Veľkosť výberového súboru

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Veľkosť výberového súboru"

Transcript

1 Veľkosť výberového súboru Podľa Kah,H.A., Sempos,C.T.: Statistical Methods i Epidemiology. Oxford Uiv. Press, 1989 spracoval Doc. MUDr. Marti Rusák, CSc Často sa pýtame, aký veľký súbor potrebujem a preukázaie hypotézy. Na túto otázku ie je možé odpovedať štadardým počtom 30. V asledujúcom uvediem iekoľko príkladov ako sa dopracovať, resp. dopočítať správej odpovede. 1. Veľkosť výberu pre jede biomický parameter Predpokladajme, že chceme odhadúť pomer (proporciu (P pravideľých fajčiarov cigariet v skupie, ktorá prichádza a veľkú uiverzitu. Chceme dosiahuť, že áš odhad (p bude s vysokou pravdepodobosťou medzi ± skutočej hodoty pomeru (proporcie (P. Delta predstavuje určitý rozdiel medzi aším odhadom a skutočou hodotou (apríklad 0.5 alebo 0.5. Predtým ako môžeme veľkosť vypočítať je potrebé odhadúť samotý pomer (a prvý pohľad podivý postup. Dôvodom je skutočosť, že veľkosť výberu závisí a štadardej chybe odhadovaého parametra. Pre proporciu je štadardá chyba odhadu p rová P(1 P Ak považujeme proporciu fajčiarov cigariet medzi prvákmi za 0.30 a určíme, že chceme pracovať s rozdielom 0.04, potom vzťah 1 P(1 P 1.96SE( p = 1.96 = 0.04 (0.30( SE( p = 1.96 = 0.04 vyjadruje, že si prajeme, aby 1.96 štadardej chyby ášho odhadu sa rovalo Ak toto platí, potom s 95% pravdepodobosťou je áš odhad v rozsahu 4% (± =0.04 skutočosti. ároveň predpokladáme, že počet je dostatoče veľký a zaručeie ormáleho rozdeleia všetkých možých hodôt p (odhadov skutočej proporcie. V prípade epidemiologických štúdií je to väčšiou tak. Teraz môžeme rovicu riešiť pre P(1 P = Δ 1

2 P 1-P výpočet =(1.96* Obrázok 1 Výpočet veľkosti pre rôze proporcie Takže dostávame asledovú tabuľku veľkostí výberu P Veľkosť výberu 95% výberov p bude medzi a a a a a 0.54 Tabulka 1 Veľkosť výberu pri rôzych proporciách Čo sa stae, ak áš odhad proporcie bol esprávy? Predpokladajme, že sme uvažovali s proporciou P=0.0 a vypočítali veľkosť výberového súboru 384. V skutočosti bolo P rové Pri P=0.40 je skutočý rozptyl všetkých možých priemerov výberu veľkosti 384 rový (0.4(0.6384= , pri čom štadardá chyba priemeru výberu je = Dve štadardé chyby sa budú rovať 0.05 a 95% všetkých p z výberu bude v rozmedzí od 0.35 do 0.45, pri veľkosti výberu 384. Pokiaľ v ašom výbere spozorujeme p veľkosti 0.35 a použijeme ho a výpočet štadardej chyby p potom odhadujeme skutočý priemer medzi 0.3 a 0.4 s istotou Prirodzee ejdeme vyberať všetky možé výbery, ale le jede jediý. Preto sa môže stať, že p ami vybraého súboru je extréme ízke. V tom prípade si môžeme myslieť, že skutočá hodota je okolo 0.0. Avšak je omoho pravdepodobejšie, že teto výber povedie ku korekcii ašej predstavy o výskyte fajčeia cigariet. Teto príklad dokumetuje, že použiteľé výsledky je možo dosiahuť aj pri esprávom počiatočom odhade P.. Rozdiel medzi biomickými parametrami Často ie je cieľom epidemiológa odhadúť jediý parameter, ale porovať dva parametre. Toto je ajčastejší prípad použitia metód odhadu veľkosti výberového súboru, apríklad pre radomizovaú, kotrolovaú kliickú štúdiu. Predpokladajme, že máme za úlohu avrhúť štúdiu lieku, ktorý by mal zižovať icideciu ifarktu srdca. Abstrahujme od iých problémov vedeia takejto štúdie a zamerajme sa výhrade a odhad veľkosti výberového súboru potrebého pre uskutočeie tejto štúdie. Aby sme mohli odhadúť zmeu icidecie, musíme ajprv pozať jej predbežý odhad. Vyjdime z asledujúcich predpokladov: Celá štúdia má trvať 3 roky Icidecia ifarktu myokardu v daej populácii je 1% za rok, teda 3% za tri roky Stupeň zmey, ktorú daá štúdia odhalí pri určitej pravdepodobosti. Práve stupeň zmey, ktorý má štúdia potvrdiť s určitou mierou istoty je rozhodujúcim faktorom štúdie a predstavuje kombiáciu pozaia objektu skúmaia a subjektíveho rozhodutia výskumíka. Pokúsiť sa staoviť zížeie icidecie z 0.03 (teda 3% a 0.09

