ = ΑΓ). Φέρνουµε Ε // ΒΓ ( ΒΓ, Ε ΑΓ). Ν δειχθεί ότι: ΒΕ = ΕΓ Ε Θέµ ο Στη διγώνιο Β τετργώνου ΑΒΓ πίρνουµε τυχίο σηµείο Ο. Ν δειχθεί ότι: Γ - ΓΟ = Ο Ο Θέµ ο

Διαβάστε περισσότερα

2.3 ΜΕΤΑΒΟΛΕΣ ΗΜΙΤΟΝΟΥ ΣΥΝΗΜΙΤΟΝΟΥ

2.3 ΜΕΤΑΒΟΛΕΣ ΗΜΙΤΟΝΟΥ ΣΥΝΗΜΙΤΟΝΟΥ 1.3 ΜΕΤΟΛΕΣ ΗΜΙΤΟΝΟΥ ΣΥΝΗΜΙΤΟΝΟΥ ΚΙ ΕΦΠΤΟΜΕΝΗΣ ΘΕΩΡΙ 1. Μετβολή του ηµιτόνου : Ότν µί οξεί ωνί υξάνετι, υξάνετι κι το ηµίτονο της. ηλδή ν ω > φ τότε ηµω > ηµφ. Μετβολή του συνηµιτόνου : Ότν µί οξεί ωνί

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ Μετρικές σχέσεις Εμβαδά

Β ΛΥΚΕΙΟΥ Μετρικές σχέσεις Εμβαδά Β ΛΥΚΕΙΟΥ Μετρικές σχέσεις Εμβδά ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β. Κορτίκη Β. Κουτσογούλ Μ. Ρούσσ Γ. Ευθυμίου Μ. Ζφείρη ΕΜΕ Πράρτημ Τρικάλων ΑΣΚΗΣΗ η i. Ν υπολογιστούν οι πλευρές, β, γ του ορθογωνίου τριγώνου ΑΒΓ

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΕΚΦΩΝΗΣΕΙΣ

ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΕΚΦΩΝΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΕΙΑΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΘΕΜΑ 1ο ΕΚΦΩΝΗΣΕΙΣ Α1. Ν ποδείξετε ότι το εµβδόν τρπεζίου ισούτι µε το γινόµενο του ηµιθροίσµτος των βάσεών του επί το ύψος του. Μονάδες 10 Α. Ν χρκτηρίσετε

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β' ΛΥΚΕΙΟΥ ΔΙΑΝΥΣΜΑΤΑ. Επιμέλεια : Αθανασιάδης Χαράλαμπος Μαθηματικός

ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β' ΛΥΚΕΙΟΥ ΔΙΑΝΥΣΜΑΤΑ. Επιμέλεια : Αθανασιάδης Χαράλαμπος Μαθηματικός ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β' ΛΥΚΕΙΟΥ ΔΙΑΝΥΣΜΑΤΑ Επιμέλει : Αθνσιάδης Χράλμπος Μθημτικός . ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΣΤΑ Α. ΘΕΩΡΙΑ ΜΕΘΟ ΟΛΟΓΙΑ ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΙΑΝΥΣΜΑΤΩΝ.

Διαβάστε περισσότερα

4.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ

4.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ - ΑΣΚΗΣΕΙΣ. ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ η ΜΟΡΦΗ ΑΣΚΗΣΕΩΝ: Μς ζητούν ν κάνουμε την μελέτη ή την γρφική πράστση μις συνάρτησης ΜΕΘΟΔΟΛΟΓΙΑ Ότν μς ζητούν κάνουμε την γρφική πράστση

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΝΟΤΗΤΑ Ι 63

ΑΣΚΗΣΕΙΣ ΕΝΟΤΗΤΑ Ι 63 ΑΣΚΗΣΕΙΣ ΕΝΟΤΗΤΑ Ι 6 ΑΣΚΗΣΗ. ύο σφίρες φορτίου q κι µάζς m g, κρέµοντι πό το ίδιο σηµείο µε νήµτ µήκους 40cm. Αν οι σφίρες ισορροπούν ότν τ νήµτ σχηµτίζουν γωνί φ 60 ο, ν ρεθεί το φορτίο q. ίνοντι g 0m/s

Διαβάστε περισσότερα

Λύσεις 1 ης Εργασίας 1. Γράψτε και σχεδιάστε ποιοτικά στο ίδιο διάγραµµα καθένα από τα επόµενα

Λύσεις 1 ης Εργασίας 1. Γράψτε και σχεδιάστε ποιοτικά στο ίδιο διάγραµµα καθένα από τα επόµενα Λύσεις ης Εργσίς. Γράψτε κι σχεδιάστε ποιοτικά στο ίδιο διάγρµµ κθέν πό τ επόµεν v δινύσµτ στη µορφή x y : () Το διάνυσµ που συνδέει την ρχή του συστήµτος συντετγµένων µε το σηµείο Ρ(,-). () Το διάνυσµ

Διαβάστε περισσότερα

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i.

