ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš
|
|
- Γῆ Αλεβιζόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 1 1. Osnovni pojmovi ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva neprazna skupa. Funkcija f iz skupa X u skup Y je pridruživanje (pravilo) koje svakom elementu x skupa X dodeljuje tačno jedan element y skupa Y. U tom slučaju, simbolički pišemo f : X Y ili X f Y, odnosno y = f(x). Skup X naziva se domen i označava se sa D(f) ili Dom(f), a skup Y kodomen funkcije f. Element x X naziva se nezavisno promenljiva, a y Y se naziva zavisno promenljiva. Skup G tačaka u Dekartovom koordinatnom sisitemu sa koordinatama ( x, f(x) ), x D(f) naziva se grafik funkcije y = f(x), x D(f), tj. G = { ( x, f(x) ) x D(f)}. (i) Grafik funkcije y = f(x) + a može se dobiti translacijom grafika funkcije y = f(x) duž y-ose za vrednost a. (ii) Grafik funkcije y = f(x b) može se dobiti translacijom grafika funkcije y = f(x) duž x-ose za vrednost b. (iii) Grafik funkcije y = f( x) je simetričan u odnosu na y-osu sa grafikom funkcije y = f(x). (iv) Grafik funkcije y = f(x) je simetričan u odnosu na x-osu sa grafikom funkcije y = f(x). Podsetimo se najvažnijih svojstava funkcije. Definicija 1.. Funkcija f : X Y naziva se: (1) injekcija ( 1-1 funkcija) ako za svako x 1, x X važi f(x 1 ) = f(x ) x 1 = x () sirjekcija (funkcija NA ) ako i samo ako za svako y Y postoji bar jedno x X takvo da je y = f(x), tj. ako i samo ako je (3) bijekcija ako je ona injekcija i sirjekcija. f(x) = { f(x) x X } = Y ; Definicija 1.3. Funkcije f : X 1 Y 1 i g : X Y su jednake ako i samo ako: (1) imaju isti domen, tj. X 1 = X ; () imaju isti kodomen, tj. Y 1 = Y ; (3) f(x) = g(x) za svako x X 1 = X. Definicija 1.4. Neka je f : X Y i g : Y Z. Kako je f(x) Y, svaki element f(x) f(x) Y funkcija g preslikava u element g ( f(x) ) Z. Tada se funkcija koja za svako x X ima vrednost g ( f(x) ) = (g f)(x) naziva složena funkcija ili kompozicija funkcija f i g i označava se sa g f. Definicija 1.5. Neka A, B R i neka je f : A B data funkcija. Ako postoji funkcija g : B A takva da važi
2 (1) f ( g(x) ) = x za svako x B () g ( f(x) ) = x za svako x A, kažemo da je funkcija g inverzna funkcija funkcije f i označavamo je sa f 1. Grafik funkcije y = f 1 (x) simetričan je grafiku funkcije y = f(x) u odnosu na pravu y = x. Inverzna funkcija funkcije f ne mora da postoji, a bliže uslove pod kojima funkcija f ima inverznu funkciju daje naredna teorema. Teorema 1.1. Neka je f : A B bijekcija. Tada postoji jedinstvena bijekcija g : B A takva da je (1) f ( g(x) ) = x za svako x B () g ( f(x) ) = x za svako x A, Dokaz: (a) Ako je f : A B sirjekcija, onda može postoji najviše jedna funkcija g : B A takva da je (g f)(x) = x za svako x A. Zaista, ako bi postojale dve funkcije g 1, g sa tim svojstvom, onda pretpostavka g 1 g vodi ka egzistenciji bar jednog elementa z B takvog da( je g) 1 (z) ( g (z). ) Kako je f sirjekcija, postoji x A takvo da je z = f(x). Ali tada je g 1 f(x) g f(x), što je u suprotnosti sa g 1 f = g f = 1 A (1 A je identično preslikavanje skupa A, tj. funkcija definisana sa 1 A (x) = x za svako x A). Prema tome, mora biti g 1 = g. (b) Ako je f : A B injekcija, onda može postojati najviše jedna funkcija g : B A takva da je (f g)(y) = y za svako y B. Zaista, ako bi postojale dve takve funkcije g 1, g, onda zbog pretpostavke g 1 g postoji bar jedan element z B takav da je g 1 (z) g (z). Kako je f injekcija, onda je f ( g 1 (z) ) f ( g (z) ) = 1 B, a to je kontradikcija sa f g 1 = f g. (c) Ako za funkciju f : A B postoje funckije g 1, g : B A takve da je (g 1 f)(x) = x za svako x A, (f g )(y) = y za svako y B, onda je g 1 = g i f je bijekcija. Za proizvoljno y B imamo g (y) A, pa je g (y) = (g 1 f) ( g (y) ) = g 1 (f ( g (y) )) = g 1 (y), što povlači da je g = g 1. Prema tome, postoji funkcija g : B A takva da je (g f)(x) = x za svako x A, (f g)(y) = y za svako y B. Iz g f = 1 A sledi da je f injekcija, a iz f g = 1 B da je f sirjekcija. Dakle, f je bijekcija. (d) Neka je f : A B bijekcija. Za svako y B postoji x A takvo da je y = f(x). Kako je f injekcija, takvo x je jedinstveno. Na taj način svakom elementu y B pridržen je jedinstven element x A takav da je y = f(x). Označimo li sa g : B A funkciju koja y x, tada za svako x A imamo (g f)(x) = g ( f(x) ) = x i za svako y = f(x) B (f g)(y) = f ( g(y) ) = f ( g ( f(x) )) = f ( (g f)(x) ) = f(x) = y. Time je dokazano da funkcija g ima tražene svojstva iz Definicije 1.5.