3 (a.9% sa ezdá byť vhodým rozhodutím.aj keď by sa možo ašlo zdôvodeie takéhoto zámeru, ie je rozumé sažiť sa potvrdiť tak malý rozdiel. Program, ktorý by sa o také iečo sažil bude určite ahradeý iým, ktorý sa bude usilovať o väčší rozdiel. Potom obtiažy, ákladý a časovo áročý program A, ktorý sa saží o zížeie o zížeie ročej icidecie o jedu desatiu perceta bude ahradeý programom B, ktorý ju zižuje o 5 desatí. Ak je skutoče icidecia v kotrolej skupie 3 percetá za 3 roky a liečba ju zižuje a.9%, potom výber potrebý a preukázaie tohto efektu musí byť ute väčší ako pri preukázaí redukcie z 3% a 1%. Vo všeobecosti platí, že čím väčší rozdiel sa sažíme potvrdiť, tým meší výberový súbor je potrebý. Nasledové štyri faktory musíme pozať pre výpočet potrebej veľkosti výberu: P c P e Skutočá icidecia v kotrolej skupie Skutočá icidecia v experimetálej skupie Pravdepodobosť I. typu chyby v teste výzamosti; teda dôvodeie, že je prítomý rozdiel medzi P c a P e kým v skutočosti sú údaje výberu le áhodou variaciou samotého parametru P c Pravdepodobosť II. typu chyby v teste výzamosti; teda eschoposť odmietuť ulovú hypotézu keď v skutočosti je rozdiel medzi P c a P e ako sa pôvode predpokladalo Skôr ako pristúpim k odvodeiu vzťahu medzi uvedeými parametrami považujem za potrebé upozoriť a skutočosť, že rozptyl (variacia rozdielu medzi dvoma ezávislými premeými sa rová súčtu variacií každej z ich: var(x y = var(x var(y Nezávislosť premeých môžem ilustrovať asledovými príkladmi. Hmotosť a výška ie sú vzájome ezávislé, keďže pozaie jedého z ich umožňuje odhadúť hodotu druhého. Avšak výška a číslo pasu sú takmer určite ezávislé, keďže pozaie jedého eumoží v žiadom prípade odhadúť hodotu druhého. Teraz sa sústreďme a rozptyl rozdielu medzi p c a p e (odhady P c a P e z výberu. V správe vedeej štúdii pozaie, že p c je mešie alebo väčšie ako P c ijako eposlúži odhadu, či p e je mešie alebo väčšie ako P e. Preto môžeme oprávee predpokladať, že oba parametre sú ezávislé a platí pre e var(p c p e = var(p c var(p e Rozobereme si prípad určeia veľkosti výberu, keď kotrolá i pokusá skupia sú rovakej veľkosti. Chceme určiť výzamý rozdiel medzi p c a p e s obojstraou chybou typu I veľkosti 0.05 (t.j. odmietuť ulovú hypotézu ak je rozdiel medzi p c a p e veľký a kladý alebo veľký a záporý a chybu II. Typu veľkosti 0.10,P c je skutoče 0.03 a P e je skutoče 0.0. Ak je ulová hypotéza pravdivá musíme vypočítať var(p c p e. Majme a pamäti, že pri pravdivosti ulovej hypotézy sa odhady p c a p e budú rovať Potom môžme apísať, vzťah pre variaciu ich rozdielu ako súčet rozptylov oboch parametrov: 0.03( (0.97 var( d : H 0 = kde d= p c p e a var(d:h 0 je rozptyl rozdielu za platosti ulovej hypotézy. Štadardá chyba rozdielu p c p e pri platej ulovej hypotéze je odmociou z predchádzajúceho vzťahu: 3

4 0.03( (0.97 SE( d : H 0 = Sažíme sa vyšetriť dve možé situácie. Buď obe skupiy, kotrolá i experimetála, majú rovaké P = 0.03, čo je prípad ulovej hypotézy, alebo P c = 0.03 a P e = 0.0, čo je prípad alteratívej hypotézy. Chyba I. druhu veľkosti určuje, koľkokrát odmieteme pravdivú ulovú hypotézu. Ak je ulová hypotéza pravdivá, ľubovoľý rozdiel, ktorý spade do oblasti vedie k falošému odmietutiu ulovej hypotézy. Obe tieto oblasti odmietutia majú celkovú pravdepodobosť 0.05 a sú vzdialeé 1.96SE(d:H 0 od priemeru. Predpokladajme,že skutočosťou je pravdivá alteratíva hypotéza. V tom prípade iektoré z možých rozdielov vo výbere padú do zóy prijatia H 0. Dôsledkom je eschoposť odmietuť ulovú hypotézu aj keď alteratíva je pravdivá. Toto je chyba II. Typu (veľkosti a v ašom kokrétom prípade sme ju staovili ako.10. Takže 10% všetkých možých rozdielov vo výbere pri pravdivej alteratívej hypotéze povedie k eodmietutiu ulovej hypotézy, čo je v skutočosti espráve. Sáď je lepšie uvažovať o chybe II.typu ako o pravdepodobosti, ktorá je potrebá pre odmietutie H 0 keď je pravdivá alteratíva a tou je (1. Hodota (1 je ozačovaá ako sila testu. Ak chceme aby táto bola 0.90, potom (1 = 0.90 a = Charakteristiky ormáleho rozdeleia určujú, že 10% plochy a chvoste rozdeleia je za 1.8 smerodatej odchýľky od priemeru. V ašom príklade smerodatá odchýľka rozdeleia všetkých možých rozdielov výberov pri alteratívej hypotéze je ároveň je potrebé si uvedomiť, že súčet 1.96SE(d:H 0 1.8SE(d:H A = toho je možé vypočítať asledove: 0.03( (0.98 SE( d H A = Takto obrovský výber 5703 kotrol a rovaké možstvo experimetálych jedicov potrebujeme pre rozpozaie tak malého rozdielu akým je rozdiel 1%. Rovicu môžeme zjedodušiť tým, že rozdiel P c P e ahradíme symbolom, parameter P bude zastupovať = 5703 súčet oboch P vydeleý dvomi: (P c P e a akoiec Q bude ozačovať difereciu 1 P ( ( = = 0.01 ( ( = ( ( PQ ( 1 PQ PQ Δ PQ 1 PQ 1 1 = 0.01