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i. . Πολυώνυμ η Μορφή Ασκήσεων: Ασκήσεις στις βσικές έννοιες του πολυωνύμου. Ποιες πό τις πρκάτω πρστάσεις είνι πολυώνυμ του i. ii. iii. iv. v. vi. 5 Σύμφων με τον ορισμό πολυώνυμ του είνι οι πρστάσεις i,

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις - 4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.. Η ρχή της επλληλίς

Διαβάστε περισσότερα

1.4. ε ε. E 1 ε E 2. ε ε γ. β ε. Λύση α) Έχουμε ότι: ε = β γ 2. γ E 1 γ. β γ. γ β ΔΡΑΣΤΗΡΙΟΤΗΤΑ

1.4. ε ε. E 1 ε E 2. ε ε γ. β ε. Λύση α) Έχουμε ότι: ε = β γ 2. γ E 1 γ. β γ. γ β ΔΡΑΣΤΗΡΙΟΤΗΤΑ 1.4. Πυθόριο θώρημ ΡΣΤΗΡΙΟΤΗΤ 1 ίνοντι οκτώ ίσ ορθοώνι τρίων μ κάθτς πλυρές, κι υποτίνουσ κι τρί ττράων μ πλυρές,, ντίστοιχ. ) Ν υπολοίστ τ μδά, Ε, Ε 1, Ε 2 των διπλνών τριώνων κι ττρώνων. ) Ν τοποθτήστ

Διαβάστε περισσότερα

i) ΑΒ 2 + ΑΓ 2 = 2ΑΜ 2 + 2ΒΜ 2 ii) ΑΒ 2 + ΑΓ 2 = 2ΑΜ 2 + 2Α 2 iii) ΑΒ 2 + ΑΓ 2 = 2ΒΓ Μ iν) ΑΒ 2 ΑΓ 2 = 2ΑΜ 2 + 2ΒΜ 2 = 2ΑΜ 2 2 = 2ΑΜ 2 + 2ΒΜ 2

i) ΑΒ 2 + ΑΓ 2 = 2ΑΜ 2 + 2ΒΜ 2 ii) ΑΒ 2 + ΑΓ 2 = 2ΑΜ 2 + 2Α 2 iii) ΑΒ 2 + ΑΓ 2 = 2ΒΓ Μ iν) ΑΒ 2 ΑΓ 2 = 2ΑΜ 2 + 2ΒΜ 2 = 2ΑΜ 2 2 = 2ΑΜ 2 + 2ΒΜ 2 1 9.5 9.6 σκήσεις σχολικού βιβλίου σελίδς 198 199 Ερωτήσεις κτνόησης 1. Στο πρκάτω σχήµ η Μ είνι διάµεσος κι ύψος. Ποι πό τις πρκάτω σχέσεις είνι σωστή. ιτιολογήστε την πάντηση σς. A i) Μ Μ ii) Μ iii)

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 79 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ 19 Ιανουαρίου 2019 Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 79 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ 19 Ιανουαρίου 2019 Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πνεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

4.4 Η ΠΥΡΑΜΙΔΑ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ

4.4 Η ΠΥΡΑΜΙΔΑ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ ΜΡΟΣ 4.4 Η ΠΥΡΜΙ Ι Τ ΣΤΟΙΧΙ ΤΗΣ 89 4.4 Η ΠΥΡΜΙ Ι Τ ΣΤΟΙΧΙ ΤΗΣ Ορισμός Πυρμίδ λέγετι έν στερεό, ου µί έδρ του είνι έν ολύγωνο κι όλες οι άλλες έδρες του είνι τρίγων µε κοινή κορυφή. Τ στοιχεί της υρμίδς

Διαβάστε περισσότερα

β ] και συνεχής στο ( a, β ], τότε η f παίρνει πάντοτε στο [ a,

β ] και συνεχής στο ( a, β ], τότε η f παίρνει πάντοτε στο [ a, ΕΡΩΤΗΣΕΙΣ Σ Λ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΑΔΙΚΩΝ - Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς στο τετράδιό σς την ένδειξη σωστό ή λάθος δίπλ στο γράμμ που ντιστοιχεί σε κάθε πρότση

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Ο μθητής που έχει μελετήσει το κεφάλιο υτό θ πρέπει ν είνι σε θέση:. Ν γνωρίζει τις έννοιες πράγουσ ή ρχική συνάρτηση, όριστο ολοκλήρωμ κι ν μπορεί ν υπολογίζει πλά όριστ ολοκληρώμτ με τη οήθει των μεθόδων

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ)

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ) ΙΑΝΥΣΜΑΤΑ - ΘΕΩΡΙΑ & ΜΕΘΟ ΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ) ε (ρχή) φορές (πέρς) 1. Τι ορίζετι ως διάνυσµ ; Το διάνυσµ ορίζετι ως έν προσντολισµένο

Διαβάστε περισσότερα

(1). ΒΓ ˆ, οπότε Γ ˆ ˆ

(1). ΒΓ ˆ, οπότε Γ ˆ ˆ 4 ο φυλλάδιο νισοτικές σχέσεις (τριωνική νισότητ) (Version 10-7-016) 3.1 Θεώρημ Κάθε πλευρά τριώνου είνι μικρότερη πό το άθροισμ των δύο άλλων κι μελύτερη πό τη διφορά τους. Απόδειξη: Έστω τρίωνο ΑΒΓ.

Διαβάστε περισσότερα

1995 ΘΕΜΑΤΑ ίνονται οι πραγµατικοί αριθµοί κ, λ µε κ < λ και η συνάρτηση f(x)= (x κ) 5 (x λ) 3 µε x. Να αποδείξετε ότι:, για κάθε x κ και x λ.

1995 ΘΕΜΑΤΑ ίνονται οι πραγµατικοί αριθµοί κ, λ µε κ < λ και η συνάρτηση f(x)= (x κ) 5 (x λ) 3 µε x. Να αποδείξετε ότι:, για κάθε x κ και x λ. 995 ΘΕΜΑΤΑ. ίνοντι οι πργµτικοί ριθµοί κ, λ µε κ < λ κι η συνάρτηση f() ( κ) 5 ( λ) µε. Ν ποδείξετε ότι: ) f () f() 5 κ, γι κάθε κ κι λ. λ ) Η συνάρτηση g() ln f() στρέφει τ κοίλ προς τ κάτω στο διάστηµ

Διαβάστε περισσότερα