3 3 Definicija 1.6. Neka f : A R, gde skup A R ima osobinu da ako x A onda x A. Funkcija f je parna na A ako za svako x A važi f( x) = f(x), a neparna na A ako za svako x A važi f( x) = f(x). Ističemo sledeća svojstva parnih i neparnih funkcija: Grafik parne funkcije simetričan je u odnosu na y-osu, a grafik neparne funkcije simetričan je u odnosu na koordinatni početak. Ako su f i g parne funkcije, onda su i funkcije f ± g, f g i f/g parne funkcije. Ako su f i g neparne funkcije, onda su funkcije f ± g neparne funkcije, a f g i f/g su parne funkcije. Ako je f parna funkcija i g neparna funkcija, onda je f g neparna funkcija. Definicija 1.7. Za funkciju f : R R kažemo da je : (a) rastuća, ako je tačna implikacija ( x, y R) ( x < y f(x) < f(y). (b) neopadajuća, ako je tačna implikacija ( x, y R) ( x < y f(x) f(y) ). (c) opadajuća, ako je tačna implikacija ( x, y R) ( x < y f(x) > f(y) ). (d) nerastuća, ako je tačna implikacija ( x, y R) ( x < y f(x) f(y) ). Ako je funkcija neopadajuća ili nerastuća kažemo da je monotona funkcija, a ako je funkcija opadajuća ili rastuća kažemo da je strogo monotona funkcija. Teorema 1.. Neka je funkcija f strogo monotona funkcija koja preslikava segment [a, b] na segment [α, β]. Tada postoji inverzna funkcija f 1 koja preslikava [α, β] na [a, b] i koja je takod e strogo monotona. Dokaz: Neka je f rastuća funkcija na [a, b]. Ako pokažemo da je f bijekcija prema prethodnoj teoremi postoji inverzna funkcija f 1 funkcije f. Zaista, prema pretpostavci f je surjekcija. S druge strane, ako je x y, recimo x < y, tada je f(x) < f(y), tj. f(x) f(y), pa je f i injekcija. Dokažimo da je f 1 rastuća funkcija. Kako je f rastuća funkcija, za svako x 1, x [a, b] važi ili ekvivalentno x 1 < x f(x 1 ) < f(x ) f(x ) f(x 1 ) x x 1. Neka je y 1 = f(x 1 ) i y = f(x ), tj. x 1 = f 1 (y 1 ) i x = f 1 (y ). Tada prethodna nejednakost postaje y y 1 f 1 (y ) f 1 (y 1 ). što znači da je f 1 rastuća funkcija. Definicija 1.8. Neka je f : A R i a A. Za funkciju f kažemo da je neprekidna u tački a ako je lim f(x) = f(a). x a
4 4 Ako su funkcije f, g neprekidne u tačka a, onda su u tački a neprekidne i funkcije c f, f + g, f g, f g, (c R). Funkcija f g je takod e neprekidna u tački a, ako je g(a) 0. Kompozicija neprekidnih funkcija je neprekidna funkcija.. Stepena funkcija sa prirodnim izložiocem Definicija.1. Funkcija f : R R definisana formulom f(x) = x n, n N, naziva se stepena funkcija sa prirodnim izložiocem. Funkcija y = x je neprekidna, pa je onda i funkcija y = x n neprekidna kao prozivod neprekidnih funkcija. Teorema.1. Funkcija f(x) = x n, n N je neprekidna na R. Posmatrajmo jednačinu x n = a (1) Da bi definisali pojam korena od posebnog značaja je sledeća teorema: Teorema.. Neka je a R, a n N. Tada jednačina (1) ima: (1) tačno jedno rešenje ako je n neparan broj; (.1) tačno dva rešenja ako je a > 0 i n paran broj; (.) tačno jedno rešenja ako je a = 0 i n paran broj; (.3) nema rešenja ako je a < 0 i n neparan broj; Definicija.. Neka je n N, a R. Simbol n a označava (1) jedinstveno realno rešenje jednačine x n = a ako je n neparan broj; () pozitivno rešenje jednačine x n = a ako je a > 0 i n paran broj; (3) 0 = 0. Posmatrajmo najpre funkciju f(x) = x n+1, f : R R. Funkcija f je definisana za sve realne vrednosti x, tj. njen domen je skup R Funkcija f je neparna f(x) > 0 za x > 0 i f(x) < 0 za x < 0 f(x) = 0 ako i samo ako je x = 0 Funkcija f je strogo rastuća na R Funkcija f je bijekcija Za svako x 1, x R iz f(x 1 ) = f(x ) tj. x n+1 1 = x n+1 sledi x 1 = x, pa je f injekcija. Za svako y R postoji x = n+1 y R za koje je f(x) = x n+1 = y Funkcija je inverzna funkciji f. h : R R, h(y) = n+1 y, y R