5 Odhad veľkosti výberu vo forme spreadsheet bude asledový: Alfa 0.05 Beta 0.10 pre alfa =NORMSINV(B1 pre beta -1.8 =NORMSINV(B P kotroly 0.03 P exper 0.0 P 0.03 =(B5B6 Q 0.98 =1-B7 delta 0.01 =B5-B =(POWER(B3*B4,**B7*B8POWER(B9, Pre staoveie 10% -ého rozdielu je potrebé výraze mešie súbory Alfa 0.05 Beta 0.10 pre alfa =NORMSINV(B1 pre beta -1.8 =NORMSINV(B P kotroly 0.30 P exper 0.0 P 0.5 =(B5B6 Q 0.75 =1-B7 delta 0.10 =B5-B =(POWER(B3*B4,**B7*B8POWER(B9, 5

6 6 3. Spojité premeé Rovako ako pre biomiále premeé aj v prípade spojitých (apr. tlak krvi alebo teplota tela môžeme použiť obdobý postup. Výraz P(1-P ahradíme rozptylom var( a amiesto P použijeme (pre ozačeie priemeru populácie. Prepísaím rovice pre výpočet veľkosti rozdielu biomiálych parametrov a kotiuále získame asledový vzťah: kde predstavuje výsledok štadardej liečby a výsledok experimetálej. V prípade kotiuálych premeých je bežé, že dve premeé majú rovaký rozptyl ale rôze priemery. Preto môžeme ahradiť obe variacie jedou z ich Rozdiel priemerov ahradíme symbolom Δ: Odhady rozptylov môže výskumík získať z predchádzajúcich experimetov alebo sa spoľahe a iformovaý odhad. = var( var( var( = 1 1 var( var( ( ( ( [ ] = Δ 1 var( var( var(

Matematika Funkcia viac premenných, Parciálne derivácie

Matematika Funkcia viac premenných, Parciálne derivácie Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x

Διαβάστε περισσότερα

Obvod a obsah štvoruholníka

Obvod a obsah štvoruholníka Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

Regresná analýza x, x,..., x

Regresná analýza x, x,..., x Regresá aalýza Základé pojmy Regresá aalýza skúma fukčý vzťah (priebeh závislosti), podľa ktorého sa meí závisle premeá Y pri zmeách ezávislých veličí x, x,..., x k. x = ( x, x,..., x ) i i i i T Y = (Y,

Διαβάστε περισσότερα

Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky

Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky Chí kvadrát test dobrej zhody Metódy riešenia úloh z pravdepodobnosti a štatistiky www.iam.fmph.uniba.sk/institute/stehlikova Test dobrej zhody I. Chceme overiť, či naše dáta pochádzajú z konkrétneho pravdep.

Διαβάστε περισσότερα

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18

Διαβάστε περισσότερα

x j hodnota štatistického znaku x - aritmetický priemer ni absolútna početnosť m počet tried hšt ti ti kéh m počet tried hšt ti ti kéh

x j hodnota štatistického znaku x - aritmetický priemer ni absolútna početnosť m počet tried hšt ti ti kéh m počet tried hšt ti ti kéh 4. Bodový odhad Pricíp bodového odhadu spočíva v odhade ezámych parametrov (stredej hodoty, rozptylu, smerodajej odchýlky, atď.) prostredíctvom výberových charakteristík, ktoré sú reprezetovaé jedým číslom

Διαβάστε περισσότερα

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita 132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:

Διαβάστε περισσότερα

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov

Διαβάστε περισσότερα

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010. 14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12

Διαβάστε περισσότερα

,Zohrievanie vody indukčným varičom bez pokrievky,

,Zohrievanie vody indukčným varičom bez pokrievky, Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

Ekvačná a kvantifikačná logika

Ekvačná a kvantifikačná logika a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných

Διαβάστε περισσότερα

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop 1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s

Διαβάστε περισσότερα

Cvičenie č. 4,5 Limita funkcie

Cvičenie č. 4,5 Limita funkcie Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(

Διαβάστε περισσότερα

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,

Διαβάστε περισσότερα

3. prednáška. Komplexné čísla

3. prednáška. Komplexné čísla 3. predáška Komplexé čísla Úvodé pozámky Vieme, že existujú také kvadratické rovice, ktoré emajú riešeie v obore reálych čísel. Študujme kvadratickú rovicu x x + 5 = 0 Použitím štadardej formule pre výpočet

Διαβάστε περισσότερα

Pravdepodobnosť a štatistika

Pravdepodobnosť a štatistika Prírodovedecká fakulta UPJŠ Košice Pravdepodobosť a štatistika pozámky z predášok letého semestra predmetu Pravdepodobosť a štatistika predáša: RDr. Valéria Skřiváková, CSc. Verzia. júla 003 : Zostavil

Διαβάστε περισσότερα

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej . Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny

Διαβάστε περισσότερα

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2013/2014 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/27

Διαβάστε περισσότερα

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami

Διαβάστε περισσότερα

Základy matematickej štatistiky

Základy matematickej štatistiky 1. Náhodný výber, výberové momenty a odhad parametrov Katedra Matematických metód Fakulta Riadenia a Informatiky Žilinská Univerzita v Žiline 6. mája 2015 1 Náhodný výber 2 Výberové momenty 3 Odhady parametrov

Διαβάστε περισσότερα

ZNAKY. Ordinálne znaky = možno usporiadať, ale nie je podstatná veľkosť rozdielu!