5 5 Na sledećoj slici prikazani su grafici uzajamno inverznih funkcija y = x 3 i y = 3 x. Osnovna svojstva funkcije y = n+1 x su sledeća: Funkcija je definisana za sve realne vrednosti x Znak funkcije se poklapa sa znakom nezavisno promenljive, tj. važi n+1 x > 0 ako i samo ako x > 0, odnosno n+1 x < 0 ako i samo ako x < 0 n+1 x = 0 ako i samo ako x = 0 Funkcija je strogo rastuća na R Funkcija je neparna, tj. važi n+1 x = n+1 x za svako x R Posmatrajmo sada funkciju f(x) = x n, f : R R +. Funkcija f je definisana za sve realne vrednosti x Funkcija f je parna f(x) 0 za svako x R i f(x) = 0 ako i samo ako x = 0 Funkcija f je rastuća na (0, + ) i opadajuća na (, 0). Funkcija f nije ni 1-1 ni NA : Zaista, na primer, važi f( 1) = f(1), što znači da nije 1-1. S druge strane, za y = 1 R ne postoji x R takvo da je x n = 1 = y, pa funkcija nije ni NA. Dakle, ova funkcija nije bijekcija, pa nema inverznu funkciju. Posmatrajmo funkciju g : R + 0 R+ 0, g(x) = xn, x R + 0. Funkcija g je bijekcija. Zaista, ona je 1-1, jer iz g(x 1 ) = g(x ), tj. x n 1 = x n i x 1, x 0 sledi x 1 = x. Takod e ona je NA, jer prema Teoremi.. za svaki nenegativan broj y postoji jedinstven nenegativan broj x, takav da je g(x) = x n = y. Funkcija h : R + 0 R+ 0, h(y) = n y, y R + 0
6 6 je inverzna funkcija funkcije g. Analogno, inverzna funkcija bijekcije g 1 : R 0 R+ 0, g 1(x) = x n, x R 0, je funkcija h 1 : R + 0 R 0, h 1(y) = n y, y R + 0. Na sledećoj slici prikazani su prvo grafici uzajamno inverznih funkcija y = x, x 0 i y = x (obe funkcije su monotono rastuće - videti Teoremu 1..), a zatim grafici uzajamno inverznih funkcija y = x, x 0 i y = x (obe funkcije su monotono opadajuće). Osnovna svojstva funkcije y = n x su sledeća: Funkcija je definisana za nenegativne vrednosti x, tj. njen domen je [0, + ) n Funkcije je nenegativna tj. x > 0 za svako x > 0 n x = 0 ako i samo ako x = 0 Funkcija je strogo rastuća na R Funkcija nije ni parna ni neparna 3. Stepena funkcija sa racionalnim izložiocem Pri definisanju stepenovanja celobrojnim izložiocem, a zatim i pri definisanju stepenovanja racionalnim izložiocem vodi se računa da se sačuvaju svojstva stepenovanja prirodnim brojem, tako da za svako a, b R \ {0} i svako m, n N važi: (1) a m a n = a m+n ; () a m : a n = a m n ; (3) (a b) m = a m b m ; (4) (a : b) m = a m : b m ; (5) (a m ) n = a m n.
7 7 Definicija 3.1. Za a R \ {0} je a 0 = 1, a za n N je a n = 1 a n. Definicija 3.. Neka je a > 0, m Z, n N. Tada je a m/n = n a m. Definicija 3.3. Neka je x > 0 i r = m/n, m Z, n N. Funkcija f : R + R + definisana formulom x r = (x 1/n ) m, x > 0 naziva se stepena funkcija sa racionalnim izložiocem. Funkcija x 1/n je neprekidna i strogo rastuća za x > 0. Funkcija t m je neprekidna za t > 0, strogo rastuća ako je m 0 i strogo opadajuća, ako je m < 0. Zato je funkcija x r, r Q neprekidna za x > 0, strogo rastuća ako je r 0 i strogo opadajuća ako je r < 0. Navodimo neka svojstva stepena sa racionalnim izložiocem: (A) (a 1/n ) m = (a m ) 1/n, a > 0;; (B) a r > 1 za r Q, a > 1, r > 0;; (C) a r1 a r = a r1+r za a > 0, r 1 Q, r Q;; (D) (a r1 ) r = a r1r za a > 0, r 1 Q, r Q;; (E) a r1 > a r > 0 za a > 0, r 1 Q, r Q, r 1 > r.. Navedena svojstva se lako pokazuju, korišćenjem svojstva stepena sa celim izložiocem i činjenicom da ako je a > 0, b > 0 iz a n = b n, n N sledi a = b. 4. Eksponencijalna funkcija Postavlja se pitanje, može li se i za one brojeve x R koji nisu racionalni definisati a x, ali tako da ostanu na snazi osnovna svojstva stepena. Odgovor na postavljeno pitanje je potvrdan, ali dokaz te činjenice nije jednostavan. Da bi definisali eksponencijalnu funkciju f(x) = a x, x R pokazaćemo najpre sledeće tvrd enja: Stav 4.1. Ako je a > 1, onda za svako ε > 0 postoji δ > 0 tako da za svako r Q takvo da je r < δ važi a r 1 < ε. Dokaz: Kako je lim n + a 1/n = 1 i lim n + a 1/n = 1, za svako ε > 0 postoji p = p(ε) N, tako da je 0 < a 1/p 1 < ε, 0 < 1 a 1/p < ε, za a > 1. Odavde sledi da je 1 ε < a 1/p < a 1/p < 1 + ε. Neka je r proizvoljan racionalan broj takav da je r < 1/p, tj. 1/p < r < 1/p. Tada, kako je za a > 1 funkcija a r, r Q rastuća sledi a 1/p < a r < a 1/p. Dakle, za svako ε > 0 postoji δ = 1/p > 0 tako da za sve racionalne brojeve r koji zadovoljavaju uslov r < δ važe nejednakosti 1 ε < a 1/p < a r < a 1/p < 1 + ε, tj. ε < a r 1 < ε. Stav 4.. Ako niz {r n } racionalnih brojeva konvergira, onda niz {a rn }, za a > 1 takod e konvergira.