ZNAKY. Ordinálne znaky = možno usporiadať, ale nie je podstatná veľkosť rozdielu! ZNAKY Merateľé = kvatitatíve Majú veľkosť = ordiále Počítateľé = kvalitatíve Bez veľkosti = omiále Číselé charakteristiky (veľkosť, premelivosť, tvar rozdeleia) = možo odhadovať itervalovým odhadom a testovať

Διαβάστε περισσότερα

Tomáš Madaras Prvočísla

Tomáš Madaras Prvočísla Prvočísla Tomáš Madaras 2011 Definícia Nech a Z. Čísla 1, 1, a, a sa nazývajú triviálne delitele čísla a. Cele číslo a / {0, 1, 1} sa nazýva prvočíslo, ak má iba triviálne delitele; ak má aj iné delitele,

Διαβάστε περισσότερα

HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S

HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv

Διαβάστε περισσότερα

1 Koeficient kovariancie

1 Koeficient kovariancie Koreláciou rozumieme vzájomý lieáry vz tah závislos t) dvoch áhodých premeých X a Y 1. Teto vz tah môˇze by t priamy tj. s rastúcimi hodotami jedej premeej rastú hodoty druhej premeej a aopak alebo epriamy

Διαβάστε περισσότερα

7. FUNKCIE POJEM FUNKCIE

7. FUNKCIE POJEM FUNKCIE 7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje

Διαβάστε περισσότερα

TESTOVANIE ŠTATISTICKÝCH HYPOTÉZ. Zdroje: Kompendium statistického zpracování dat, VPS s r. o.

TESTOVANIE ŠTATISTICKÝCH HYPOTÉZ. Zdroje: Kompendium statistického zpracování dat, VPS s r. o. TESTOVANIE ŠTATISTICKÝCH HYPOTÉZ Zdroje: Kompendium statistického zpracování dat, VPS s r. o. Témy prednášky ŠTATISTIKA, HYPOTÉZA TESTY ŠTATISTICKÝCH HYPOTÉZ (Testy štatistickej významnosti) t-test (STUDENTOV)

Διαβάστε περισσότερα

Limita postupnosti II.

Limita postupnosti II. JKPo09-T List Limita postuposti II. Mgr. Jaa Králiková U: Pojem ity by si už mal pozať. Teraz si zopakujeme a rozšírime aše pozatky. Ž: Ak máme daú postuposť {a } =, ktorej hodoty sa blížia k ejakému číslu

Διαβάστε περισσότερα

Príklady na precvičovanie číselné rady a kritériá ich konvergencie a divergencie

Príklady na precvičovanie číselné rady a kritériá ich konvergencie a divergencie Príklady a precvičovaie číselé rady a kritériá ich kovergecie a divergecie Ústredým problémom teórie reálych číselých radov je vyšetrovaie ich kovergecie, resp divergecie Ak {a } = je daá postuposť reálych

Διαβάστε περισσότερα

PRIEMER DROTU d = 0,4-6,3 mm

PRIEMER DROTU d = 0,4-6,3 mm PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda

Διαβάστε περισσότερα

1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2

1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2 1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2 Rozdiel LMT medzi dvoma miestami sa rovná rozdielu ich zemepisných dĺžok. Pre prevod miestnych časov platí, že

Διαβάστε περισσότερα

HANA LAURINCOVÁ KLASICKÝ VS. NEPARAMETRICKÝ PRÍSTUP Štatistika Poistná matematika

HANA LAURINCOVÁ KLASICKÝ VS. NEPARAMETRICKÝ PRÍSTUP Štatistika Poistná matematika UNIVERZITA KOMENSKÉHO, BRATISLAVA FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY KATEDRA POISTNEJ MATEMATIKY A ŠTATISTIKY PARCIÁLNA A MNOHONÁSOBNÁ KORELÁCIA: KLASICKÝ VS. NEPARAMETRICKÝ PRÍSTUP (Bakalárska práca)

Διαβάστε περισσότερα

Komplexné čísla, Diskrétna Fourierova transformácia 1

Komplexné čísla, Diskrétna Fourierova transformácia 1 Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené

Διαβάστε περισσότερα

Prognózovanie OBSAH PREDNÁŠKY

Prognózovanie OBSAH PREDNÁŠKY Progózovaie OBSAH PREDNÁŠKY Progózovaie cieľ, postup, klasifikácia metód Kvatitatíve metódy Rôze typy priemerov, lieára regresia, metóda harmoických váh Kvalitatíve metódy Odhad predajcov, skupiový posudok,

Διαβάστε περισσότερα

VYHODNOCOVANIE CHYBY MERANIA

VYHODNOCOVANIE CHYBY MERANIA YHODNOCOANIE CHYBY MERANIA doc RNDr Drahoslav ajda, CSc Ceľom meraa je pozať skutočú hodotu fyzkálej velčy Avšak pr meraí akejkoľvek fyzkálej velčy sa dopúšťame epresost, takže výsledok meraa sa líš od

Διαβάστε περισσότερα

Príklady na precvičovanie komplexné čísla, postupnosti a funkcie

Príklady na precvičovanie komplexné čísla, postupnosti a funkcie Príklady a precvičovaie komplexé čísla, postuposti a fukcie Príklad 1 Vypočítajte: Riešeé príklady a) 1 + i 1 i 1 i 1 + i, b) 1 + i)6, c) 1 + i Riešeie: a) Elemetárym vypočtom dostaeme 1 + i 1 i 1 i 1