8 8 Dokaz: Kako je niz {r n } konvergentan on je ograničen, tj. postoji α, β Q, tako da za svako n N je α r n β, odakle kako je a > 1 imamo da je a α a rn a β. Kako je a α > 0, ako označimo sa C = a β, imamo da Prema Stavu 4.1. C > 0 : n N 0 < a rn C. () ε > 0 δ > 0 : r Q : r < δ a r 1 < ε C. (3) Iz konvergencije niza {r n } za δ > 0 postoji N ε takvo da n N ε m N ε r n r m < δ (4) Iz (3) i (4) sledi da je n N ε m N ε a rn rm 1 < ε C. (5) Iz () i (5) je onda a rn a rm = a rm (a rn rm 1) < C ε C = ε za svako n N ε i svako m N ε, tj. niz {a rn } je konvergentan. Pojam eksponencijalne funkcije Neka je x proizvoljan realan broj i {r n } niz racionalnih brojeva koji konvergira ka x tj. lim n r n = x. Ovaj niz postoji jer je skup Q gust u R. Neka je a > 0. Tada možemo definisati sa a x def = lim n + arn (6) Ako je a > 1, onda granična vrednost (6) postoji prema Stavu 4.1. Ako je 0 < a < 1, onda je a rn = 1/b rn, gde je b = 1/a > 1, odakle sledi da granična vrednost (6) postoji i za a (0, 1), jer je lim n + b rn = b x > 0. Definicija eksponencijalne funkcije je korektna, tj. granična vrednost (6) ne zavisi od izbora niza racionalnih brojeva {r n } koji konvergira ka x. Ova činjenica sledi iz poznatog svojstva granične vrednosti funkcije. Svojstva eksponencijalne funkcije Svojstvo 4.1. Za svako x 1, x R važi a x1 a x = a x1+x. Dokaz: Neka su {r n } i {ρ n } nizovi racionalnih brojeva takvi da je lim n + r n = x 1, lim n + ρ n = x. Tada je lim n + (r n + ρ n ) = x 1 + x i prema Stavu 4.. postoje granične vrednosti lim = a n + arn x1, lim = a n + aρn x, lim = a n + arn+ρn x1+x. Kako je prema svojstvu (C) stepena sa racionalnim izložiocem a rn+ρn = a rn a ρn to je a x1+x = lim = lim a n + arn+ρn n + arn ρn = a x1 a x.
9 9 Monotonost eksponencijalne funkcije Svojstvo 4.. Funkcija y = a x za a > 1 je rastuća. Dokaz: Primetimo najpre da važi a x > 1 za x > 0. (7) Zaista, neka je r Q, 0 < r < x i {r n } niz racionalnih brojeva takav da je lim n + r n = x i r n > r za svako n N. Tada je a rn > a r > 1 (zbog svojstva (E) stepena sa racionalnim izložiocem), odakle prelazkom na lim imamo da je a x a r > 1, tj. važi nejednakost (7). Neka su sada x 1, x R, x 1 < x proizvoljni. Prema (7) važi a x x1 > 1 za x > x 1, tj. imamo da je a x > a x1 za x > x 1, što znači da je funkcija y = a x za a > 1 rastuća. Neprekidnost eksponencijalne funkcije Svojstvo 4.3. Funkcija y = a x za a > 1 je neprekidna na R. Dokaz: Neka je x 0 proizvoljna tačka iz R, Treba pokazati da a x 1 kada x 0 ili y = a x0+ x a x0 = a x0 (a x 1). lim x 0 ax = 1. (8) Neka je {x n } proizvoljan niz realnih brojeva takav da lim n + x n = 0. Zbog svojstva skupa realnih brojeva postoje nizovi racionalnih brojeva {r n } i {ρ n } takvi da je x n 1 n < r n < x n < ρ n < x n + 1 n, za svako n N. Sada prema Svojstvu 4.. imamo da je a rn < a xn < a ρn. (9) Kako r n 0 i ρ n 0 kada n +, prema Svojstvu 4.1. je lim n + a rn = 1 i lim n + a ρn = 1. Dakle, koristeći nejednakost (9) dobija se lim n + a xn = 1. Pokazali smo (8) odakle sledi da je lim x 0 ax0+ x = a x0, tj. funkcija a x je neprekidna na R. Svojstvo 4.4. Za svako x 1, x R važi (a x1 ) x = a x1x. Dokaz: (a) Neka je najpre x = r Q, x 1 R i {r n } niz racionalnih brojeva takav da je lim n + r n = x 1. Tada je prema svojstvu (D) stepena sa racionalnim izložiocem (a rn ) r = a r rn. (10) Kako je lim n + r r n = r x 1, prema definiciji eksponencijalne funkcije je lim n + a r rn = a r x1, tj. zajedno sa (10) imamo da je lim ) r = a r n + (arn x1. (11) Označimo sa a rn = t n i a x1 = t 0. Tada prema definiciji eksponencijalne funkcije postoji lim n + t n = t 0 i zbog neprekidnosti eksponencijalne funkcije sa racionalnim izložiocem g(x) = x r, r Q imamo da je lim n + g(t n ) = g(t 0 ), tj. lim n + (arn ) r = (a x1 ) r. (1)
10 10 Iz (11) i (1) imamo da je (a x1 ) r = a x1 r za svako x 1 R i svako r Q. (13) (b) Neka su sada x 1 i x proizvoljni realni brojevi i {ρ n } niz racionalnih brojeva takav da je lim n + ρ n = x. Iz (13) za r = ρ n dobija se (a x1 ) ρn = a x1 ρn. (14) Kako je lim n + x 1 ρ n = x 1 x, prema Svojstvu 4.3. je lim n + a x1ρn = a x1x, a zbog (14) je lim ) n + (ax1 ρn = a x1x. (15) S druge strane, ako označimo sa a x1 = b, prema definiciji eksponencijalne funkcije imamo da je lim ) n + (ax1 ρn = lim = b n + bρn x = (a x1 ) x. (16) Konačno, iz (15) i (16) zaključujemo da dato svojstvo ekponencijalne funkcije važi za svako x 1, x R. Osnovna svojstva eksponencijalne funkcije y = f(x) = a x, a > 0 su: funkcija f je definisana za svako x R, a skup vrednosti funkcije je interval (0, + ), tj. f : R (0, + ) funkcija je pozitivna za svako x R nule funkcije ne postoje funkcija f je monotono rastuća na R za a > 1 i monotono opadajuća na R za 0 < a < 1 Grafici funkcije y = a x za a > 1 i 0 < a < 1 su: 5. Logaritamska funkcija Funkcijom f : R R +, R x f(x) = a x = y R + ostvaruje se bijektivno preslikavanje skupa R na skup R +, pa postoji inverzna funkcija ove funkcije koja je data sa f 1 : R + R, R + y f 1 (y) = log a y = x R. Funkcija naziva se logaritamska funkcija. y = log a x, a > 0, a 1, x > 0,
11 11 Grafici funkcije y = log a x za a > 1 i 0 < a < 1 su: Osnovna svojstva logaritamske funkcije y = f(x) = log a x, a > 0, a 1 su: funkcija f je definisana za svako x R + za 0 < a < 1 funkcija je pozitivna za x (0, 1) i negativna za x (1, + ), a za a > 1 funkcija je pozitivna za x (1, + ) i negativna za x (0, 1) nula funkcije je x = 1 funkcija f je monotono rastuća na R + za a > 1 i monotono opadajuća na R + za 0 < a < 1 6. Trigonometrijske funkcije (i) Sinusna funkcija. Funkcija f(x) = sin x je definisana za svako x R, a skup vrednosti funkcije je segment [ 1, 1], tj. f : R [ 1, 1]. funkcija f je neparna i periodična sa osnovnom periodom π (zato je dovoljno iskazati svojstva funkcije samo na segmentu [0, π]) funkcija je pozitivna za x (0, π) i negativna za x (π, π) nule funkcije f su u tačkama x = k π, k Z [ funkcija je monotono rastuća na 0, π ] [ 3π ] [ π, π i monotono opadajuća na, 3π ] Sinusna funkcija je osnovna elementarna funkcija. Ostale trigonometrijske funkcije definišemo sa ( cos x = sin x + π ), tg x = sin x cos x, cos x ctg x = sin x. (ii) Kosinusna funkcija. Funkcija g(x) = cos x je definisana za svako x R, a skup vrednosti funkcije je segment [ 1, 1], tj. g : R [ 1, 1]. funkcija g je parna i periodična sa osnovnom periodom π nule funkcije g su u tačkama x = π + k π, k Z funkcija je monotono opadajuća na [0, π] i monotono rastuća na [π, π]
12 1 (iii) Tanges. Funkcija h(x) = tg x = sin x je definisana za svako x R izuzev u tačkama cos x (k + 1)π x =, k Z, a skup vrednosti funkcije je R. funkcija h je neparna i periodična sa osnovnom periodom π nule funkcije h su u tačkama x = k π, k Z funkcija je monotono rastuća (iv) Kotanges. Funkcija k(x) = ctg x = cos x sin x x = kπ, k Z, a skup vrednosti funkcije je R. je definisana za svako x R izuzev u tačkama funkcija k je neparna i periodična sa osnovnom periodom π nule funkcije h su u tačkama x = funkcija je monotono opadajuća (k + 1)π, k Z Neprekidnost trigonometrijskih funkcija Teorema 6.1. Funkcije y = sin x i y = cos x su neprekidne na R. Dokaz: Neka je x 0 proizvoljna tačka iz R. Tada Kako je sin x sin x 0 = sin x x 0 sin x x 0 x x 0, cos x + x 0 cos x + x 0 1, to je sin x sin x 0 x x 0, odakle sledi da je funkcija y = sin x neprekidna u tački x 0. Analogno, kako je cos x cos x 0 = sin x + x 0 sin x 0 x sledi da je cos x cos x 0 x x 0, zbog čega je funkcija y = cos x neprekidna u tački x 0. Iz neprekidnosti funkcija y = sin x i y = cos x sledi da je funkcija tg x = sin x neprekidna, ako cos x je cos x 0, tj. x π cos x + n π, n Z, a funkcija ctg x = je neprekidna, ako je x n π, sin x n Z.. 7. Inverzne trigonometrijske funkcije Inverzne trigonometrijske funkcije nazivaju se ciklometrijske ili arkus funkcije. (i) Arkus sinus. Funkcija f(x) = sin x nema inverznu funkciju, jer nije bijekcija. Na primer, svi brojevi oblika π + kπ, k Z preslikavaju se ovom funkcijom u broj 1. Med utim, posmatrajmo [ restrikciju funkcije f(x) na π, π ], tj. funkciju [ f 1 : π, π ] [ 1, 1], gde je f 1 (x) = sin x. [ Funkcija f 1 (x) je rastuća funkcija, pa postoji njena inverzna funkcija f 1 1 : [ 1, 1] π, π ] koja se naziva arkus sinus i označava se sa F (x) = arcsin x. Grafik funkcije y = arcsin x simetričan je grafiku funkcije f 1 (x) u odnosu na pravu y = x.