Διαβάστε περισσότερα

Numerické metódy Učebný text pre bakalárske štúdium

Numerické metódy Učebný text pre bakalárske štúdium Imrich Pokorný Numerické metódy Učebný text pre bakalárske štúdium Strana 1 z 48 1 Nepresnosť numerického riešenia úloh 4 1.1 Zdroje chýb a ich klasifikácia................... 4 1.2 Základné pojmy odhadu

Διαβάστε περισσότερα

2.4 OPAKOVATEĽNOSŤ A REPRODUKOVATEĽNOSŤ NORMOVANÝCH SKÚŠOK A VYJADRENIE NEISTÔT MERANÍ

2.4 OPAKOVATEĽNOSŤ A REPRODUKOVATEĽNOSŤ NORMOVANÝCH SKÚŠOK A VYJADRENIE NEISTÔT MERANÍ .4 OPAKOVATEĽNOSŤ A REPRODUKOVATEĽNOSŤ NORMOVANÝCH SKÚŠOK A VYJADRENIE NEISTÔT MERANÍ Normovaé metódy okrem kompletých postpov popisjú aj spôsob spracovaia a vyhodoteia výsledkov meraia. Pri dodržaí podmieok

Διαβάστε περισσότερα

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu 6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis

Διαβάστε περισσότερα

Pravdepodobnosť a štatistika

Pravdepodobnosť a štatistika Prírodovedecká fakulta UPJŠ Košice Pravdepodobosť a štatistika ( pozámky z predášok letého semestra predmetu Pravdepodobosť a štatistika predáša: RNDr. Valéria Skřiváková, CSc. Verzia. júla 003 : Zostavil

Διαβάστε περισσότερα

1. písomná práca z matematiky Skupina A

1. písomná práca z matematiky Skupina A 1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi

Διαβάστε περισσότερα

6. Mocniny a odmocniny

6. Mocniny a odmocniny 6 Moci odoci Číslo zýve oceec (leo zákld oci), s zýv ociteľ (leo epoet) Číslo s zýv -tá oci čísl Moci s piodzeý epoeto pe ľuovoľé eále číslo pe kždé piodzeé číslo je v ožie eálch čísel defiová -tá oci

Διαβάστε περισσότερα

Analýza vlastností funkcií mierky a waveletov v ortogonálnom prípade. - funkcia mierky a wavelet spĺňajúca relácie zmeny rozlíšenia

Analýza vlastností funkcií mierky a waveletov v ortogonálnom prípade. - funkcia mierky a wavelet spĺňajúca relácie zmeny rozlíšenia Aalýza vlastostí fucií miery a waveletov v ortogoálom prípade Ozačeie: ϕ ( t), ψ ( t) - fucia miery a wavelet spĺňajúca relácie zmey rozlíšeia h ( ), g ( ) - zjedodušeé ozačeie oeficietov pre zmeu rozlíšeia

Διαβάστε περισσότερα

Prechod z 2D do 3D. Martin Florek 3. marca 2009

Prechod z 2D do 3D. Martin Florek 3. marca 2009 Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica

Διαβάστε περισσότερα

AerobTec Altis Micro

AerobTec Altis Micro AerobTec Altis Micro Záznamový / súťažný výškomer s telemetriou Výrobca: AerobTec, s.r.o. Pionierska 15 831 02 Bratislava www.aerobtec.com info@aerobtec.com Obsah 1.Vlastnosti... 3 2.Úvod... 3 3.Princíp

Διαβάστε περισσότερα

Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R

Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R Ako nadprirodzené stretnutie s murárikom červenokrídlym naformátovalo môj profesijný i súkromný život... Osudové stretnutie s murárikom

Διαβάστε περισσότερα

ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3

ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3 ZDNIE _ ÚLOH 3_Všeobecná rovinná silová sústv ZDNIE _ ÚLOH 3 ÚLOH 3.: Vypočítjte veľkosti rekcií vo väzbách nosník zťženého podľ obrázku 3.. Veľkosti známych síl, momentov dĺžkové rozmery sú uvedené v

Διαβάστε περισσότερα

Štatistické riadenie procesov Regulačné diagramy 3-1

Štatistické riadenie procesov Regulačné diagramy 3-1 Charakteristika Štatistické riadenie procesov Regulačné diagramy 3-1 3 Regulačné diagramy Cieľ kapitoly Po preštudovaní tejto kapitoly budete vedieť: čo je to regulačný diagram, aké je jeho teoretické

Διαβάστε περισσότερα

Pevné ložiská. Voľné ložiská

Pevné ložiská. Voľné ložiská SUPPORTS D EXTREMITES DE PRECISION - SUPPORT UNIT FOR BALLSCREWS LOŽISKA PRE GULIČKOVÉ SKRUTKY A TRAPÉZOVÉ SKRUTKY Výber správnej podpory konca uličkovej skrutky či trapézovej skrutky je dôležité pre správnu

Διαβάστε περισσότερα

Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCA

Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCA Uiverzita Karlova v Praze Matematicko-fyzikálí fakulta DIPLOMOVÁ PRÁCA Vladislav Gajdošík Kozistecia a asymptotická reprezetácia odhadu LWS Katedra pravděpodobosti a matematické statistiky Vedúci diplomovej

Διαβάστε περισσότερα

Metódy vol nej optimalizácie

Metódy vol nej optimalizácie Metódy vol nej optimalizácie Metódy vol nej optimalizácie p. 1/28 Motivácia k metódam vol nej optimalizácie APLIKÁCIE p. 2/28 II 1. PRÍKLAD: Lineárna regresia - metóda najmenších štvorcov Na základe dostupných

Διαβάστε περισσότερα

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné

Διαβάστε περισσότερα

Gramatická indukcia a jej využitie

Gramatická indukcia a jej využitie a jej využitie KAI FMFI UK 29. Marec 2010 a jej využitie Prehľad Teória formálnych jazykov 1 Teória formálnych jazykov 2 3 a jej využitie Na počiatku bolo slovo. A slovo... a jej využitie Definícia (Slovo)

Διαβάστε περισσότερα

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny

Διαβάστε περισσότερα

MIDTERM (A) riešenia a bodovanie

MIDTERM (A) riešenia a bodovanie MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude

Διαβάστε περισσότερα

Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita.

Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita. Teória prednáška č. 9 Deinícia parciálna deriácia nkcie podľa premennej Nech nkcia Ak eistje limita je deinoaná okolí bod [ ] lim. tak túto limit nazýame parciálno deriácio nkcie podľa premennej bode [

Διαβάστε περισσότερα

ODHAD HODNOTY BYTU NA PODKLADE PONUKOVÝCH CIEN

ODHAD HODNOTY BYTU NA PODKLADE PONUKOVÝCH CIEN ODHAD HODNOTY BYTU NA PODKLADE PONUKOVÝCH CIEN Mila Nič Abstrakt Základe vzťahy zo štatistiky. Základý súbor údajov a výbery z tohoto súboru. Číselé a grafické vyhodoteie výberu údajov s využitím programu

Διαβάστε περισσότερα

u R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore.

u R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore. Pasívne prvky, L, C v obvode stredavého prúdu Čnný odpor u u prebeh prúdu a napäta fázorový dagram prúdu a napäta u u /2 /2 t Napäte zdroja sa rovná úbytku napäta na čnnom odpore. Prúd je vo fáze s napätím.

Διαβάστε περισσότερα

Základy metodológie vedy I. 9. prednáška

Základy metodológie vedy I. 9. prednáška Základy metodológie vedy I. 9. prednáška Triedenie dát: Triedny znak - x i Absolútna početnosť n i (súčet všetkých absolútnych početností sa rovná rozsahu súboru n) ni fi = Relatívna početnosť fi n (relatívna

Διαβάστε περισσότερα

24. Základné spôsoby zobrazovania priestoru do roviny

24. Základné spôsoby zobrazovania priestoru do roviny 24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá

Διαβάστε περισσότερα

Logaritmus operácie s logaritmami, dekadický a prirodzený logaritmus

Logaritmus operácie s logaritmami, dekadický a prirodzený logaritmus KrAv11-T List 1 Logaritmus operácie s logaritmami, dekadický a prirodzený logaritmus RNDr. Jana Krajčiová, PhD. U: Najprv si zopakujme, ako znie definícia logaritmu. Ž: Ja si pamätám, že logaritmus súvisí

Διαβάστε περισσότερα

Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008)

Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008) ermodynamika nútorná energia lynov,. veta termodynamická, Izochorický dej, Izotermický dej, Izobarický dej, diabatický dej, Práca lynu ri termodynamických rocesoch, arnotov cyklus, Entroia Dolnkové materiály

Διαβάστε περισσότερα

2 Chyby a neistoty merania, zápis výsledku merania

2 Chyby a neistoty merania, zápis výsledku merania 2 Chyby a neistoty merania, zápis výsledku merania Akej chyby sa môžeme dopustiť pri meraní na stopkách? Ako určíme ich presnosť? Základné pojmy: chyba merania, hrubé chyby, systematické chyby, náhodné

Διαβάστε περισσότερα

2 ODHADY PARAMETROV ZÁKLADNÉHO SÚBORU

2 ODHADY PARAMETROV ZÁKLADNÉHO SÚBORU ODHADY PARAMETROV ZÁKLADNÉHO SÚBOR.1 Bodové odhady Každý záko rozdeleia pravdepodobosti diskrétej aj spojitej áhodej premeej závisí od jedého alebo viacerých parametrov. V praxi často hľadáme vhodý pravdepodobostý

Διαβάστε περισσότερα

Určite vybrané antropometrické parametre vašej skupiny so základným (*úplným) štatistickým vyhodnotením.

Určite vybrané antropometrické parametre vašej skupiny so základným (*úplným) štatistickým vyhodnotením. Priezvisko a meno študenta: 216_Antropometria.xlsx/Pracovný postup Študijná skupina: Ročník štúdia: Antropometria Cieľ: Určite vybrané antropometrické parametre vašej skupiny so základným (*úplným) štatistickým

Διαβάστε περισσότερα

Uhol, pod ktorým sa lúč láme závisí len od relatívnych indexov lomu dvojice prostredí a od uhla dopadu podľa Snellovho zákona. n =

Uhol, pod ktorým sa lúč láme závisí len od relatívnych indexov lomu dvojice prostredí a od uhla dopadu podľa Snellovho zákona. n = Lom svetla. Lom svetla hraolom, optickým kliom a plaparalelou doštičkou Záko lomu Na rozhraí dvoch prostredí sa svetelý lúč láme tak, aby prešiel dráhu z bodu A do bodu B za ajkratší možý čas. Teda v opticky

Διαβάστε περισσότερα

Návrh vzduchotesnosti pre detaily napojení

Návrh vzduchotesnosti pre detaily napojení Výpočet lineárneho stratového súčiniteľa tepelného mosta vzťahujúceho sa k vonkajším rozmerom: Ψ e podľa STN EN ISO 10211 Návrh vzduchotesnosti pre detaily napojení Objednávateľ: Ing. Natália Voltmannová

Διαβάστε περισσότερα

Integrovanie racionálnych funkcií

Integrovanie racionálnych funkcií Integrovanie racionálnych funkcií Tomáš Madaras 2009-20 Z teórie funkcií už vieme, že každá racionálna funkcia (t.j. podiel dvoch polynomických funkcií) sa dá zapísať ako súčet polynomickej funkcie a funkcie

Διαβάστε περισσότερα

Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8

Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8 Obsah 1 Číselné obory 7 1.1 Reálne čísla a ich základné vlastnosti............................ 7 1.1.1 Komplexné čísla................................... 8 1.2 Číselné množiny.......................................