13 13 Prema svojstvima uzajamno inveznih funkcija važe jednakosti: arcsin(sin x) = x, x [ π, π ], sin(arcsin x) = x, x [ 1, 1]. Osnovna svojstva funkcije F (x) = arcsin x, x [ 1, 1] su: funkcija F je neparna, tj. važi arcsin( x) = arcsin x, x [ 1, 1]. funkcija je pozitivna za x (0, 1] i negativna za x [ 1, 0) nula funkcija F je x = 0 funkcija je monotono rastuća Primer: Nacrtati grafik funkcije y = arcsin(sin x). Funkcija je definisana na R i periodična je sa periodom π. Zato je dovoljno odrediti grafik funkcije na segmentu [ π/, 3π/]. Ako je π/ x π/, onda je y = arcsin(sin x) = x. Za π/ x 3π/ je π/ x π π/, pa je S druge strane, sin(x π) = sin x i zato je arcsin(sin(x π)) = x π. arcsin(sin(x π)) = arcsin( sin x) = arcsin(sin x), zbog neparnosti funkcije arcsin x. Dakle, x π = arcsin(sin x) za x [π/, 3π/]. Konačno, imamo da je x, π y = arcsin(sin x) = x π, π π x, x 3π, Grafik funkcije y = arcsin(sin x) prikazan je na sledećoj slici:
14 14 (ii) Arkus kosinus. Funkcija g 1 : [0, π] [ 1, 1], g 1 (x) = cos x, x [0, π] je neprekidna i opadajuća. Njena inverzna funkcija G : [ 1, 1] [0, π], G(x) = arccos x, x [ 1, 1] je takod e neprekidna i opadajuća. Grafik funkcije y = arccos x prikazan je na sledećoj slici: Važe jednakosti: arccos(cos x) = x, x [0, π], cos(arccos x) = x, x [ 1, 1]. Osnovna svojstva funkcije G(x) = arccos x, x [ 1, 1] su: funkcija G nije ni parna ni neparna, već važi arccos( x) = π arccos x funkcija G je pozitivna za svako x [ 1, 1) nula funkcija G je x = 1 funkcija je monotono opadajuća
15 15 Stav 7.1. Za svako x [ 1, 1] važe jednakosti: arccos( x) = π arccos x, arcsin x + arccos x = π. (A) (B) Dokaz: (a) Označimo sa arccos x = α. Tada prema definiciji funkcije arccos x je cos α = x, 0 α π. Onda je 0 π α π i cos(π α) = cos α = x. Opet prema definiciji funkcije arccos x je π α = arccos( x). Ovim je formula (A) dokazana. (b) Označimo sa arcsin x = α. Tada prema definciji funkcije arcsin x je sin α = x, π/ α π/. Onda je 0 π/ α π i cos(π/ α) = sin α = x. Sada prema definiciji funkcije arccos x je π/ α = arccos x. Ovim je i formula (B) dokazana. (iii) Arkus tanges. Funkcija [ h 1 : π, π ] R, h 1 (x) = tg x, x [ π, π ] je neprekidna i rastuća. Njena inverzna funkcija [ H : R π, π ], H(x) = arctg x, x R je takod e neprekidna i rastuća. Važe jednakosti: arctg(tg x) = x, x [ π, π ], tg(arctg x) = x, x R. Za funkciju H(x) = arcctg x, x R važi: funkcija H je neparna, tj. arctg( x) = arctg x, x R funkcija je negativna za x < 0, pozitivna za x > 0 i nula funkcije je x = 0 funkcija je monotono rastuća (iv) Arkus kotanges. Funkcija K(x) = arcctg x, K : R [0, π] je inverzna za monotonu funkciju k 1 : [0, π] R datu sa k 1 (x) = ctg x, x [0, π]. Važe jednakosti: arcctg(ctg x) = x, x [0, π], ctg(arcctg x) = x, x R. Za funkciju y = K(x) = arcctg x važi: funkcija K nije ni parna ni neparna, već važi arcctg( x) = arcctg x + π funkcija K nema nule funkcija je monotono opadajuća
16 16 Grafici funkcija y = arctg x i y = arcctg x su: Stav 7.. Za svako x R važe jednakosti: arctg x + arcctg x = π, arcctg( x) = arcctg x + π. (C) (D) Veze izmed u ciklometrijskih funkcija istog ugla: Stav 7.3. Važe sledeće jednakosti: arcsin x = arccos 1 x = arctg arccos x = arcsin 1 x = arcctg x, x [0, 1] 1 x x, x [0, 1] 1 x arctg x = arcctg 1 x = arcsin x = arccos 1, 1 + x 1 + x x R Dokaz: Označimo sa arcsin x = α. Tada prema definiciji funkcije arcsin x je sin α = x, 0 α π/. Onda je cos α = odakle je α = arccos 1 x = arctg 1 sin α = 1 x, tg α = x 1 x. sin x 1 sin x,
ELEMENTARNE FUNKCIJE
1 1. Osnovni pojmovi ELEMENTARNE FUNKCIJE Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva neprazna skupa. Funkcija f iz skupa X u skup Y je pridruživanje
ELEMENTARNE FUNKCIJE
1 1. Osnovni pojmovi ELEMENTARNE FUNKCIJE Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva neprazna skupa. Funkcija f iz skupa X u skup Y je pridruživanje
1 Pojam funkcije. f(x)
Pojam funkcije f : X Y gde su X i Y neprazni skupovi (X - domen, Y - kodomen) je funkcija ako ( X)(! Y )f() =, (za svaki element iz domena taqno znamo u koji se element u kodomenu slika). Domen funkcije
ELEMENTARNA MATEMATIKA 2
ELEMENTARNA MATEMATIKA 1. Osnovni pojmovi o funkcijama Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva neprazna skupa. Funkcija f iz skupa X u skup
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
ELEMENTARNA MATEMATIKA 2
ELEMENTARNA MATEMATIKA 1. Osnovni pojmovi o funkcijama Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva neprazna skupa. Funkcija f iz skupa X u skup
ELEMENTARNA MATEMATIKA 2
ELEMENTARNA MATEMATIKA 1. Osnovni pojmovi o funkcijama Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva neprazna skupa. Funkcija f iz skupa X u skup
ELEMENTARNA MATEMATIKA 2
ELEMENTARNA MATEMATIKA 1. Osnovni pojmovi o funkcijama Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva neprazna skupa. Funkcija f iz skupa X u skup
Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije
Glava 1 Realne funkcije realne promen ive 1.1 Elementarne funkcije Neka su dati skupovi X i Y. Ukoliko svakom elementu skupa X po nekom pravilu pridruimo neki, potpuno odreeni, element skupa Y kaemo da
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.