Διαβάστε περισσότερα

Harmonizované technické špecifikácie Trieda GP - CS lv EN Pevnosť v tlaku 6 N/mm² EN Prídržnosť

Harmonizované technické špecifikácie Trieda GP - CS lv EN Pevnosť v tlaku 6 N/mm² EN Prídržnosť Baumit Prednástrek / Vorspritzer Vyhlásenie o parametroch č.: 01-BSK- Prednástrek / Vorspritzer 1. Jedinečný identifikačný kód typu a výrobku: Baumit Prednástrek / Vorspritzer 2. Typ, číslo výrobnej dávky

Διαβάστε περισσότερα

7 Derivácia funkcie. 7.1 Motivácia k derivácii

7 Derivácia funkcie. 7.1 Motivácia k derivácii Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických

Διαβάστε περισσότερα

CHÉMIA Ing. Iveta Bruončová

CHÉMIA Ing. Iveta Bruončová Výpočet hmotnostného zlomku, látkovej koncentrácie, výpočty zamerané na zloženie roztokov CHÉMIA Ing. Iveta Bruončová Moderné vzdelávanie pre vedomostnú spoločnosť/projekt je spolufinancovaný zo zdrojov

Διαβάστε περισσότερα

Teória pravdepodobnosti

Teória pravdepodobnosti 2. Podmienená pravdepodobnosť Katedra Matematických metód Fakulta Riadenia a Informatiky Žilinská Univerzita v Žiline 23. februára 2015 1 Pojem podmienenej pravdepodobnosti 2 Nezávislosť náhodných udalostí

Διαβάστε περισσότερα

x x x2 n

x x x2 n Reálne symetrické matice Skalárny súčin v R n. Pripomeniem, že pre vektory u = u, u, u, v = v, v, v R platí. dĺžka vektora u je u = u + u + u,. ak sú oba vektory nenulové a zvierajú neorientovaný uhol

Διαβάστε περισσότερα

C. Kontaktný fasádny zatepľovací systém

C. Kontaktný fasádny zatepľovací systém C. Kontaktný fasádny zatepľovací systém C.1. Tepelná izolácia penový polystyrén C.2. Tepelná izolácia minerálne dosky alebo lamely C.3. Tepelná izolácia extrudovaný polystyrén C.4. Tepelná izolácia penový

Διαβάστε περισσότερα

Spojité rozdelenia pravdepodobnosti. Pomôcka k predmetu PaŠ. RNDr. Aleš Kozubík, PhD. 26. marca Domovská stránka. Titulná strana.

Spojité rozdelenia pravdepodobnosti. Pomôcka k predmetu PaŠ. RNDr. Aleš Kozubík, PhD. 26. marca Domovská stránka. Titulná strana. Spojité rozdelenia pravdepodobnosti Pomôcka k predmetu PaŠ Strana z 7 RNDr. Aleš Kozubík, PhD. 6. marca 3 Zoznam obrázkov Rovnomerné rozdelenie Ro (a, b). Definícia.........................................

Διαβάστε περισσότερα

UČEBNÉ TEXTY. Pracovný zošit č.2. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková

UČEBNÉ TEXTY. Pracovný zošit č.2. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.2 Vzdelávacia

Διαβάστε περισσότερα

Podnikateľ 90 Mobilný telefón Cena 95 % 50 % 25 %

Podnikateľ 90 Mobilný telefón Cena 95 % 50 % 25 % Podnikateľ 90 Samsung S5230 Samsung C3530 Nokia C5 Samsung Shark Slider S3550 Samsung Xcover 271 T-Mobile Pulse Mini Sony Ericsson ZYLO Sony Ericsson Cedar LG GM360 Viewty Snap Nokia C3 Sony Ericsson ZYLO

Διαβάστε περισσότερα

Deliteľnosť a znaky deliteľnosti

Deliteľnosť a znaky deliteľnosti Deliteľnosť a znaky deliteľnosti Medzi základné pojmy v aritmetike celých čísel patrí aj pojem deliteľnosť. Najprv si povieme, čo znamená, že celé číslo a delí celé číslo b a ako to zapisujeme. Nech a

Διαβάστε περισσότερα

PREHĽAD ÚDAJOV. 1. Početnosť

PREHĽAD ÚDAJOV. 1. Početnosť PREHĽAD ÚDAJOV 1. Početnosť. Miery centrálnej tendencie a. Aritmetický priemer b. Medián c. Modus 3. Miery rozptylu a. Tvar b. Rozdelenie, rozloženie údajov c. Rozsah d. Rozptyl - variancia e. Smerodatná

Διαβάστε περισσότερα

Odporníky. 1. Príklad1. TESLA TR

Odporníky. 1. Príklad1. TESLA TR Odporníky Úloha cvičenia: 1.Zistite technické údaje odporníkov pomocou katalógov 2.Zistite menovitú hodnotu odporníkov označených farebným kódom Schématická značka: 1. Príklad1. TESLA TR 163 200 ±1% L

Διαβάστε περισσότερα

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x

Διαβάστε περισσότερα

FUNKCIE N REÁLNYCH PREMENNÝCH

FUNKCIE N REÁLNYCH PREMENNÝCH FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE FUNKCIE N REÁLNYCH PREMENNÝCH RNDr. Kristína Rostás, PhD. PREDMET: Matematická analýza ) 2010/2011 1. DEFINÍCIA REÁLNEJ FUNKCIE