4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
5 Ispitivanje funkcija
5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Osnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Granične vrednosti realnih funkcija i neprekidnost
Granične vrednosti realnih funkcija i neprekidnost 1 Pojam granične vrednosti Naka su x 0 R i δ R, δ > 0. Pod δ okolinom tačke x 0 podrazumevamo interval U δ x 0 ) = x 0 δ, x 0 + δ), a pod probodenom δ
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Jednodimenzionalne slučajne promenljive
Jednodimenzionalne slučajne promenljive Definicija slučajne promenljive Neka je X f-ja def. na prostoru verovatnoća (Ω, F, P) koja preslikava prostor el. ishoda Ω u skup R realnih brojeva: (1)Skup {ω/
2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =
( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i
PRIPREMA ZA II PISMENI IZ ANALIZE SA ALGEBROM. zadatak Re{avawe algebarskih jedna~ina tre}eg i ~etvrtog stepena. U skupu kompleksnih brojeva re{iti jedna~inu: a x 6x + 9 = 0; b x + 9x 2 + 8x + 28 = 0;
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).
0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
4.1 Elementarne funkcije
. Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom
3.1. Granične vrednosti funkcija
98 3. FUNKCIJE: GRANIČNE VREDNOSTI I NEPREKIDNOST 3.1. Granične vrednosti funkcija 3.1.1. Definicija i osnovne osobine Da bismo motivisali definiciju granične vrednosti funkcija, dajemo dva primera. Posmatrajmo
Eksponencijalna i logaritamska funkcija
16 1. UVOD U ANALIZU Rešenje. Kako je ovo neprava funkcija, deljenjem nalazimo da je (11) f() = 1 + 5 6 + 1 3 5 + 6 = 1 + 5 6 + 1 ( )( 3). Prema postupku navedenom u teoremi 1.7, važi razlaganje odnosno
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B.
Korespondencije Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Pojmovi B pr 2 f A B f prva projekcija od
4 Izvodi i diferencijali
4 Izvodi i diferencijali 8 4 Izvodi i diferencijali Neka je funkcija f() definisana u intervalu (a, b), i neka je 0 0 + (a, b). Tada se izraz (a, b) i f( 0 + ) f( 0 ) () zove srednja brzina promene funkcije
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Zadaci iz Osnova matematike
Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
Funkcije. Predstavljanje funkcija
Funkcije narna relacija f je funkcionalna relacija ako važi: ( ) za svaki a postoji jedinstven element b takav da (a, b) f. Definicija. Funkcija 1 je uredjena trojka (,, f) gde f zadovoljava uslov: Činjenicu
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:
Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne
Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.
Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.
Zadaci iz trigonometrije za seminar
Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;
SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE
1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar
4 Funkcije. 4.1 Pojam funkcije
4 Funkcije 4.1 Pojam unkcije Neka su i neprazni skupovi i pravilo koje svakom elementu skupa pridružuje točno jedan element skupa. Tada se uredena trojka (,, ) naziva preslikavanje ili unkcija sa skupa
Dvanaesti praktikum iz Analize 1
Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.
MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori
MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =
APROKSIMACIJA FUNKCIJA
APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu
KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.
KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako
2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos
. KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..
f(x) = a x, 0<a<1 (funkcija strogo pada)
Eksponencijalna funkcija (baze a) f() a, a > 0, a domena D(f) R; slika funkcije f(d) (0,+ ); nema nultočaka, jer je a > 0, za sve R; graf G(f) je krivulja u ravnini prikazana na slici desno; f() a, 0
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa
1. Dušan Adnad ević i Zoran Kadelburg, Matematička analiza I, Naučna knjiga, Beograd, 1990.
PREDGOVOR Predavanja su namenjena studentima koji polažu ispit iz predmeta Matematička analiza. Materijal je u nastajanju, iz nedelje u nedelju se dodaju novi sadržaji, moguće su i izmene u prethodno unešenom
9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE
Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )
3 Funkcije. 3.1 Pojam funkcije
3 Funkcije 3.1 Pojam unkcije Neka su i neprazni skupovi i pravilo koje svakom elementu skupa pridružuje točno jedan element skupa. Tada se uredena trojka (,, ) naziva preslikavanje ili unkcija sa skupa
Matematka 1 Zadaci za drugi kolokvijum
Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
Na grafiku bi to značilo :
. Ispitati tok i skicirati grafik funkcije + Oblast definisanosti (domen) Kako zadata funkcija nema razlomak, to je (, ) to jest R Nule funkcije + to jest Ovo je jednačina trećeg stepena. U ovakvim situacijama
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Neka je data korespondencija f A B. Tada korespondenciju f 1 B A definisanu sa. f 1 = {(b, a) B A (a, b) f}
Inverzna korespondencija Neka je data korespondencija f A B. Tada korespondenciju f 1 B A definisanu sa f 1 = {(b, a) B A (a, b) f} nazivamo inverznom korespondencijom korespondencije f. A f B A f 1 B
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
FUNKCIJE - 2. deo. Logika i teorija skupova. 1 Logika FUNKCIJE - 2. deo
FUNKCIJE - 2. deo Logika i teorija skupova 1 Logika FUNKCIJE - 2. deo Inverzna korespondencija Neka je data korespondencija f A B. Tada korespondenciju f 1 B A definisanu sa f 1 = {(b, a) B A (a, b) f}
(y) = f (x). (x) log ϕ(x) + ψ(x) Izvodi parametarski definisane funkcije y = ψ(t)
Izvodi Definicija. Neka je funkcija f definisana i neprekidna u okolini tačke a. Prvi izvod funkcije f u tački a je Prvi izvod funkcije f u tački : f f fa a lim. a a f lim 0 Izvodi višeg reda funkcije
I N Ž E N J E R S K A M A T E M A T I K A 1. P r e d a v a n j a z a d e v e t u s e d m i c u n a s t a v e (u akademskoj 2009/2010.