Διαβάστε περισσότερα

Derivácia funkcie. Pravidlá derivovania výrazov obsahujúcich operácie. Derivácie elementárnych funkcií

Derivácia funkcie. Pravidlá derivovania výrazov obsahujúcich operácie. Derivácie elementárnych funkcií Derivácia funkcie Derivácia funkcie je jeden z najužitočnejších nástrojov, ktoré používame v matematike a jej aplikáciách v ďalších odboroch. Stručne zhrnieme základné informácie o deriváciách. Podrobnejšie

Διαβάστε περισσότερα

Zložené funkcie a substitúcia

Zložené funkcie a substitúcia 3. kapitola Zložené funkcie a substitúcia Doteraz sme sa pri funkciách stretli len so závislosťami medzi dvoma premennými. Napríklad vzťah y=x 2 nám hovoril, ako závisí premenná y od premennej x. V praxi

Διαβάστε περισσότερα

6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH

6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH 6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH 6. Otázky Definujte pojem produkčná funkcia. Definujte pojem marginálny produkt. 6. Produkčná funkcia a marginálny produkt Definícia 6. Ak v ekonomickom procese počet

Διαβάστε περισσότερα

Rozdiely vo vnútornej štruktúre údajov = tvarové charakteristiky

Rozdiely vo vnútornej štruktúre údajov = tvarové charakteristiky Veľkosť Varablta Rozdelene 0 00 80 n 60 40 0 0 0 4 6 8 Tredy 0 Rozdely vo vnútornej štruktúre údajov = tvarové charakterstky I CHARAKTERISTIKY PREMELIVOSTI Artmetcký premer Vzťahy pre výpočet artmetckého

Διαβάστε περισσότερα

Kontrolné otázky z jednotiek fyzikálnych veličín

Kontrolné otázky z jednotiek fyzikálnych veličín Verzia zo dňa 6. 9. 008. Kontrolné otázky z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej odpovede sa môže v kontrolnom teste meniť. Takisto aj znenie nesprávnych odpovedí. Uvedomte si

Διαβάστε περισσότερα

Príklady na precvičovanie Fourierove rady

Príklady na precvičovanie Fourierove rady Príklady na precvičovanie Fourierove rady Ďalším významným typom funkcionálnych radov sú trigonometrické rady, pri ktorých sú jednotlivé členy trigonometrickými funkciami. Konkrétne, jedná sa o rady tvaru

Διαβάστε περισσότερα

Metódy spracovania experimentálnych výsledkov Autor pôvodného textu: Peter Ballo

Metódy spracovania experimentálnych výsledkov Autor pôvodného textu: Peter Ballo Spracovae výsledkov Metódy spracovaa epermetálych výsledkov Autor pôvodého tetu: Peter Ballo Každé merae je zaťažeé chybam, ktoré sú zapríčeé edokoalosťou ašch pozorovacích schopostí, epresosťou prístrojov,

Διαβάστε περισσότερα

3. Striedavé prúdy. Sínusoida

3. Striedavé prúdy. Sínusoida . Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Vyhlásenie o parametroch stavebného výrobku StoPox GH 205 S

Vyhlásenie o parametroch stavebného výrobku StoPox GH 205 S 1 / 5 Vyhlásenie o parametroch stavebného výrobku StoPox GH 205 S Identifikačný kód typu výrobku PROD2141 StoPox GH 205 S Účel použitia EN 1504-2: Výrobok slúžiaci na ochranu povrchov povrchová úprava

Διαβάστε περισσότερα

Analýza údajov. W bozóny.

Analýza údajov. W bozóny. Analýza údajov W bozóny http://www.physicsmasterclasses.org/index.php 1 Identifikácia častíc https://kjende.web.cern.ch/kjende/sl/wpath_teilchenid1.htm 2 Identifikácia častíc Cvičenie 1 Na web stránke

Διαβάστε περισσότερα

Modul pružnosti betónu

Modul pružnosti betónu f cm tan α = E cm 0,4f cm ε cl E = σ ε ε cul Modul pružnosti betónu α Autori: Stanislav Unčík Patrik Ševčík Modul pružnosti betónu Autori: Stanislav Unčík Patrik Ševčík Trnava 2008 Obsah 1 Úvod...7 2 Deformácie

Διαβάστε περισσότερα

Matematika 2. časť: Analytická geometria

Matematika 2. časť: Analytická geometria Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové

Διαβάστε περισσότερα

Úvod do lineárnej algebry. Monika Molnárová Prednášky

Úvod do lineárnej algebry. Monika Molnárová Prednášky Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 3 17 marca 2006 4 24 marca 2006 c RNDr Monika Molnárová, PhD Obsah 2 Sústavy lineárnych rovníc 25 21 Riešenie sústavy lineárnych rovníc

Διαβάστε περισσότερα

Súčtové vzorce. cos (α + β) = cos α.cos β sin α.sin β cos (α β) = cos α.cos β + sin α.sin β. tg (α β) = cotg (α β) =.

Súčtové vzorce. cos (α + β) = cos α.cos β sin α.sin β cos (α β) = cos α.cos β + sin α.sin β. tg (α β) = cotg (α β) =. Súčtové vzorce Súčtové vzorce sú goniometrické hodnoty súčtov a rozdielov dvoch uhlov Sem patria aj goniometrické hodnoty dvojnásobného a polovičného uhla a pridám aj súčet a rozdiel goniometrických funkcií

Διαβάστε περισσότερα