I N Ž E N J E R S K A M A T E M A T I K A Verba volant, scripta manent. [Riječi odlijeću, pisano ostaje. Ono što se kaže lako je zaboraviti, ali ono što je napisano ne može se poreći.] ( Latinska izreka
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
TEORIJA REDOVA. n u k (n N) (2) k=1. u k. lim S n = S, kažemo da zbir (suma) reda. k=1 S = k=1
TEORIJA REDOVA NUMERIČKI REDOVI. OSNOVNI POJMOVI DEFINICIJA. Neka je {u n } n N realan niz. Izraz oblika k= u k = u + u 2 + + u n + () naziva se beskonačan red, ili kraće red. Broj u n naziva se opšti
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =
x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.
KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije a + b + c je parabola. Najpre ćemo naučiti kako izgleda
Deljivost. 1. Ispitati kada izraz (n 2) 3 + n 3 + (n + 2) 3,n N nije deljiv sa 18.
Deljivost 1. Ispitati kada izraz (n 2) 3 + n 3 + (n + 2) 3,n N nije deljiv sa 18. Rešenje: Nazovimo naš izraz sa I.Važi 18 I 2 I 9 I pa možemo da posmatramo deljivost I sa 2 i 9.Iz oblika u kom je dat
MATERIJAL ZA VEŽBE. Nastavnik: prof. dr Nataša Sladoje-Matić. Asistent: dr Tibor Lukić. Godina: 2012
MATERIJAL ZA VEŽBE Predmet: MATEMATIČKA ANALIZA Nastavnik: prof. dr Nataša Sladoje-Matić Asistent: dr Tibor Lukić Godina: 202 . Odrediti domen funkcije f ako je a) f(x) = x2 + x x(x 2) b) f(x) = sin(ln(x
3. poglavlje (korigirano) F U N K C I J E
. Funkcije (sa svim korekcijama) 5. poglavlje (korigirano) F U N K C I J E U ovom poglavlju: Elementarne unkcije Inverzne unkcije elementarnih unkcija Domena složenih unkcija Inverz složenih unkcija Ispitivanje
PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE
Fakultet Tehničkih Nauka, Novi Sad PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE 1 Za koje vrednosti parametra p R polinom f x) = x + p + 1)x p ima tačno jedan, i to pozitivan realan koren? U skupu realnih
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Granične vrednosti realnih nizova
Graiče vredosti realih izova Fukcija f : N R, gde je N skup prirodih brojeva a R skup realih brojeva, zove se iz realih brojeva ili reala iz. Opšti čla iza f je f(), N, i običo se obeležava sa f, dok se
Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.
σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka
Elementarna matematika - predavanja -
Elementarna matematika - predavanja - February 11, 2013 2 Sadržaj I Zasnivanje brojeva 5 I.1 Peanove aksiome............................. 5 I.2 Celi brojevi................................ 13 I.3 Racionalni
Glava 1. Trigonometrija
Glava 1 Trigonometrija 1.1 Teorijski uvod Neka su u ravni Oxy dati krug k = {x, y) R R : x +y = 1} i prava p = {x, y) R R : x = 1}. Predstavimo skup realnih brojeva na pravoj p, kao brojevnoj pravoj, tako
1. Funkcije više promenljivih
1. Funkcije više promenljivih 1. Granične vrednosti funkcija više promenljivih Definicija 1. Funkcija f : D( R n R ima graničnu vrednost u tački (x 0 1, x 0 2,..., x 0 n D i jednaka je broju α R ako važi
1 Uvodni pojmovi kombinatorike, I deo
1 Uvodni pojmovi kombinatorike, I deo 1 Uvodni pojmovi kombinatorike, I deo U predavanju se osvrćemo na osnovne principe kombinatorike i njihovu primenu na rešavanje elementarnih kombinatornih problema.
Uvod u teoriju brojeva
Uvod u teoriju brojeva 2. Kongruencije Borka Jadrijević Borka Jadrijević () UTB 2 1 / 25 2. Kongruencije Kongruencija - izjava o djeljivosti; Teoriju kongruencija uveo je C. F. Gauss 1801. De nicija (2.1)
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa
Binarne operacije Binarna operacija na skupu A je preslikavanje skupa A A u A, to jest : A A A. Pišemo a b = c. Označavanje operacija:,,,. Poznate operacije: sabiranje (+), oduzimanje ( ), množenje ( ).
MJERA I INTEGRAL 2. kolokvij 30. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!)
JMBAG IM I PZIM BOJ BODOVA MJA I INTGAL 2. kolokvij 30. lipnja 2017. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (ukupno 6 bodova) Neka je (, F, µ) prostor mjere i neka je (